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Abstract

Compositional generalization is a basic and essential intellective capability of
human beings, which allows us to recombine known parts readily. However,
existing neural network based models have been proven to be extremely deficient in
such a capability. Inspired by work in cognition which argues compositionality can
be captured by variable slots with symbolic functions, we present a refreshing view
that connects a memory-augmented neural model with analytical expressions, to
achieve compositional generalization. Our model consists of two cooperative neural
modules, Composer and Solver, fitting well with the cognitive argument while
being able to be trained in an end-to-end manner via a hierarchical reinforcement
learning algorithm. Experiments on the well-known benchmark SCAN demonstrate
that our model seizes a great ability of compositional generalization, solving all
challenges addressed by previous works with 100% accuracies.

1 Introduction

When using language, humans have a remarkable ability to recombine known parts to understand
novel sentences they have never encountered before [8, 12]. For example, once humans have learned
the meanings of “walk”, “jump” and “walk twice”, it is effortless for them to understand the meaning
of “jump twice”. This kind of ability relies on the compositionality that characterizes languages.
The principle of compositionality refers to the idea that the meaning of a complex expression (e.g.
a sentence) is determined by the meanings of its constituents (e.g. the verb “jump” and the adverb
“twice”) together with the way these constituents are combined (e.g. an adverb modifies a verb) [34].
Understanding language compositionality is a basic and essential capacity for human beings, which
is argued to be one of the key skills towards human-like machine intelligence [25].

Recently, Lake and Baroni [19] made a step towards exploring and benchmarking compositional
generalization of neural networks. They argued that leveraging compositional generalization was
an essential ability for neural networks to understand out-of-domain sentences. The test suite, their
proposed Simplified version of the CommAI Navigation (SCAN) dataset, contains compositional
navigation commands, such as “walk twice”, and corresponding action sequences, like WALK WALK.
Such a task lies in the category of machine translation, and thus is expected to be well solved
by current state-of-the-art translation models (e.g. sequence to sequence with attention [32, 3]).
However, experiments on SCAN demonstrated that modern translation models dramatically fail
to obtain a satisfactory performance on compositional generalization. For example, although the
meanings of “walk”, “walk twice” and “jump” have been seen, current models fail to generalize
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to understand “jump twice”. Subsequent works verified that it was not an isolated case, since
convolutional encoder-decoder model [10] and Transformer [17] met the same problem. There have
been several attempts towards SCAN, but so far no neural based model can successfully solve all the
compositional challenges on SCAN without extra resources [21, 18, 13].

In this paper, we propose a memory-augmented neural model to achieve compositional generalization
by Learning Analytical Expressions (LANE). Motivated by work in cognition which argues compo-
sitionality can be captured by variable slots with symbolic functions [4], our memory-augmented
architecture is devised to contain two cooperative neural modules accordingly: Composer and Solver.
Composer aims to find structured analytical expressions from unstructured sentences, while Solver
focuses on understanding these expressions with accessing Memory (Sec. 3). These two modules
are trained to learn analytical expressions together in an end-to-end manner via a hierarchical rein-
forcement learning algorithm (Sec. 4). Experiments on a well-known benchmark SCAN demonstrate
that our model seizes a great ability of compositional generalization, reaching 100% accuracies in
all tasks (Sec. 5). As far as we know, our model is the first neural model to pass all compositional
challenges addressed by previous works on SCAN without extra resources. We open-source our code
at https://github.com/microsoft/ContextualSP.

2 Compositional Generalization Assessment

Since the study on compositional generalization of deep neural models is still in its infancy, the
overwhelming majority of previous works employ artificial datasets to conduct assessment. As one
of the most important benchmarks, the SCAN dataset is proposed to evaluate the compositional
generalization ability of translation models [19]. As mentioned above, SCAN describes a simple nav-
igation task that aims to translate compositional navigation sentences into executed action sequences.
However, due to the open nature of compositional generalization, there is disagreement about which
aspect should be addressed [34, 20, 15, 17]. To conduct a comprehensive assessment, we consider
both systematicity and productivity, two important arguments for compositional generalization.

Systematicity evaluates if models can recombine known parts. To assess it, Lake and Baroni [19]
proposed three tasks: (i) Add Jump. The pairs of train and test are split in terms of the primitive JUMP.
All commands that contain, but are not exactly, the word “jump” form the test set. The rest forms the
train set. (ii) Around Right. Any compositional command whose constitutes include “around right”
is excluded from the train test. This task is proposed to evaluate whether the model can generalize
the experience about “left” to “right”, especially on “around right”. (iii) Length. All commands with
long outputs (i.e. output length is longer than 24), such as “around ∗ twice ∗ around” and “around ∗
thrice”, are never seen in training, where “∗” indicates a wildcard. More recently, Keysers et al. [17]
proposed another assessment, the distribution-based systematicity. It aims to measure compositional
generalization by using a setup where there is a large compound distribution divergence between
train and test sets (Maximum Compound Divergence, MCD) [17].

Productivity is thought to be another key argument. It not only requires models to recombine known
parts, but also evaluates if they can productively generalize to inputs beyond the length they have
seen in training. It relates itself to the unboundedness of languages, which means languages license
a theoretically infinite set of possible sentences [4]. To evaluate it, we re-create the SCAN dataset
(SCAN-ext). Compared with SCAN using up to one “and” in a sentence, SCAN-ext roughly controls
the distribution of input lengths by the number of “and” (e.g. “jump and walk twice and turn left”).
Input sentences in the train set consist of at most 2 “and”, while the test set allows at most 9. Except
for “and”, the generation of other parts follows the procedure in SCAN.

3 Methodology

In this section, we first show the intrinsic connection between language compositionality and analyti-
cal expressions. We then describe how these expressions are learned through our model.

3.1 Problem Statement

Cognitive scientists argue that the compositionality of language indeed constitutes an algebraic
system, of the sort that can be captured by variable slots with symbolic functions [4, 12]. As an
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Figure 1: The schematic illustration of learning analytical expressions. The understanding of “run
opposite left after walk twice” can be regarded as a hierarchical application of symbolic functions.

illustrative example, any adjective attached with the prefix “super-” can be regarded as applying a
symbolic function (i.e. “super-adj”) on a variable slot (e.g. “good”), and will be mapped to a new
adjective (e.g. “super-good”) [4]. Such a formulation frees the symbolic function from specific
adjectives and makes it able to generalize on new adjectives (e.g. “super-bad”).

Taking a more complicated case from SCAN, as shown in Fig. 1, ”$x” and ”$y” are variables defined
in the source domain, and ”$X” and ”$Y” are variables defined in the destination domain. We call a
sequence of source domain variables or words (e.g. run) a source analytical expression (SrcExp),
while we call a sequence of destination domain variables or action words (e.g. RUN) a destination
analytical expression (DstExp). If there is no variable in an SrcExp (or DstExp), it is also a constant
SrcExp (or DstExp). From bottom to top, each phrase marked blue represents an SrcExp which
will be superseded by a source domain variable (e.g. $x) when moving to the next hierarchy of
understanding. These SrcExps can be recognized and translated into their corresponding DstExps by
a set of symbolic functions. We call such SrcExps as recognizable SrcExps, and their corresponding
DstExps as recognizable DstExps. By iterative recognizing and translating recognizable SrcExps,
we can construct a tree hierarchy with a set of recognizable DstExps. By assigning values to the
destination variables in recognizable DstExps recursively (dotted red arrows in Fig. 1), we can finally
obtain a constant DstExp as the final resulted sequence.

It is well known that, variables are pieces of memory in computers, and a memory mechanism can be
used to support variable-related operations. Thus we propose a memory-augmented neural model to
achieve compositional generalization by automatically learning the above analytical expressions.

3.2 Model Design

Our model takes several steps to understand a sentence. Fig. 2 presents the overall procedure of our
model at step t and t+1 in detail (corresponding to step 5 and 6 in Fig. 1). At the beginning of step t,
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Figure 2: The illustration of our model. Colored neurons are learnable vectors. Composer accepts
an SrcExp as input, and aims to find a recognizable SrcExp inside it. Solver first translates a
recognizable SrcExp into a recognizable DstExp, and then assigns values to destination variables in
the recognizable DstExp, obtaining a constant DstExp. To support variable-related operations in a
differentiable manner [31], Memory is designed to include a number of items, each of which contains
a source vector (SrcVec) to represent source variables (e.g. $x, $y), a destination vector (DesVec) to
represent destination variables (e.g. $X, $Y), and a value slot to temporarily store a constant DstExp.
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Figure 3: (a) Composer finds a recognizable SrcExp via the cooperation of the merge process and the
check process. (b) Our HRL algorithm contains a high-level policy πθ and a low-level policy πϕ.

an SrcExp “$x after $y twice” is fed into Composer. Then Composer finds a recognizable SrcExp “$y
twice” and sends it to Solver. Receiving “$y twice”, Solver first translates it into “$Y $Y”. Using “$Y
$Y” as the skeleton, Solver obtains WALK WALK by replacing “$Y” with its corresponding constant
DstExp WALK stored in Memory. Meanwhile, since WALK has been used, the value slot which stores
WALK is set to empty. Next, Solver applies for one item with an empty value slot in Memory, i.e.
the item containing $y and $Y, and then writes WALK WALK into its value slot (gray background in
Fig.2). Finally, the recognizable SrcExp “$y twice” in wt is superseded by “$y”, producing “$x after
$y” as wt+1 for the next step. Such a procedure is repeated until the SrcExp fed into Composer is a
recognizable SrcExp. Assuming the step at this point is T , the constant DstExp oT is actually the
final output action sequence.

Composer Given an SrcExp wt, Composer aims to find a recognizable SrcExp w̃t. There are
several ways to implement it, and we choose to gradually merge elements of wt until a recognizable
SrcExp appears. As shown in Fig. 3a, given “$x after $y twice”, at first Composer merges “$y” and
“twice”. Then it checks if “$y twice” is a recognizable SrcExp. In this case the answer is YES, and
thus Composer triggers Solver to translate “$y twice”. Otherwise, the overall procedure would be
iterative, which means that Composer would continue to merge until a recognizable SrcExp appears.
Viewing the procedure as building a binary tree from bottom to top, Composer iteratively merges two
neighboring elements of wt into a parent node at each layer (i.e. the merge process), and checks if
the parent node represents a recognizable SrcExp (i.e. the check process).

The merge process is implemented by first enumerating all possible parent nodes of the current layer,
and then selecting the one which has the highest merging score. Assuming i-th and (i+ 1)-th node at
layer l are represented by rli and rli+1 respectively, their parent representation rl+1

i can be obtained
via a standard Tree-LSTM encoding [35] using rli and rli+1 as input. As shown in Fig. 3a, given all
parent node representations (blue neurons), Composer selects the parent node (solid lines with arrows)
whose merging score is the maximum. In fact, the merging score measures the merging priority of
rl+1
i using a learnable query vector q by

〈
q, rl+1

i

〉
, where 〈·, ·〉 represents the inner product. Once

the parent node for layer l is determined, the check process begins.

The check process is to check if a parent node represents a recognizable SrcExp. Concretely,
denoting rl+1

i the parent node representation, an affine transformation is built based on it to obtain
the probability pc = σ(Wcr

l+1
i + bc) where Wc and bc are learned parameters and σ is the sigmoid

function. pc > 0.5 means that the parent node represents a recognizable SrcExp, and thus Composer
triggers Solver to translate it. Otherwise, the parent node and other unmerged nodes enter a new layer
l + 1, based on which Composer restarts the merge process.

Solver Given a recognizable SrcExp w̃t, Solver first translates it into a recognizable DstExp õt,
and then obtains a constant DstExp ot via variable assignment through interacting with Memory.
To achieve this, Solver is designed to be an LSTM-based sequence to sequence network with an
attention mechanism [3]. It generates the recognizable DstExp via decoding it step by step. At each
step, Solver either generates an action word, or a destination variable. Using the recognizable DstExp
as the skeleton, Solver obtains a constant DstExp by replacing each destination variable with its
corresponding constant DstExp stored in Memory.
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4 Model Training

Training our proposed model is non-trivial for two reasons: (i) since the identification of w̃t is discrete,
it is hard to optimize Composer and Solver via back propagation; (ii) since there is no supervision
about w̃t and õt, Composer and Solver cannot be trained separately. Recalling the procedure of these
two modules in Fig. 2, it is natural to model the problem via Hierarchical Reinforcement Learning
(HRL) [5]: a high-level agent to find recognizable SrcExps (Composer), and a low-level agent to
obtain constant DstExps conditioned on these recognizable SrcExps (Solver).

4.1 Hierarchical Reinforcement Learning

We begin by introducing some preliminary formulations for our HRL algorithm. Denoting st as
the state at step t, it contains both wt and Memory. The action of Composer, denoted by Gt, is
the recognizable SrcExp to be found at step t. Given st as observation, the parameter of Composer
θ defines a high-level policy πθ(Gt | st). Once a high-level action Gt is produced, the low-level
agent Solver is triggered to react following a low-level policy conditioned on Gt. In this sense, the
high-level action can be viewed as a sub-goal for the low-level agent. Denoting at the action of
Solver, the low-level policy πϕ(at | Gt, st) is parameterized by the parameter of Solver ϕ. at is the
constant DstExp output by Solver at step t. More implementation details about πθ and πϕ can be
found in the supplementary material.

Policy Gradient As illustrated in Fig. 3b, in our HRL algorithm, Composer and Solver take actions
in turn. When it is Composer’s turn to act, it picks a sub-goal Gt according to πθ. Once Gt is set,
Solver is triggered to pick a low-level action at according to πϕ. These two modules alternately act
until they reach the endpoint (i.e. step T ) and predict the output action sequence, forming a trajectory
τ = (s1G1a1 · · · sTGTaT ). Once τ is determined, the reward is collected to optimize θ and ϕ using
policy gradient [33]. Denoting R(τ) as the reward of a trajectory τ (elaborated in Sec. 4.2), the
training objective of our model is to maximize the expectation of rewards as:

max
θ,ϕ
J (θ, ϕ) = max

θ,ϕ
Eτ∼πθ,ϕ R(τ). (1)

Applying the likelihood ratio trick, θ and ϕ can be optimized by ascending the following gradient:

∇θ,ϕJ (θ, ϕ) = Eτ∼πθ,ϕ R(τ)∇θ,ϕ log πθ,ϕ (τ) . (2)

Expanding the above equation via the chain rule2, we can obtain:

∇θ,ϕJ (θ, ϕ) = Eτ∼πθ,ϕ
∑

t
R(τ)

[
∇θ,ϕ log πθ

(
Gt|st

)
+∇θ,ϕ log πϕ

(
at|Gt, st

)]
. (3)

Considering the search space of τ is huge, the REINFORCE algorithm [39] is leveraged to approxi-
mate Eq. 3 by sampling τ from πθ,ϕ forN times. Furthermore, the technique of subtracting a baseline
[38] is employed to reduce variance, where the baseline is the mean reward over sampled τ .

Differential Update Unlike standard Reinforcement Learning (RL) algorithms, we introduce a
differential update strategy to optimize Composer and Solver via different learning rates. It is
motivated by an intuition that actions of a high-level agent cannot be changed quickly. According to
Eq. 3, simplifying Eτ∼πθ,ϕ as E, the parameters of Composer and Solver are optimized as:

θ ← θ + α ·E R(τ)
∑
t

∇θ log πθ
(
Gt|st

)
, ϕ← ϕ+ β ·E R(τ)

∑
t

∇ϕ log πϕ
(
at|Gt, st

)
, (4)

where Solver’s learning rate β is greater than Composer’s learning rate α.

4.2 Reward Design

The design of the reward function is critical to an RL based algorithm. Bearing this in mind, we
design our reward from two aspects: similarity and simplicity. It is worth noting that both rewards
work globally, i.e., all actions share the same reward, as indicated by dotted lines in Fig. 3b.

2More details can be found in the supplementary material.
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Similarity-based Reward It is based on the similarity between the model’s output and the ground-
truth. Since the output of our model is an action sequence, a kind of sequence similarity, the
Intersection over Union (IoU) similarity, is employed as the similarity-based reward function. Given
the sampled output aT and the ground-truth o, the similarity-based reward is computed by:

Rs (τ) =
∣∣aT ∩ o

∣∣ / (∣∣aT ∣∣+ |o| − ∣∣aT ∩ o
∣∣) , (5)

where aT ∩ o means the longest common substring between aT and o, and | · | represents the length
of a sequence. Compared with exact matching, such a reward alleviates the reward sparsity issue.

Simplicity-based Reward Inspired by Occam’s Razor principle that “the simplest solution is
most likely the right one”, we try to encourage our model to have the fewest kinds of learned
recognizable DstExps overall. In other words, we encourage the model to fully utilize variables
and be more generalizable. Taking an illustration of “jump twice”, [ jump twice → JUMP JUMP]
and [ jump → JUMP, $x twice → $X $X] both result in correct outputs. Intuitively, the latter is
more generalizable as it enables Solver to reuse learned recognizable DstExps, more in line with
the Occam’s Razor principle. Concretely, when understanding a novel input like “walk twice”,
$x twice → $X $X can be reused. Denoting T ∗ as the number of steps where the recognizable
DstExp only contains destination variables, we design a reward Ra(τ) = T ∗ / T as a measure of the
simplicity. The final reward function R(τ) is a linear summation as R(τ) = Rs(τ) + γ·Ra(τ), where
γ is a hyperparameter.

4.3 Curriculum Learning

One typical strategy for improving model generalization capacity is to use curriculum learning, which
arranges examples from easy to hard in training [24, 1]. Inspired by it, we divide the training into
different lessons according to the length of the input sequence. Our model starts training on the
simplest lesson, with lesson complexity gradually increasing. Besides, as done in literature [7], we
accumulate training data from previous lessons to avoid catastrophic forgetting.

5 Experiments

In this section, we conduct a series of experiments to evaluate our model on various compositional
tasks mentioned in Sec. 2. We then verify the importance of each component via a thorough ablation
study. Finally we present two real cases to illustrate our model concretely.

5.1 Experimental Setup

Task In this section, we introduce Tasks used in our experiments. Systematicity is evaluated on Add
Jump, Around Right and Length of SCAN [19], while distribution-based systematicity is assessed on
MCD splits of SCAN [17]. MCD uses a nondeterministic algorithm to split examples into the train
set and the test set. By using different random seeds, it introduces three tasks MCD1, MCD2, and
MCD3. Productivity is evaluated on the SCAN-ext dataset. In addition, we also conduct experiments
on the Simple task of SCAN which requires no compositional generalization capacity, and the Limit
task of MiniSCAN [20] which evaluates if models can learn compositional generalization when given
limited (i.e. 14) training data. We follow previous works to split datasets for all tasks.

Baselines We consider a range of state-of-the-art models on SCAN compositional tasks as our
baselines. In terms of the usage of extra resources, we divide them into two groups: (i) No Extra
Resources includes vanilla sequence to sequence with attention (Seq2Seq) [19, 23], convolutional
sequence to sequence (CNN) [10], Transformer [36], Universal Transformer [9], Syntactic Attention
[29] and Compositional Generalization for Primitive Substitutions (CGPS) [21]. (ii) Using Extra
Resources consists of Good Enough Compositional Data Augmentation (GECA) [2], meta sequence
to sequence (Meta Seq2seq) [18], equivariant sequence to sequence (Equivariant Seq2seq) [13] and
Program Synthesis [27]. Here we define “extra resources” as “data or data specific rules other than
original training data”. GECA and Meta Seq2Seq lie in “extra resources” since they both utilize extra
data. Specifically, GECA recombines real examples to construct extra data, while Meta Seq2Seq
employs random assignment of the primitive instructions (e.g. “jump”) to their meaning (e.g. JUMP)
to synthesize extra data. Regarding data-specific rules, Equivariant Seq2Seq requires predefined local
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Table 1: Test accuracies of systematicity assessment on the SCAN dataset. All results of LANE are
obtained by averaging over 5 runs, the same for Tab. 2 and Tab. 3.

Extra Resources Model Simple Add Jump Around Right Length

None

Seq2Seq [19, 23] 99.7 1.2 2.5± 2.7 13.8
CNN [10] 100.0 69.2± 9.2 56.7± 10.2 0.0
Syntactic Attention [29] 100.0 91.0± 27.4 28.9± 34.8 15.2± 0.7
CGPS [21] 99.9 98.8± 1.4 83.2± 13.2 20.3± 1.1
LANE (Ours) 100.0 100.0 100.0 100.0

Data Augmentation GECA [2] - 87.0 82.0 -
Permutation-based Augmentation Meta Seq2Seq [18] - 99.9 99.9 16.6
Manually Designed Local Groups Equivariant Seq2Seq [13] 100.0 99.1± 0.0 92.0± 0.2 15.9± 3.2

Manually Designed Meta Grammar Program Synthesis [27] 100.0 100.0 100.0 100.0

Table 2: Test accuracies of the distribution-based systematicity assessment on the SCAN dataset (left)
and the Limit task on the MiniSCAN dataset (right).

Model MCD1 MCD2 MCD3

Seq2Seq [17] 6.5± 3.0 4.2± 1.4 1.4± 0.2
Transformer [17] 0.4± 0.2 1.6± 0.3 0.8± 0.4

Universal Transformer [17] 0.5± 0.1 1.5± 0.2 1.1± 0.4
CGPS 1.2± 1.0 1.7± 2.0 0.6± 0.3

LANE (Ours) 100.0 100.0 100.0

Model Limit

Human [20] 84.3
Seq2Seq 2.5
CGPS 76.0

Meta Seq2Seq 100.0
LANE (Ours) 100.0

groups to make the model aware of equivariance between verbs or directions (e.g. “jump” and “run”
are verbs). Similarly, Program Synthesis needs a predefined meta grammar, which heavily relies on
the grammar of a dataset, and hence we think it also falls into the group of using “extra resources”.
Details of these baselines can be found in Sec. 6.

5.2 Implementation Details

Our model is implemented in PyTorch [28]. All experiments use the same hyperparameters. Di-
mensions of word embeddings, hidden states, key vectors and value vectors are set as 128. Hy-
perparameters γ and N are set as 0.5 and 10 respectively. All parameters are randomly initialized
and updated via the AdaDelta [40] optimizer, with a learning rate of 0.1 for Composer and 1.0 for
Solver. Meanwhile, as done in previous works [14], we introduce a regularization term to prevent
our model from overfitting in the early stage of training. Its weight is set to 0.1 at the beginning,
and exponentially anneals with a rate 0.5 as the lesson increases. Our model is trained on a single
Tesla-P100 (16GB) and the training time for a single run is about 20 ∼ 25 hours.

5.3 Experimental Results

Experiment 1: Systematicity on SCAN As shown in Tab. 1, LANE achieves stunning 100% test
accuracies on all tasks. Compared with state-of-the-art baselines without extra resources, LANE
achieves a significantly higher performance. Even compared to baselines with extra resources, LANE
is highly competitive, suggesting that to some extent LANE is capable of learning human prior
knowledge. Although program synthesis [27] also achieves perfect accuracies, it heavily depends on
a predefined meta-grammar where decent task-related knowledge is encoded. As far as we know,
LANE is the first neural model to pass all tasks without extra resources.

Experiment 2: Distribution-based Systematicity on SCAN LANE also achieves 100% accura-
cies on the more challenging distribution-based systematicity tasks (see Tab. 2). By comparing Tab. 1
and Tab. 2, one can find LANE maintains a stable and perfect performance regardless of the task,
while a strong baseline CGPS shows a sharp drop. Furthermore, to the best of our knowledge, LANE
is also the first one to pass the assessment of distribution-based systematicity on SCAN.

Experiment 3: Productivity As shown in Fig. 4a, there is a sharp divergence between input
lengths of train and test set on SCAN-ext, suggesting it is a feasible benchmark for productivity. From
the results (right), one can find that test accuracies of baselines are mainly ruled by the frequency
of input lengths in the train set. In contrast, LANE maintains a perfect trend as the input length
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Figure 4: (a) Input length distributions on train set and test set of SCAN-ext (left) and test accuracies
of various method on different input lengths (right). (b) Accuracies on train set (left) and test set
(right) under different learning rate combinations.

Table 3: Test accuracies of different variants in all tasks on the SCAN dataset.
Variant Simple Add Jump Length Around Right MCD1 MCD2 MCD3

w/o Composer 98.5± 0.6 0.0 11.1± 13.1 0.0 5.3± 2.4 0.7± 0.3 2.6± 0.9
w/o Curriculum Learning 0.0 0.0 0.0 0.0 0.0 0.0 0.0

w/o Simplicity-based Reward 100.0 100.0 100.0 0.0 100.0 100.0 78.8± 4.2

increases, indicating it has productive generalization capabilities. Furthermore, the trend suggests the
potential of LANE on tackling inputs with unbounded length.

Experiment 4: Compositional Generalization on MiniSCAN Tab. 2 (right) shows the perfor-
mance of various methods given limited training data, and LANE remains highly effective. Without
extra resources such as permutation-based augmentation employed by Meta Seq2Seq, our model
performs perfectly, i.e. 100% on the Limit task. Compared with the human performance 84.3% [20],
to a certain extent, our model is close to the human ability at learning compositional generalization
from few examples. However, it does not imply that either our model or Meta Seq2Seq triumphs over
humans in terms of compositional generalization, as the Limit task is relatively simple.

5.4 Closer Analysis

We conduct a thorough ablation study in Tab. 3 to verify the effectiveness of each component in our
model. “w/o Composer” ablates the check process of Composer, making our model degenerate into
a tree to sequence model, which employs a Tree-LSTM to build trees and encode input sequences
dynamically. “w/o Curriculum Learning” means training our model on the full train set from the
beginning. As the result shows, ablating each of above causes an enormous performance drop,
indicating the necessity of Composer and the curriculum learning. Especially, without the curriculum
learning, our model shows no sign of convergence even after training for several days, and thus all
results are directly dropped to 0. We suppose that our model shows such non-convergence since its
action space is exponentially large, which is due to the indefinite length of output sequences in Solver,
and the huge number of possible trees in Composer. Such a huge space means that rewards are very
sparse, especially for harder examples. So without curriculum learning, our randomly initialized
model receives zero rewards on most examples. In comparison, by arranging examples from easy to
hard, curriculum learning alleviates the sparse reward issue. On the one hand, easy examples are more
likely to provide non-zero rewards to help our model converge; on the other hand, models trained
on easy examples have a greater possibility to receive non-zero rewards on hard examples. “w/o
Simplicity-based Reward”, which only considers the similarity-based reward, fails on several tasks
such as Around Right. We attribute its failure to its inability to learn sufficiently general recognizable
DstExps from the data. As for the differential update, we compare the results of several learning
rate combinations in Fig. 4b. As indicated, our designed differential update strategy is essential for
successful convergence and high test accuracies. Last, we present learned tree structures of two real
cases in Fig. 5. Observing that “twice” behaves differently under different contexts, it is non-trivial to
produce such trees.
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Figure 5: Learned tree structures in Composer of two real cases.

6 Related Work

The most related work is the line of exploring compositional generalization on neural networks, which
has attracted a large attention on different topics in recent years. Under the topic of mathematical
reasoning, Veldhoen et al. [37] explored the algebraic compositionality of neural networks via
simple arithmetic expressions, and Saxton et al. [30] pushed the area forward by probing if the
standard Seq2Seq model can resolve complex mathematical problems. Under the topic of logical
inference, previous works devoted to testing the ability of neural networks on inferring logical
relations between pairs of artificial language utterances [6, 26]. Our work differently focuses more
on the compositionality in languages, benchmarked by the SCAN compositional tasks [19].

As for the SCAN compositional tasks, there have been several attempts. Inspired by work in neuro-
science which suggests a disjoint processing on syntactic and semantic, Russin et al. [29] proposed
the Syntactic Attention model. Analogously, Li et al. [21] employed different representations for
primitives and functions respectively (CGPS). Unlike their separate representations, our proposed
Composer and Solver can be seen as separate at the module level. There are also some works
which impose prior knowledge of compositionality via extra resources. Andreas [2] presented a
data augmentation technique to enhance standard approaches (GECA). Lake [18] argued to achieve
compositional generalization by meta learning, and thus they employed a Meta Seq2Seq model with
a memory mechanism. Regarding the memory mechanism, our work is similar to theirs. However,
their training process, namely permutation training, requires handcrafted data augmentation. In a
follow-up paper [27], they argued to generalize via the paradigm of program synthesis. Despite the
nearly perfect performance, it also requires a predefined meta-grammar, where decent knowledge is
encoded. Meanwhile, based on the group-equivariance theory, Gordon et al. [13] predefined local
groups to enable models aware of equivariance between verbs or directions (Equivariant Seq2Seq).
The biggest difference between our work and theirs is that we do not utilize any extra resource.

Our work is also related to those which apply RL on language. In this sense, using language as the
abstraction for HRL [16] is the most related work. They proposed to use sentences as the sub-goal
for the low-level policy in vision-based tasks, while we employ recognizable SrcExps as the sub-goal.
In addition, the applications of RL on language involves topics such as natural language generation
[11], conversational semantic parsing [22] and text classification [41].

7 Conclusion & Future Work

In this paper, we propose to achieve compositional generalization by learning analytical expressions.
Motivated by work in cognition, we present a memory-augmented neural model which contains two
cooperative neural modules Composer and Solver. These two modules are trained in an end-to-end
manner via a hierarchical reinforcement learning algorithm. Experiments on a well-known benchmark
demonstrate that our model solves all challenges addressed by previous works with 100% accuracies,
surpassing existing baselines significantly. For future work, we plan to extend our model to a recently
proposed compositional task CFQ [17] and more realistic applications.
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Broader Impact

This work explores the topic of compositional generalization capacities in neural networks, which is a
fundamental problem in artificial intelligence but not involved in real applications at now. Therefore,
there will be no foreseeable societal consequences nor ethical aspects.
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