
A Details on the Weighting Function

A.1 More Information on Rank-Based Weighting

Independence from Dataset Size We show that the key properties of rank-based weighting depend
only on k, and not on the dataset size N , meaning that applying rank weighting with a fixed k to
differently sized datasets will yield similar results. In particular, we show that under mild assumptions,
the fraction of weights devoted to a particular quantile of the data depends on k but not N .

Suppose that the quantile of interest is the range q1–q2 (for example, the first quartile corresponds to
the range 0–0.25). This corresponds approximately to the points with ranks q1N–q2N . We make the
following assumptions:

1. kN � 1

2. kN is approximately integer valued, which is realistic if N � 1/k

3. q1 and q2 are chosen so that q1N and q2N are integers.

Because the ranks form the sequence 0, 1, . . . , N − 1, under the above assumptions all weights are
reciprocal integers, so the sum of the rank weights is strongly connected to the harmonic series.
Recall that the partial sum of the harmonic series can be approximated by the natural logarithm:

N∑
j=1

1

j
≈ lnN + γ (2)

Here, γ is the Euler–Mascheroni constant. The fraction of the total weight devoted to the quantile
q1–q2 can be found by summing the weights of points with rank q1N–q2N , and dividing by the
normalization constant (the sum of all weights). First, because kN � 1 implies that (kN−1) ≈ kN ,
the sum of all the weights can be expressed as:

N−1∑
r=0

w(xr;D, k) =
N−1∑
r=0

1

kN + r

=

kN+(N−1)∑
r=1

1

r
−

kN−1∑
r′=1

1

r′

≈ (ln ((k + 1)N − 1) + γ)− (ln (kN − 1) + γ)

= ln
(k + 1)N − 1

kN − 1
≈ ln

(k + 1)N

kN
= ln

(
1 +

1

k

)

Note that this does not depend on the dataset size N . Second, using the same assumption, the sum of
the weights in the quantile is:

q2N∑
r=q1N

w(xr;D, k) =
q2N∑

r=q1N

1

kN + r

=

(k+q2)N∑
r=1

1

r
−

(k+q1)N−1∑
r′=1

1

r′

≈ (ln ((k + q2)N − 1) + γ)− (ln ((k + q1)N − 1) + γ)

= ln
(k + q2)N

(k + q1)N − 1
≈ ln

(k + q2)N

(k + q1)N
= ln

(k + q2)

(k + q1)

which is also independent of N (note that setting q1 = 0, q2 = 1 into the formula yields the same
expression for the sum of the weights as derived above). Therefore, the fraction of the total weight
allocated to a given quantile of data is independent of N , being only dependent on k. Although the
analysis that led to this result made some assumptions about certain values being integers, in practice

15

0.0 0.2 0.4 0.6 0.8 1.0
Data Fraction

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

we
ig

ht
 fr

ac
tio

n

k=100; N=103

k=100; N=105

k=10 2; N=103

k=10 2; N=105

k=10 4; N=103

k=10 4; N=105

Figure 6: Cumulative distribution of rank weights (sorted highest to lowest), showing a distribution
that is independent of N if kN > 1.

the actual distributions of weights are extremely close to what this analysis predicts. Figure 6 shows
the allocation of the weights to different quantiles of the datasets. For kN > 1, the distribution is
essentially completely independent of N . Only when kN < 1 this fails to hold.

Finally, we discuss some potential questions about the rank-based weighting.

Why do the weights need to be normalized? If the objective is to minimize
∑

xi∈D wiL(xi), for
any a > 0, minimizing a

∑
xi∈D wiL(xi) is an equivalent problem. Therefore, in principle, the

absolute scale of the weights does not matter, and so the weights do not need to be normalized, even if
this precludes their interpretation as a probability distribution. However, in practice, if minimization
is performed using gradient-based algorithms, then the scaling factor for the weights is also applied
to the gradients, possibly requiring different hyperparameter settings (such as a different learning
rate). By normalizing the weights, it is easier to identify hyperparameter settings that work robustly
across different problems, thereby allowing weighted retraining to be applied with minimal tuning.

Why not use a weight function directly based on the objective function value? Although there
is nothing inherently flawed about using such a weight function, there are some practical difficulties.

• Such a weight function would either be bounded (in which case values beyond a certain
threshold would all be weighted equally), or it would be very sensitive to outliers (i.e.
extremely high or low values which would directly cause the weight function to take on
an extremely high or low value). This is extremely important because the weights are
normalized, so one outlier would also affect the values of all other points.

• Such a weight function would not be invariant to simple transformations of the objective
function. For example, if the objective function is f , then maximizing f(x) or fab(x) =
af(x)+b is an equivalent problem (for a > 0), but would yield different weights. This would
effectively introduce scale hyperparameters into the weight function, which is undesirable.

A.2 Mini-Batching for Weighted Training

As mentioned in the main text, one method of implementing the weighting with mini-batch stochastic
gradient descent is to sample each point xi with probability proportional to its weight wi (with
replacement). A second method is to sample points with uniform probability and re-weight each
point’s contribution to the total loss by its weight:∑

xi∈D
wiL(xi) ≈

N

n

n∑
j=1

wjL(xj) (3)

If done naively, these mini-batches may have extremely high variance, especially if the variance of
the weights is large. In practice, we found it was sufficient to reduce the variance of the weights by
simply adding multiple copies of any xi with wi > wmax, then reducing the weight of each copy
such that the sum is still wi. The following is a Python code snippet implementing this variance
reduction:

16

def reduce_variance(data, weights, w_max):
new_data = []
new_weights = []
for x, w in zip(data, weights):

if w <= w_max: # If it is less than the max weight, just add it
new_data.append(x)
new_weights.append(w)

else: # Otherwise, add multiple copies
n_copies = int(math.ceil(w / w_max))
new_data += [x] * n_copies
new_weights += [w / n_copies] * n_copies

return new_data, new_weights

The parameter w_max was typically set to 5.0, which was chosen to both reduce the variance, while
simultaneously not increasing the dataset size too much. Note that this was applied after the weights
were normalized. This also makes it feasible to train for only a fraction of an epoch, since without
variance reduction techniques there is a strong possibility that high-weight data points would be
missed if the entire training epoch was not completed.

A.3 Implementation of Weighted Training

One of the benefits of weighted retraining which we would like to highlight is its ease of implementa-
tion. Below, we give example implementations using common machine learning libraries.

A.3.1 PyTorch (weighted sampling)

Standard Training
from torch.utils.data import *

dataloader = DataLoader(data)
for batch in dataloader:

...

Weighted Training
from torch.utils.data import *
sampler = WeightedRandomSampler(

weights, len(data))
dataloader = DataLoader(data, sampler=sampler)
for batch in dataloader:

...

A.3.2 PyTorch (direct application of weights)

Standard Training
criterion = nn.MSELoss()
outputs = model(inputs)
loss = criterion(outputs, targets)

loss.backward()

Weighted Training
criterion = nn.MSELoss(reduction=None)
outputs = model(inputs)
loss = criterion(outputs, targets)
loss = torch.mean(loss * weights)
loss.backward()

A.3.3 Keras
Standard Training
model.fit(x, y)

Weighted Training
model.fit(x, y, sample_weight=weights)

A.4 Implementation of Rank Weighting

We provide a simple implementation of rank-weighting:

import numpy as np
def get_rank_weights(outputs, k):

argsort argsort to get ranks (a cool trick!)
assume here higher outputs are better
outputs_argsort = np.argsort(-np.asarray(outputs))
ranks = np.argsort(outputs_argsort)
return 1 / (k * len(outputs) + ranks)

17

A.5 Rank-Weighted Distributions of Objective Function Values of 2D Shape and Arithmetic
Expression Datasets

Finally, to complement the rank-weighted distributions of objective function values of the ZINC
dataset in Figure 2, we here also show the corresponding distributions for the 2D shape and arithmetic
expression datasets used in Section 6 (Figure 7 and Figure 8).

0 200 400

k = 102

0 200 400

k = 10 1

0 200 400

k = 10 3

0 200 400

k = 10 6

unweighted weighted

Figure 7: Illustration of rank weighting (Equation (1)) on the shapes dataset (see Section 6) (similar
to Figure 2).

7 6 5

k = 102

7 6 5

k = 10 1

7 6 5

k = 10 3

7 6 5

k = 10 6

unweighted weighted

Figure 8: Illustration of rank weighting (Equation (1)) on the arithmetic expression dataset (see
Section 6) (similar to Figure 2).

B Further Experimental Results

B.1 Optimization Performance with More Weighted Retraining Parameters

Holding r fixed at rlow, we vary k from klow to∞ (Figure 9) and vice versa (Figure 10). In general,
performance increases monotonically as k, r decrease, suggesting a continuous improvement from
increasing weighting or retraining. The arithmetic expression task did not show this behaviour for
retraining, which we attribute to the high degree of randomness in the optimization.

0 200 400
Num. eval. of f

500

1000

1500

To
p1

 s
co

re

2D Shape Area

0 200 400
Num. eval. of f

3

2

1

Arithmetic Expr.

0 200 400
Num. eval. of f

0

10

20

Chemical Design

k = 10 3, r = rlow k = 10 1, r = rlow k = , r = rlow

Figure 9: Top1 optimization performance of weighted retraining for different k values with r = rlow.

18

0 200 400
Num. eval. of f

500

1000

1500

To
p1

 s
co

re

2D Shape Area

0 200 400
Num. eval. of f

3

2

1

Arithmetic Expr.

0 200 400
Num. eval. of f

0

10

20

Chemical Design

k = 10 3, r = rlow k = 10 3, r = rhigh k = 10 3, r =

Figure 10: Top1 optimization performance of weighted retraining for different r values with k = klow
rlow = 5, rhigh = 50 for the 2D shape area task; rlow = 50, rhigh = 100 for the others

0 200 400
Num. eval. of f

500

1000

1500

To
p1

0
sc

or
e

2D Shape Area

0 200 400
Num. eval. of f

6

4

2

Arithmetic Expr.

0 200 400
Num. eval. of f

0

10

20

Chemical Design

k = 10 3, r = 50 k = , r = rlow k = 10 3, r = k = , r =
Figure 11: Top10 optimization performance of weighted retraining for all tasks (setup identical to
Figure 4).

B.2 Top10 and Top50 Optimization Results

Figure 11 and Figure 12 give the Top10 and Top50 scores for the experiment described in Section 6.2.
These results are qualitatively similar to those in Figure 4, suggesting that our method finds many
unique high-scoring points.

0 200 400
Num. eval. of f

500

1000

1500

To
p5

0
sc

or
e

2D Shape Area

0 200 400
Num. eval. of f

6

4

Arithmetic Expr.

0 200 400
Num. eval. of f

0

10

20

Chemical Design

k = 10 3, r = 50 k = , r = rlow k = 10 3, r = k = , r =
Figure 12: Top50 optimization performance of weighted retraining for all tasks (setup identical to
Figure 4).

19

B.3 Comparison of Chemical Design Results with Previous Papers

Table 1 compares the results attained in this paper with the results from previous papers that attempted
the same task. Weighted retraining clearly beats the previous best methods, which were based on
reinforcement learning, while simultaneously being more sample-efficient. Note that despite using
the same pre-trained model as [28], we achieved better results by training our sparse Gaussian process
on only a subset of data and clipping excessively low values in the training set, which allowed us to
get significantly better results than they reported.

Model 1st 2nd 3rd no. queries (source)

JT-VAE [28] 5.30 4.93 4.49 2500 (paper4)
GCPN [75] 7.98 7.85 7.80 ≈ 106 (email5)
MolDQN [77] 11.84 11.84 11.82 ≥ 5000 (paper6)
ChemBO [36] 18.39 - - 100 (Table 3 of [36])

JT-VAE (our Bayesian optimization) 5.65 5.63 5.43 500
JT-VAE (k = 10−3, no retraining) 5.95 5.75 5.72 500
JT-VAE (k = 10−3, retraining) 21.20 15.34 15.34 500
JT-VAE (k = 10−3, retraining, best result) 27.84 27.59 27.21 500

Table 1: Comparison of top 3 scores on chemical design task. Baseline results are copied from [77].
All our results state the median of 5 runs unless otherwise stated (judged by best result), each run
being 500 epochs.

B.4 Pictures of the Best Molecules Found by Weighted Retraining

Figure 13 illustrates some of the best molecules found with weighted retraining. Note that all the
high-scoring molecules are extremely large. It has been reported previously that larger molecules
achieve higher scores, thereby diminishing the value of this particular design task for RL algorithms
[77]. However, the fact that these molecules were found with a generative model strongly highlights
the ability of weighted retraining to find solutions outside of the original training distribution.

C Details on Experimental Setup

C.1 Retraining Parameters

When retraining a model with frequency r, the model is optionally fine-tuned initially, then repeatedly
fine-tuned on queries r, 2r, 3r, . . . until the query budget is reached. All results use the rank-based
weighting function defined in Equation (1) unless otherwise specified. We consider a budget of
B = 500 function evaluations, which is double the budget used in [37, 28].

C.2 Bayesian Optimization

For optimizing over the latent manifold, we follow previous work [37, 28] and use Bayesian
optimization with a variational sparse Gaussian process (SGP) surrogate model [67] (with 500
inducing points) and the expected improvement acquisition function [30]. We re-implemented
the outdated and inefficient Theano-based Bayesian optimization implementation of [37] (see
https://github.com/mkusner/grammarVAE), which was also used by [28], using the popu-
lar and modern Tensorflow 2.0-based GPflow Gaussian process library [14] to benefit from GPU
acceleration.

For computational efficiency, we fit the sparse Gaussian process (SGP) only on a subset of the data,
consisting of the 2000 points with the highest objective function values, and 8000 randomly chosen

4These were the top results across 10 seeds, with 250 queries performed per seed.
5Obtained through email correspondence with the authors.
6The experimental section states that the model was trained for 5000 episodes, so at least 5000 samples were

needed. It is unclear if any batching was used, which would make the number of samples greater.

20

https://github.com/mkusner/grammarVAE

27.84 27.59 27.21

25.90 25.37

Figure 13: Some of the best molecules found using weighted retraining. Numbers indicate the score
of each molecule.

points. This also has the effect of ensuring that the SGP properly fits the high-performing regions
of the data. Disregarding computational efficiency, we nonetheless found that fitting on this data
subset remarkably improved performance of the optimization, even using the baseline model (without
weighted retraining).

C.3 Evaluation Metrics

We report, as a function of the objective function evaluation b = 1, . . . , B, the single best score
obtained up until query b (denoted as Top1), and the worst of the 10 and 50 best scores obtained up
until evaluation query b (denoted as Top10 and Top50, respectively). Since our goal is to synthesize
entities with the desired properties that are both a) syntactically valid and b) novel, we discard any
suggested data points which are either a) invalid or b) contained in the training data set (i.e., they
are not counted towards the evaluation budget and thus not shown in any of the plots). For statistical
significance, we always report the mean plus/minus one standard deviation across multiple random
seeds.

C.4 2D Shape Task Details

Figure 14 shows example images from our 2D squares dataset.

The convolutional VAE architecture may be found in our code. The decoder used an approximately
mirror architecture to the encoder with transposed convolutions. Following general conventions, we
use a standard normal prior p(z) = N (0, 1) over the latent variables z and a Bernoulli likelihood
p(x|z) to sample binary images. Our implementation used PyTorch [52] and PyTorch Lightning [18].

C.5 Arithmetic Expression Fitting Task

Following [37], the dataset we use consists of randomly generated univariate arithmetic expressions
from the following grammar:

S → S ’+’ T | S ’*’ T | S ’/’ T | T
T → ’(’ S ’)’ | ’sin(’ S ’)’ | ’exp(’ S ’)’
T → ’v’ | ’1’ | ’2’ | ’3’

21

Figure 14: Sample images from our 2D squares dataset.

where S and T denote non-terminals and the symbol | separates the possible production rules generated
from each non-terminal. Every string in the dataset was generated by applying at most 15 production
rules, yielding arithmetic expressions such as sin(2), v/(3+1) and v/2 * exp(v)/sin(2*v),
which are all considered to be functions of the variable v.

The objective function we use is defined as f(x) = − log(1 + MSE(x,x∗)), where MSE(x,x∗)
denotes the mean squared error between x and the target expression x∗ = 1/3 * v * sin(v*v),
computed over 1000 evenly-spaced values of v in the interval between −10 and +10. We apply the
logarithm function following [37] to avoid extremely large MSE values resulting from exponential
functions in the generated arithmetic expressions. In contrast to [37], we negate the logarithm to
arrive at a maximization problem (instead of a minimization problem), to be consistent with our
problem formulation and the other experiments. The global maximum of this objective function is
f(x) = 0, achieved at x = x∗ (and f(x) < 0 otherwise).

In contrast to the original dataset of size 100,000 used by [37], which includes the target expression
and many other well-performing inputs (thus making the optimization problem easy in theory), we
make the task more challenging by discarding the 50% of points with the highest scores, resulting in
a dataset of size 50,000 with objective function value distribution shown in Figure 8.

Our implementation of the grammar VAE is based on the code from [37] provided at https:
//github.com/mkusner/grammarVAE, which we modified to use Tensorflow 2 [1] and python 3.

22

https://github.com/mkusner/grammarVAE
https://github.com/mkusner/grammarVAE

C.6 Chemical Design Task

The precise scoring function for a chemical x is defined as:

score(x) = max
(

̂logP (x)− ŜA(x)− ̂cycle(x), −4
)

where logP , SA, and cycle are property functions, and the ̂ operation indicates standard normal-
ization of the raw function output using the ZINC training set data (i.e. subtracting the mean of
the training set, and dividing by the standard deviation). This is identical to the scoring function
from references [37, 9, 28, 77, 75], except that we bound the score below by −4 to prevent points
with highly-negative scores from substantially impacting the optimization procedure. Functionally,
because this is a maximization task, this makes little difference to the scoring of the outcomes, but
does substantially help the optimization.

Our code for the junction tree VAE is a modified version of the “fast jtnn” code from the authors of
[28] (available at https://github.com/wengong-jin/icml18-jtnn). We adapted the code to
be backward-compatible with their original pre-trained model, and to use pytorch lightning.

C.7 Other Reproducibility Details

Range of hyperparameters considered We originally considered k values in the range
101, 100, . . . , 10−5, and found that there was generally a regime where improvement was mini-
mal, but below a certain k value there was significant improvement (which is consistent with our
theory). We chose k = 10−3 as an intermediate value that consistently gave good performance across
tasks. This value was chosen in advance of running our final experiments (i.e. we had preliminary but
incomplete results with other k values, then chose k = 10−3, and then got our main results). The
retraining frequency of 50 was chosen arbitrarily in advance of doing the experiments (specifically
it was chosen because it would entail retraining 10 times in our 500 epochs of optimization). The
hyperparameters for model design and learning were dictated by the papers whose models we chose,
except for the convolutional neural network for the shape task, where we chose a generic architecture.
For the baseline methods (i.e. DbAS, CEM-PI, FBVAE, and RWR), we identified the best hyperpa-
rameter settings using a grid search over a reasonable range. We used the following hyperparameter
settings: a quantile parameter of 0.95 for DbAS, CEM-PI and FBVAE (for all benchmarks), a retrain
frequency of 200 for all baselines and for all benchmarks, an exponential coefficient of 10−3 (for the
shapes task) and 10−1 (for the expression and chemical design tasks) for RWR, and a noise variance
of 10 (for the shapes task) and 0.1 (for the expression and chemical design tasks) for DbAS.

Average run time for each result All experiments were performed using a single GPU. Runtime
results are given in Table 2.

Experiment GPU hours per run
Shapes (model pre-training) 0:20
Shapes (optim., retraining) 0:20
Shapes (optim., no retraining) 0:01

Expressions (optim., retraining) 3:15
Expressions (optim., no retraining) 1:45

Chemical Design (optim., retraining) 5:00
Chemical Design (optim., no retraining) 3:00

Table 2: Approximate runtimes of main experiments

Computing infrastructure used All experiments were done using a single GPU (either NVIDIA
P100, 2070 Ti, or 1080 Ti). In practice, a lot of the experiments were run on a high-performance
computing cluster to allow multiple experiments to be run in parallel, although this was strictly for
convenience: in principle, all experiments could be done on a single machine with one GPU.

23

https://github.com/wengong-jin/icml18-jtnn

