
We thank the reviewers for their careful readings of Submission # 4484, title “On Adaptive Distance Estimation”.1

Reviewer 1: In response to your suggestion, we have implemented a vanilla Johnson-Lindenstrauss (JL) sketch vs.2

our structure and shown the results of adaptive querying on both with the following experimental setup:3

We have three database vectors e1,−e1, 0 in 5000 dimensions. We JL
sketch down to 250 dimensions. We always query unit norm vectors
q. We do a sequence of queries, and the x-axis specifies which query
number we are at in the sequence, and the y-axis is the sketch’s reported
distance to 0 for that query (so, q’s length). We do an adaptive attack,
where we pick the next query vector from a distribution based on previous
queries’ distance estimations to e1,−e1 (attack description included in
revision). The orange curve shows the vanilla JL’s length estimate,
which deviates more from the true length as we do more adaptive queries.
The blue curve is our structure’s estimates of length, which is correctly
always near 1. For our structure, we took the median of 5 randomly
selected sketches of 200, which only increased query time by a factor 5.
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Reviewer 2: Utility for e.g. kernel regression: In kernel regression the database also has yi’s and for a query q we5

must (approximately) output
∑

i k(x, xi)yi for some kernel k(·, ·). For kernels based on Euclidean distances, e.g.6

RBF’s, it is thus natural to want to have all distances to then approximately compute this sum. We note that for the7

slightly similar problem of kernel density estimation, there are sublinear time algorithms (e.g. see papers of Charikar8

and Siminelakis), but they are not designed to handle adaptive queries, plus we are unaware of similar solutions for9

kernel regression. We also remark that there are studies of “coreset” constructions for kernel regression which reduce n10

to some n′ � n (e.g. (Zheng, Phillips KDD’17)); this is a (weighted) subset of the data that gives approximately the11

same answer to any query. Coresets provide the approximation property for all queries and thus support adaptive queries.12

Thus the naive O(nd) time query algorithm becomes O(n′d) for adaptive queries. This is orthogonal to our approach13

though, and can in fact be combined: one can build our data structure on the coreset to get query time Õ(n′ + d).14

Empirical evaluation: See response to Reviewer 1.15

Novelty compared to [Kle97,KOR00] : Our work, as well as these two works, all do use the idea of having some16

random process (henceforth we will call a “test”) that does something useful with good probability for some fixed17

vector, amplifying via repetition to work with high probability for all vectors, then doing some form of sampling of18

tests at query time. [Kle97,KOR00] descriptions and analyses are tailored to the specific processes, whereas we strive19

for a completely general meta theorem (Theorem 1.3) that converts any non-robust structure into a robust one that can20

handle adaptive queries; our ADE result is essentially then a corollary. There are other differences; our “tests” are all21

different, and furthermore in [KOR00] one test (per level of binary search) is sampled at query time (a “test” there is the22

sequence of dot products over F2, after reducing to Hamming space on the hypercube, of a point with a collection of23

random binary vectors from some distribution); sampling only one sketch per query cannot work in our setting unless24

we blow the space up by an undesirable poly(n)/δ factor.25

Reviewer 3: Thank you for your review.26

Reviewer 4: We would like to address this reviewer’s question regarding correctness. As stated, our results guarantee27

correctness with high probability for any individual query even in a sequence of adaptively chosen queries. For example,28

the 100th query may be chosen depending on the answers to the first 99, but our correctness guarantees still hold. A29

union bound does in fact then guarantee correctness for an entire sequence of T adaptive queries with probability30

1 − δ with per query runtime O(ε−2(n + d) log(T/δ)) by instantiating the data structure with failure probability31

parameter δ′ := δ/T . The reason this union bound is permissible: our analysis conditions on a certain event occurring32

during the (random) pre-processing stage of the data structure: namely that the set of (random) sketches generated are33

“representative” (Definition 4.3). Once we condition on this event of having “representative” sketches, our data structure34

actually allows the answering of each subsequent adaptive query in a sequence correctly with 100% success probability,35

just by returning the median output of every sketch. Doing so though unfortunately leads to slow query time, which36

is why our query procedure instead samples only a few (O(log(n/δ))) random sketches and output the median result37

from them. Conditioned on the sketches being representative, this works with high probability even in adaptive settings.38

Reviewer 5: We thank you for finding typographical errors and for the question about Theorem A.8; in the revision39

we will make sure to consistently say “Chernoff bound” in all applications; the generalization to ai, bi bounds on the40

r.v.’s is indeed not needed for us. We also thank you for the reference to the work of Hardt and Ullman.41


