
A Details on meta-RL experiments

A.1 Setup

Environments We consider four robotic locomotion and four manipulation environments, all with
continuous action spaces. The robotic locomotion environments, based on MuJoCo [27] and OpenAI
Gym [3], fall into two categories.

• Varying reward functions: HalfCheetahRandVel, Walker2DRandVel
The HalfCheetahRandVel environment was introduced in Finn et al. [9]. The distribution
of tasks is a distribution of HalfCheetah robots with different goal velocities, and remains
the same for meta-training and meta-testing. The Walker2DRandVel environment, defined
similarly to HalfCheetahRandVel, is found in the codebase for Rothfuss et al. [21].

• Varying system dynamics: HopperRandParams, Walker2DRandParams
The HopperRandParams and Walker2DRandParams were introduced in Rothfuss et al.
[21]. For HopperRandParams, the distribution of tasks is a distribution of Hopper robots
with different body mass, body inertia, damping, and friction, and remains the same for
meta-training and meta-testing. The Walker2DRandParams environment is defined similarly.

We briefly describe the four manipulation environments from Metaworld; for more details please
refer to Yu et al. [33].

• ML1-Push and ML1-Reach: ML1-Push considers the manipulation task of pushing a puck
to a goal position. The distribution of tasks is a collection of initial puck and goal positions,
and differs for meta-training and meta-testing. ML1-Reach is defined similarly to ML1-Push
but with the manipulation task of reaching a goal position.

• ML10 and ML45: For both environments, the meta-training and meta-testing distributions
of tasks are collections of manipulation tasks and the corresponding initial object/goal
positions. The manipulation tasks in the meta-training versus meta-testing distributions do
not overlap; there are 10 manipulation tasks in the training distribution for ML10, and 45
for ML45.

Algorithms We consider four policy gradient algorithms, ProMP [21], which approximately com-
bines MAML and PPO [23], DRS+PPO, a combination of DRS and PPO, TRPO-MAML [9], and
DRS+TRPO, a combination of DRS and TRPO [22]. For full descriptions of the ProMP and TRPO-
MAML algorithms, please refer to the cited papers. We use the implementations in the codebase
provided by Rothfuss et al. [21]. To combine DRS and PPO/TRPO, it suffices to take the original
PPO/TRPO algorithm and maximize the objective using generated trajectories from a sampled set of
tasks instead of a single task. This follows from the fact that we can approximate an expectation over
a distribution of tasks by a Monte Carlo sample of tasks.

Meta-training ProMP and TRPO-MAML use the same meta-training procedure [21, 9]. At each
iteration, a set of M tasks are sampled from the meta-training distribution of tasks. For each task,
ProMP (TRPO-MAML) generate L episodes under the current policy, computes an adapted policy
using policy gradient, and generates L episodes under the adapted policy; all M ⇥ L episodes
generated under adapted policies are used to compute its objective. For each task, DRS+PPO
(DRS+TRPO) generate L episodes under the current policy; all M ⇥ L episodes are used to compute
its objective.

Each iteration of ProMP (TRPO-MAML) requires twice as many steps from the simulator as
DRS+PPO (DRS+TRPO). Therefore, to ensure that each algorithm utilizes the same amount of
data, we run ProMP (TRPO-MAML) for half as many iterations as DRS+PPO (DRS+TRPO). More
specifically, for the robotic locomotion environments, we run ProMP (TRPO-MAML) for 1000
iterations and DRS+PPO (DRS+TRPO) for 2000. For the manipulation environments, we run ProMP
(TRPO-MAML) for 10000 iterations and DRS+PPO (DRS+TRPO) for 20000. These go beyond the
number of training steps used in Rothfuss et al. [21] and Yu et al. [33].

Meta-testing The meta-testing procedure, described next, are carried out at 21 checkpoints during
meta-training. We sample 1000 tasks from the meta-testing distribution of tasks. For each task and
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ProMP/DRS+PPO (TRPO-MAML/DRS+TRPO), starting at a meta-trained policy, we repeat the
following five times: 1) generate L episodes from the current policy and 2) update the policy with
the same policy gradient algorithms used to compute the adapted policies while training ProMP
(TRPO-MAML). We compute the average episodic reward after t policy updates, for t = 0, 1, . . . , 5.
These statistics are then compiled over all 1000 sampled tasks, using the procedure outlined below.

For ProMP and TRPO-MAML, the learning rate used to update the policy is the inner learning rate
used to compute the adapted policies during meta-training. For DRS+PPO, it is the learning rate
during meta-training (our heuristic), and for DRS+TRPO, it is zero.

Hyperparameters To choose the meta-training learning rates, step sizes, and the inner learning
rate used to compute the adapted policies, we conduct grid search. For the robotic locomotion
environments, the learning rate for ProMP and DRS+PPO was chosen from [0.0001, 0.001, 0.01], the
step size for TRPO-MAML and DRS+TRPO from [0.001, 0.01, 0.1], and the inner learning rate for
ProMP and TRPO-MAML from [0.01, 0.05, 0.1]. For the manipulation environments, the learning
rate for ProMP and DRS+PPO was chosen from [0.000001, 0.00001, 0.0001, 0.001], the step size
for TRPO-MAML and DRS+TRPO from [0.001, 0.01, 0.1], and the inner learning rate for ProMP
and TRPO-MAML from [0.00001, 0.0001, 0.001, 0.01]. These ranges include the values given in the
codebases for Rothfuss et al. [21] and Yu et al. [33]. The chosen values are given in Table 1.

Environment ProMP DRS+PPO TRPO-MAML DRS+TRPO

LR Inner LR LR Step Size Inner LR Step Size

HopperRandParams 0.001 0.01 0.001 0.1 0.01 0.1
Walker2DRandParams 0.001 0.01 0.001 0.1 0.01 0.1
HalfCheetahRandVel 0.0001 0.01 0.01 0.001 0.01 0.01
Walker2DRandVel 0.001 0.01 0.001 0.1 0.01 0.01

ML1-Push 0.0001 0.0001 0.0001 0.1 0.0001 0.1
ML1-Reach 0.0001 0.0001 0.0001 0.001 0.00001 0.001

ML10 0.0001 0.001 0.0001 0.01 0.001 0.001
ML45 0.0001 0.00001 0.0001 0.1 0.001 0.01

Table 1: Learning rates (LR), step sizes, and inner learning rates chosen by grid search.

For the remaining hyperparameters, we used the values given in Rothfuss et al. [21] and Yu et al.
[33]. We list below several of the main ones:

• M : 40 for the robotic locomotion environments, 20 for the manipulation environments
• L: 20 for the robotic locomotion environments, 10 for the manipulation environments
• Episode length: 200 for the robotic locomotion environments, 150 for the manipulation

environments
• Policy architecture: a multi-layer perceptron with two hidden layers of 64 nodes for the

robotic locomotion environments, and 100 nodes for the manipulation environments.
• A linear feature baseline is used to compute the advantage values.

Result Compilation We run meta-training and meta-testing for all environments and algorithms
for five random seeds. For a fixed environment, algorithm, and checkpoint, let the per seed estimates
of the average rewards and their variances to be R̂s, V̂s, s = 1, . . . , 5, and R to be the corresponding
random variable with mean µ and variance �2. The estimated mean of R, µ̂, is computed as the
average of the R̂s. Using the formula Var[R] = E[Var[R | s]] + Var[E[R | s]], �̂2, the estimated
variance of R, is computed as the sum of 1) the average of the V̂s and 2) the variance of the R̂s.

To compute the probability that DRS is better than MAML, we use the one sided Welch’s t-test.
Although the t-test makes the underlying assumption of Gaussianity, it is an acceptable assumption
as reporting mean and variance is the common practice. Let the estimated average rewards be µ̂drs
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(a) HopperRandParams (b) Walker2DRandParams (c) HalfCheetahRandVel (d) Walker2DRandVel

(e) ML1-Push (f) ML1-Reach (g) ML10 (h) ML45

Figure 4: DRS+PPO vs. ProMP: Average episodic rewards after one update of the policy during
evaluation, as a function of the number of steps at meta-training. DRS+PPO is red and ProMP is blue.

and µ̂maml and their estimated standard deviations be �̂drs and �̂maml. Since we use five random
seeds, we compute the t-value and degree of freedom as
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We compute the probability of µdrs > µmaml as one minus the CDF of a t-distribution with ⌫ degrees
of freedom at t.

A.2 Additional Results

In this section we present results in a way that is more commonly seen in the meta-RL literature. We
plot the average reward after one policy update at meta-testing as a function of the number of steps at
meta-training. Figures 4 and 5 shows the plots for each environment for ProMP & DRS+PPO and
TRPO-MAML & DRS+TRPO, respectively.

For the first two environments with variations in system dynamics only, seen in Figure 4-(a,b) and 5-
(a,b), DRS is superior to MAML throughout training. For the next four environments with variations
in reward functions only, either 1) DRS and MAML are comparable (Figure 4-(d) and 5-(e,f)), or
2) while DRS is initially superior, as the amount of training data increases the difference between
the two algorithms usually diminishes, and eventually MAML may surpass DRS (Figure 4-(c,e,f)
and 5-(c)). In the final two environments with variations in system dynamics and reward functions,
the standard errors are generally too large to make a definite statement (see Figure 4-(g,h) and 5-(h)).
This suggests that useful inductive biases are more difficult to learn when the system dynamics vary
between tasks, a potentially interesting direction for further study.

B Postponed Proofs from Section 3

B.1 Proof of Theorem 1

Proof. We start with a generic bound on the gradient norm of a smooth function. Consider one step
of SGD on a function f(·) that is µ-smooth with learning rate �t.

f(✓t+1) = f(✓t
� �tgt)

 f(✓t)� �t
r✓f(✓
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kgt
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(a) HopperRandParams (b) Walker2DRandParams (c) HalfCheetahRandVel (d) Walker2DRandVel

(e) ML1-Push (f) ML1-Reach (g) ML10 (h) ML45

Figure 5: DRS+TRPO vs. TRPO-MAML: Average episodic rewards after one update of the policy
during evaluation, as a function of the number of steps at meta-training. DRS+TRPO is red and
TRPO-MAML is blue.

where gt is an estimate of the gradient of f(✓t). Dividing by �t and moving the gradient term,
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During meta-training we take T tr steps of SGD on the loss Rdrs(·) = E� [R(·; �)] with learning rate
�tr and during meta-testing we take T te steps of SGD on the task loss R(·; �) with learning rate �te.
Both losses are µ-smooth by assumption. Therefore, we can sum up the previous inequality over all
T steps, where T = T tr + T te.
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Recall that the task losses are L-Lipschitz. For t = 0 to t = T tr
� 1,
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For t = T tr to t = T � 1,
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We can further simplify the bound by assuming �tr = �te and optimizing it over the learning rate.
Doing so, we obtain
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B.2 Proof of Theorem 2

Proof. From Corollary A.1 of Fallah et al. [6], Rmaml(✓) has smoothness constant µ0 = 4µ +
2µH↵L. Thus, using a similar argument as in the proof of Theorem 1,
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For t = 0 to t = T tr

� 1, using results from the proof of Theorem 5.12 in Fallah et al. [6],
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Define ⇢ , (1 + ↵µ). Then,
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Assuming �tr = �te and optimizing the bound over the learning rate, we obtain
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C Postponed Proofs and Derivations from Section 4

C.1 Derivation for risk function in Equation 9
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where the third equality uses the model (8).

C.2 Derivation for optimal solutions in Equation 10
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Since E� [R(✓; �)] is quadratic in ✓, it is minimized at a first-order stationary point. Thus, setting
r✓E� [R(✓; �)] equal to zero, we obtain ✓⇤
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E� [R(✓ � ↵r✓R(✓; �); �)] is also quadratic in ✓, so we obtain its minimizer by setting its gradient
equal to zero. Thus, ✓⇤
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C.3 Proof of Theorem 3 and 4

C.3.1 Useful Lemmas and Preliminary Results

We start with stating a few useful lemmas to be used in the proof of the main statements. Following
them, we analyze ✓̂drs and ✓̂maml(↵).
Lemma 1. Let Xj1 be the p ⇥ N matrix with columns xj,i, i = 1, . . . , N and Xj2 be the
p ⇥ N matrix with columns xj,i, i = N + 1, . . . , 2N . Let Yj1 be the N -dimensional vector
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with entries yj,i, i = 1, . . . , N , and Yj2 be the N -dimensional vector with entries yj,i, i =
N + 1, . . . , 2N . Let X = [. . . Xj1 Xj2 . . .] and Y =
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where ()+ denotes the Moore-Penrose pseudoinverse of a matrix.

Proof. Using (11), we can write the DR estimate as minimizing the objective

1
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�

=
1

4MN
kY �X|✓k22

From Penrose [18], the value of ✓ that minimizes the above is (X|)+Y.

Using (12), we can write the MAML estimate as minimizing the objective

1
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=
1

2MN
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With the same reasoning as for the DR estimate, this is minimized when ✓ equals (W(↵)|)+Z(↵).

Next, we obtain some useful high probability concentration inequalities as a direct consequence of
matrix Bernstein’s inequality [28].
Lemma 2. Assume kQ�k  � with probability 1. With probability at least 1� %,

������

MX

j=1

(Qj � E� [Q� ])

������


2�

3
log

2p

%
+

r
2M kVar� [Q� ]k log

2p

%

Proof. Notice that Qj � E� [Q� ] are M independent, mean zero, symmetric random matrices. From
the matrix Bernstein’s inequality [28], for any t � 0,

P

8
<

:

������
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j=1

(Qj � E� [Q� ])

������
� t
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=
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2]
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 M

��E� [(Q� � E� [Q� ])
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�� = M kVar� [Q� ]k .
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Therefore,

P

8
<
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������
� t

9
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⇢
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M kVar� [Q� ]k+ �t/3

�
.

Setting ! =
t2/2

M kVar� [Q� ]k+ �t/3
, we solve for t. t satisfies the quadratic equation 3t2 �

2�!t�6M kVar� [Q� ]k! = 0, which has the positive root (�!+
p
�2!2 + 18M kVar� [Q� ]k!)/3.

Therefore, the previous inequality becomes
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p
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Set w = log 2p
%

to obtain the final result.

Remark. A similar proof will also show that if kQ�k  � and kI� ↵Q�k  µ with prob-

ability 1,
���
P

M

j=1((I� ↵Qj)Qj(I� ↵Qj)� E� [(I� ↵Q�)Q�(I� ↵Q�)])
��� 
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with probability 1� %.

Lemma 3. Assume kQ�k  � and k✓�k  ⌘ with probability 1. With probability at least 1� %,
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(Qj✓j � E� [Q�✓� ])
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2�⌘

3
log

2(p+ 1)
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s

2M tr(Var� [Q�✓� ]) log
2(p+ 1)

%

Proof. Notice that Qj✓j � E� [Q�✓� ] are M independent, mean zero, random vectors. From the
matrix Bernstein’s inequality for rectangular matrices [28], since kQ�✓�k  kQ�k k✓�k  �⌘, for
any t � 0,
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where
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,
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Therefore,
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;  2(p+ 1) exp

⇢
�

t2/2

M tr(Var� [Q�✓� ]) + �⌘t/3

�
.
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Using the same argument as in the proof of Lemma 2, we have that

P

8
<

:

������

MX

j=1

(Qj✓j � E� [Q�✓� ])

������
�

2�⌘!

3
+
q

2M tr(Var� [Q�✓� ])!

9
=

;  2(p+ 1) exp{�!}.

Set w = log 2(p+1)
%

to obtain the final result.

Remark. A similar argument will also show that if kQ�k  �, kI� ↵Q�k  µ, and k✓�k  ⌘,
���
P

M
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with probability at least 1� %.

Lemma 4. Fix the task j. Assume kQ�k  � with probability 1 and the distribution of x�,i

conditional on � is sub-Gaussian with parameter K. With probability at least 1� %,
�����
Xj1X

|
j1

N
�Qj

�����  �CK2

0

@

s
p+ log 2

%

N
+

p+ log 2
%

N

1

A

Proof. From results on covariance estimation from Vershynin [28],
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�����
Xj1X

|
j1

N
�Qj
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r
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N
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Since Qj  � with probability 1,
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|
j1

N
�Qj
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r
p+ !

N
+

p+ !

N
)}  2 exp{�!}.

Set w = log 2
%

to obtain the final result.

Lemma 5. Fix the task j and let ej1 be the N -dimensional vector with entries ✏j,i, i = 1, . . . , N .

If kx�,ik  ⇠ and |✏�,i|  � with probability 1, kXj1ej1k �
2⇠�!

3
+
q

2N tr(E� [�2
�
Q� ])! with

probability at most 2(p+ 1)e�! .

Proof. Notice that Xj1ej1 =
P

N

i=1 xj,i✏j,i is the sum of N independent, mean zero, random vectors.
From the matrix Bernstein’s inequality for rectangular matrices, for any t � 0,
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where the last equality follows from the fact that for a symmetric positive semidefinite matrix such as
E� [�2

�
Q� ], the norm is the largest eigenvalue and the trace is the sum of the eigenvalues. Therefore,

P{kXj1ej1k � t}  2(p+ 1) exp{�
t2/2

N tr(E� [�2
�
Q� ]) + ⇠�t/3

}.

22



Using the same argument as Lemma 2, we have that

P{kXj1ej1k �
2⇠�!

3
+
q
2N tr(E� [�2

�
Q� ])!}  2(p+ 1) exp{�!}.

C.3.2 Proof of Theorem 3

Proof. Let Xj = [Xj1 Xj2] and Yj =
⇥
Y|

j1 Y|
j2

⇤|. Let ej be the 2N -dimensional vector with
entries ✏j,i, i = 1, . . . , 2N . Let the singular value decomposition of X be UDV |. Then, from
Proposition 1 and using the identity Yj = X|

j
✓j + ej ,

✓̂drs � ✓⇤

drs
= (X|)+Y � ✓⇤

drs

= (X|)+
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XjX

|
j
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drs
) +Xjej

�

+ U(DD|)+(DD|)U|✓⇤

drs
� ✓⇤

drs

Note that DD| is a diagonal matrix of eigenvalues of XX|; (DD|)+ is a diagonal matrix with
entries the reciprocals of the nonzero eigenvalues of XX| and the rest zeros. Then, (DD|)+(DD|)
is a diagonal matrix with r ones, where r is the number of nonzero eigenvalues of XX|, and
U(DD|)+(DD|)U| = diag(Ir, 0). Let �min() denote the smallest eigenvalue of a matrix. Thus,
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2
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(25)

where

�min(XX|) = �min
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Let ! > 0. Consider the following probabilistic events. Using union bound, at least one of them
occurs with probability at most 2(2p+ 1 +M + (p+ 1)M)e�!

• (E1):
���
P

M

j=1(Qj � E� [Q� ])
��� �

2�!

3
+
p
2M kVar� [Q� ]k!, where kQ�k  � with

probability 1. This event occurs with probability at most 2pe�! , by Lemma 2.

• (E2):
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3
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probability at most 2(p+ 1)e�! , by Lemma 3.

• (E3-1, . . . , E3-M): For j = 1, . . . ,M ,
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),

where kQ�k  � with probability 1, the distribution of x�,i conditional on � is sub-
Gaussian with parameter K, and C is a constant. For each j, this occurs with probability at
most 2e�! , from extending Lemma 4 to Xj .
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3
+
q
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�
Q� ])!, where

kx�,ik  ⇠ and |✏�,i|  � with probability 1. For each j, this occurs with probability at
most 2(p+ 1)e�! , from Lemma 5 to Xjej .

From (26) and (27), with probability at least 1� 2(pM + 2M + 2p+ 1)e�! ,
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Thus, by (25), if �min(E� [Q� ])� (
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with probability at least 1� 2(pM + 2M + 2p+ 1)e�! ,
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��� is bounded above by
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Defining � = 2(pM+2M+2p+1)e�! , we let ! = ln(pM+2M+2p+1)� ln(�/2). We have that
c1(!, kVar� [Q� ]k , tr(Var� [Q�✓� ]),✓⇤
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Hence, if �min(E� [Q� ])� õ(1) > 0, with probability at least 1� �,
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where ! = ln(pM + 2M + 2p+ 1)� ln(�/2).

C.3.3 Theorem 4

Proof. Let ej1 be the N -dimensional vector with entries ✏j,i, i = 1, . . . , N and ej2 be the N -
dimensional vector with entries ✏j,i, i = N + 1, . . . , 2N . Let the SVD of W be UDV |. Then, from
Proposition 1 and using the identities Yj1 = X|

j1✓j + ej1 and Yj2 = X|
j2✓j + ej2,
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Note that DD| is a diagonal matrix of eigenvalues of WW|; (DD|)+ is a diagonal matrix with
entries the reciprocals of the nonzero eigenvalues of WW| and the rest zeros. Then, (DD|)+(DD|)
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is a diagonal matrix with r ones, where r is the number of nonzero eigenvalues of WW|, and
U(DD|)+(DD|)U| = diag(Ir, 0). Let �min() denote the smallest eigenvalue of a matrix. Thus,
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Let ! > 0. Consider the following probabilistic events:

• (E1):
���
P

M

j=1((I� ↵Qj)Qj(I� ↵Qj)� E� [(I� ↵Q�)Q�(I� ↵Q�)])
��� �

2�µ2!

3
+

p
2M kVar� [S� ]k!, where kQ�k  � and kI� ↵Q�k  µ with probability 1.

This occurs with probability at most 2pe�! , from the remark after Lemma 2.

• (E2):
���
P

M

j=1((I� ↵Qj)Qj(I� ↵Qj)✓j � E� [(I� ↵Q�)Q�(I� ↵Q�)✓� ])
��� �

2�µ2⌘!

3
+
p
2M tr(Var� [S�✓� ])! where kQ�k  �, kI� ↵Q�k  µ, and k✓�k  ⌘

with probability 1.

This occurs with probability at most 2(p+ 1)e�! , from the remark after Lemma 3.
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• (E3-1, . . . , E3-2M): For j = 1, . . . ,M ,

�����
Xj1X

|
j1

N
�Qj

����� � �CK2(

r
p+ !

N
+

p+ !

N
)
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�����
Xj2X

|
j2

N
�Qj

����� � �CK2(

r
p+ !

N
+

p+ !

N
), where kQ�k  � with probability

1, the distribution of x�,i conditional on � is sub-Gaussian with parameter K, and C is a
constant.

Each of the 2M events occurs with probability at most 2e�! , from Lemma 4.

• (E4-1, . . . , E4-2M): For j = 1, . . . ,M , kXj1ej1k �
2⇠�!

3
+
q

2N tr(E� [�2
�
Q� ])!

and kXj2ej2k �
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3
+
q

2N tr(E� [�2
�
Q� ])!, where kx�,ik  ⇠ and |✏�,i|  � with

probability 1.

Each of the 2M events occurs with probability at most 2(p+ 1)e�! , from Lemma 5.

From the union bound, at least one of the events (E1), (E2), (E3-1), . . . , (E3-2M), (E4-1), . . . ,
(E4-2M) occurs with probability at most 2(2p + 1 + 2M + 2M(p + 1))e�!. That is, none of the
events occur with probability at least 1� 2(2pM + 4M + 2p+ 1)e�! .

From (29) and (29), with probability at least 1� 2(2pM + 4M + 2p+ 1)e�! ,
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+
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+
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+
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where k✓� � ✓⇤

maml
(↵)k  ⌧ 0 with probability 1.
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Thus, by (28), if
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r
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with probability at least 1 � 2(2pM + 4M + 2p + 1)e�!,
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maml
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��� is bounded
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Setting � = 2(2pM + 4M + 2p+ 1)e�! , we obtain ! = ln(2pM + 4M + 2p+ 1)� ln(�/2).

Thus, if �min(E� [S� ]) � õ(1) > 0, with probability at least 1 � �,
���✓̂maml(↵)� ✓⇤

maml
(↵)
��� is

bounded above by
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✓
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maml
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Note that kI� ↵Q�k  1+↵�, so we can replace µ in the above bound by 1+↵� to get the desired
result.

C.4 Theorem 5

The precise form of the losses are as follows. For arbitrary ✓,

E� [R(✓; �)] =
1

2
✓|E� [Q� ]✓ � E� [Q�✓� ]

|✓ +
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2
E� [✓

|
�
Q�✓� ] +
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where A�(↵) = (I� ↵Q�)Q�(I� ↵Q�) +
↵2

N
(E[x�,ix

|
�,i

Q�x�,ix
|
�,i

]�Q3
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)

Proof. The result for E� [R(✓; �)] follows from the proof of Equation 10. E� [R(✓; �)] is minimized
by ✓⇤

drs
by definition.

29



Let X� be the p⇥N matrix with columns x�,i and Y� be the N -dimensional vector with entries
y�,i. Recalling the definition of ✓̃�(↵), from (9)
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First take the expectation with respect to Y� . Let e� be the N -dimensional vector with entries ✏�,i.
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Using the linearity of trace and expectation, as well as the cyclic property of trace,

Ee� [e
|
�
X|

�
Q�X�e� ] = Ee� [tr(X

|
�
Q�X�e�e

|
�
)] = tr(X|

�
Q�X�Ee� [e�e

|
�
]) = �2

�
tr(X�X

|
�
Q�)

Using the previous equality,
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We compute
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Combining the previous two expressions,
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Taking the expectation with respect to � gives
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Similar to the derivation of (10), E� [EO� [R(✓̃�(↵); �)]] is minimized by
E� [A�(↵)]�1E� [A�(↵)✓� ].

From now on, assume N ! 1. A�(↵) ! (I � ↵Q�)Q�(I � ↵Q�) = S�(↵), so
E� [A�(↵)]�1E� [A�(↵)✓� ] ! ✓⇤

maml
(↵) = E� [S�(↵)]�1E� [S�(↵)✓� ]. The expected loss after
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(↵) is given by
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For ↵ = 0, (30) is equal to the expected loss before adaptation of ✓⇤

drs
, E� [R(✓⇤

drs
; �)], i.e. the

minimum possible loss before adaptation. Therefore, to show that for 0 < ↵  1/�, the expected loss
after adaptation of ✓⇤

maml
(↵) is at most E� [R(✓⇤

drs
; �)], it suffices to show that (30) is nonincreasing

in ↵ on [0, 1/�]. We do so by computing its derivative with respect to ↵ and showing that it is
nonpositive on [0, 1/�].

Using the chain rule of matrix calculus,

d(30)
d↵

= ↵E� [✓
|
�
Q3

�
✓� ]� E� [✓

|
�
Q2

�
✓� ]�

1

2

dE� [S�(↵)✓� ]

d↵

|
E� [S�(↵)]

�1E� [S�(↵)✓� ]

�
1

2
E� [S�(↵)✓� ]

| dE� [S�(↵)]�1

d↵
E� [S�(↵)✓� ]

�
1

2
E� [S�(↵)✓� ]

|E� [S�(↵)]
�1 dE� [S�(↵)✓� ]

d↵
= �E� [✓

|
�
Q�(I� ↵Q�)Q�✓� ] + E� [Q

2
�
✓� � ↵Q3

�
✓� ]

|E� [S�(↵)]
�1E� [S�(↵)✓� ]

� E� [S�(↵)✓� ]
|E� [S�(↵)]

�1E� [Q
2
�
� ↵Q3

�
]E� [S�(↵)]

�1E� [S�(↵)✓� ]

+ E� [S�(↵)✓� ]
|E� [S�(↵)]

�1E� [Q
2
�
✓� � ↵Q3

�
✓� ]

= �E� [✓
|
�
Q�(I� ↵Q�)Q�✓� ] + E� [Q�(I� ↵Q�)Q�✓� ]

|E� [S�(↵)]
�1E� [S�(↵)✓� ]

� E� [S�(↵)✓� ]
|E� [S�(↵)]

�1E� [Q�(I� ↵Q�)Q� ]E� [S�(↵)]
�1E� [S�(↵)✓� ]

+ E� [S�(↵)✓� ]
|E� [S�(↵)]

�1E� [Q�(I� ↵Q�)Q�✓� ]

= �E�

⇥
(✓� � E� [S�(↵)]

�1E� [S�(↵)✓� ])
|Q�(I� ↵Q�)Q�(✓� � E� [S�(↵)]

�1E� [S�(↵)✓� ])
⇤

which is the negative of an expectation of a quadratic form with inner matrix Q�(I�↵Q�)Q� . When
0 < ↵  1/�, Q�(I� ↵Q�)Q� is positive semidefinite for all �, and the derivative is nonpositive.
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