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Abstract

Localization by image retrieval is inexpensive and scalable due to its simple map-
ping and matching techniques. The localization accuracy, however, depends on the
quality of the underlying image features, often obtained using contrastive learning.
Most contrastive learning strategies learn features that distinguish between different
classes. In the context of localization, however, there is no natural definition of
classes. Therefore, images are artificially separated into positive/negative classes
with respect to the chosen anchor images, based on some geometric proximity
measure. In this paper, we show why such divisions are problematic for learning
localization features. We argue that any artificial division based on a proximity
measure is undesirable due to the inherently ambiguous supervision for images
near the proximity threshold. To avoid this problem, we propose a novel technique
that uses soft positive/negative assignments of images for contrastive learning. Our
soft assignment makes a gradual distinction between close and far images in both
geometric and feature space. Experiments on four large-scale benchmark datasets
demonstrate the superiority of our soft contrastive learning over the state-of-the-art
method for retrieval-based visual localization.

1 Introduction

A high quality, view aware1 image often captures sufficient information to uniquely represent a
location. Therefore, it is not surprising that we use vision as the primary source of information for
localization, navigation, and exploration in our environments. Vision-based localization has become
an effective solution for several important applications ranging from robotics to augmented reality.
However, the application of such solutions in large scale environments is limited primarily because of
the high computational demand. This limitation is usually alleviated using additional sensory systems
such as GPS and beacons. In the absence of such sensors—either the device is not equipped with
them or the environment denies the usage (e.g. indoors)—image retrieval-based localization is an
appealing alternative. The problem of retrieval-based localization equates to matching one or more
query images, taken at some unknown location, to a set of geo-tagged reference images.

Traditionally, vision-based localization [1] is tackled either with structure-based methods, such
as Structure-from-Motion (SfM) [2, 3, 4, 5, 6, 7] and Simultaneous Localization and Mapping
(SLAM) [8, 9, 10, 11, 12], or with retrieval-based approaches [13, 14, 15, 16, 17, 18, 19, 20].
Structure-based methods usually focus on accurate relative pose estimation, while retrieval-based
approaches prioritize absolute re-localization. Localization by image retrieval (or simply retrieval-
based localization) is inexpensive due to its simple mapping and matching possibilities, which scale
well to large spaces [16, 4, 21]. Many structure-based approaches use retrieval for initialization [4].
Recent developments in learning image features for object and place recognition [13, 14, 15, 16]
have made image retrieval a viable method for localization.

1Images captured with an intention to localize with a wide view of the surrounding.
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Almost all current methods for learning image features for localization are based on learning for
classification. Discriminative approaches based on contrastive learning in the feature space have
recently shown great promise [13, 22] for classification using human supervision. In the absence
of such supervision, an effective visual representation can still be learned using the framework of
contrastive learning by artificially dividing images into similar and dissimilar categories [23, 24],
also known as positives and negatives. When the visual task itself is of contrastive nature, such as
face recognition, it is natural to learn features by dividing images into categories. Many notable
works [25, 26, 27, 28] in this context, have laid a foundation for learning powerful features when
images can be meaningfully divided into discrete categories. The state-of-the-art localization
features [16, 29, 30, 31] are learned by building upon this foundation, where images are divided into
discrete categories of positives and negatives, with respect to a chosen anchor image, using some
geometric proximity measure to that anchor.

In this paper, we show why dividing images into discrete categories of positive/negative is problematic
in the context of learning features for visual localization. Our argument stems from the fact that
there is no natural definition of discrete categories of the continuous world. Any artificial division
based on some proximity measure immediately becomes undesirable due to the inherently ambiguous
supervision for images close to the proximity threshold. To avoid this problem, we propose a
novel technique that uses soft positive/negative assignments of images for contrastive learning. We,
however, acknowledge that features for place/landmark recognition [16, 14, 29]—which are shown
to somewhat generalize for localization—do not necessarily suffer from the same problem, as the
landmarks can be discrete. Methods for place recognition primarily aim to distinguish between
prominent landmarks—where images do not necessarily have to be geo-tagged2. Therefore, place
recognition features offer only a vague promise for accurate localization. In this regard, the task
of learning localization specific features has received little to no attention in the literature, with the
exception of Thoma et al. [31]. Although [31] benefits from softly treating the positives, the used
positive/negative division directly conflicts with the theoretical argument of our work.

Contributions. Our major contributions are threefold. (i) We propose a formal theoretical framework,
in contrast to the common practice, for learning localization features. (ii) Within the proposed
framework, we formulate a novel loss function while offering other possibilities to tackle the original
multi-objective problem. (iii) Using four large-scale datasets, we demonstrate a clear superiority of
our method over the state of the art.

2 Related Work

Visual localization features. Existing works can be broadly divided into: (i) trained and tested on
place recognition [32, 18, 33]; (ii) trained on place recognition and tested for localization [16, 29, 30];
(iii) trained and tested for localization [31]. The methods of the first category are designed to
learn features to recognize places and, therefore, are tested in the same setup. The second category
covers the methods whose formulation targets place recognition (as argued in this paper), but that
nevertheless somewhat generalize to the task of visual localization. The third category belongs to
methods designed and tested for localization. Our work belongs to the third category. It differs
from [31] in the same category, primarily because of the soft vs. hard assignments (see Section 1).
Interested readers can refer to [34, 35] for more details on learning localization features.

Assignments for contrastive learning. Existing assignment techniques for positives/negatives
separation can be broadly divided into: (i) hard assignments [36, 26, 20, 27, 37, 38, 16, 29, 30, 28];
(ii) hybrid assignments [39, 37, 40, 31]; (iii) soft assignments [41]. The hard assignments strictly
categorize images into discrete classes (into positives and negatives with respect to the anchor, in
our context). Hybrid assignments also use a discrete categorization but allow different treatment
for samples within a category. For example, [31] seeks features such that the feature distances are
proportional to the corresponding geometric distances for the positive pairs. Soft assignments do not
use a discrete categorization of the samples. Our work performs soft assignments yet fundamentally
differs from [41] because of the desired property of the sought feature space. In particular, [41] seeks
for proportional feature and geometric distances for all pairs (unlike only for positives in [31]). We
argue that for geometrically far away samples, it suffices to have large enough feature distances.
They do not need to be proportional. Enforcing proportionality for all pairs invites the danger of

2Images from different locations can observe the same place/landmark.
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memorizing the geometric map. This is the reason why [31] enforces the proportionality only for
positives. In our method, only the features close (resp. far) in geometric space but far (resp. close) in
feature space are pulled towards (resp. pushed away form) the anchor (see Figure 1). Moreover, our
method performs significantly better than [41] in all extensive experiments. Interested readers can
refer to [42] for more details and recent developments in contrastive learning.

3 Problem Formulation and Background

3.1 Preliminaries

Let a set of tuples T = {D} = {(I, x)} be the given data consisting of pairs of image I and its
geo-location x. We are interested in learning a mapping function that maps images to feature vectors,
φθ : I → f ∈ Rd, using mapping parameters θ. In the context of this paper, φ is a convolutional
neural network and θ are the network parameters. For the task of retrieval-based localization, we wish
to learn θ such that the ordering of euclidean distances between features respect the ordering of a
geometric proximity measure between the corresponding images3. For large scale datasets, measuring
the feature distances between all pairs during training is computationally intractable. Therefore,
we use the framework of anchor-based learning, which relies on a set of randomly selected anchor
features, say A = {a} ⊂ F = {f}. In this setup, we wish to address the following problem.

Problem 3.1 Find the parameters θ of the mapping function φθ : I → f ∈ Rd, using a given set of
tuples T , such that, for any anchor a ∈ A and some geometric proximity measure d(.),

d(xi, xa) ≤ d(xj , xa), =⇒ ‖fi − a‖ ≤ ‖fj − a‖ ,∀Di,Dj ∈ T . (1)

The choice of euclidean distance in the feature space is made merely to minimize the computation
cost of the retrieval process. Note that the condition of (1) suffices to find the geometrically close
images using only the feature distances. Before divulging our solution of Problem 3.1, we first revisit
a standard approach that has been used so far to learn the mapping parameters θ.

3.2 Learning by hard assignments revisited

For every anchor a ∈ A, the hard assignment process seeks for two sets of so-called positive
and negative examples, say P and N , respectively. For some arbitrarily chosen geometric prox-
imity thresholds τ1 ≤ τ2, positive and negative sets are, P = {fi | d(xi, xa) < τ1} = {p} and
N = {fi | d(xi, xa) ≥ τ2} = {n}. In this setup, existing approaches address the following problem.

Problem 3.2 Find the parameters θ of the mapping function φθ : I → f ∈ Rd, using a given set of
tuples T , such that, for any anchor a ∈ A, geometric proximity measure d(.) and a margin α > 0,

max
p∈P
‖p− a‖ ≤ min

n∈N
‖n− a‖ − α. (2)

Some issues when using the formulation of Problem 3.2 in the context of the retrieval-based localiza-
tion are: (i) arbitrary choice of τ1 and τ2 without treatment of images between the two thresholds; (ii)
not implying the desired property of (1); (iii) ambiguous supervision as τ1 → τ2, which is presented
more formally below.

Proposition 3.3 (Margin ambiguity) For a continuous mapping function φθ : I → f ∈ Rd and
smooth manifold of features F , when threshold τ1 → τ2, Problem 3.2 is feasible only if α→ 0.

Proof The proof is provided in the supplementary material.

In other words, if there exists a mapping such that feature distances can be ordered according to
geometric measures and continuous images are available all over the geometric space, then the margin
α must be zero when the two thresholds τ1 and τ2 are equal for a feasible solution of Problem 2 to
exist. Besides, such a solution does not maintain the desired order.

3Although our optimization seeks order preservation, our solution does not guarantee the desired ordering.
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4 Learning by Soft Assignments

Instead of classifying images into positive and negative, we derive two scores for positiveness and
negativeness, say s+ and s−, using both feature distances and geometric proximity measures.

Definition 4.1 (Positiveness and negativeness) Let g+(y) and g−(y) respectively be decreasing
and increasing influence functions with g+(y) > 0, g−(y) > 0 for y ≥ 0, g+(0) > g−(0), and
g+(y) < g−(y) for sufficiently large y. The positiveness and negativeness scores for the image-
location tuple Di ∈ T with respect to an anchor a ∈ A is given by,

s+i = g+(d(xi, xa)) ‖fi − a‖ and s−i = g−(d(xi, xa)) ‖fi − a‖ . (3)

Now, we are ready to address Problem 1 with the help of the following proposition.

Proposition 4.2 (Duality) The pareto optimal front of the multi-objective optimization problem,
minθ [s+1 ,−s

−
1 , . . . , s

+
i ,−s

−
i , . . .]

> passes through the feasible solution set of Problem 1.

Proof The proof is provided in the supplementary material.

Note that Problem 1 with finite cardinality of T can have a set of feasible solutions, as it lacks an
objective function. Any of those solutions is equally valid for the task of visual localization. At this
point, finding the exact relationships between feasible and pareto optimal solutions is a topic of future
investigation. Henceforth, we use Problem 1 and that of Proposition 4.2 equivalently, with slight
abuse of precision. This paper attempts to solve the multi-objective problem instead of addressing
the original problem of objective-free constraint optimization. In the following, we will first present
an example to clarify Proposition 4.2 in relationship with Problem 2, followed by our attempt at
addressing the multi-objective optimization problem. For better clarity of the theory and notations,
we present the following example of a special case.

Example 4.3 (Special case) Let the box function be y = b(x) with y=1 for 0<x<1, and y=0 other-
wise. For a threshold τ , monotonically increasing/decreasing functions are chosen as, g−(y) = b(τy)
and g+(y) = 1− b(τy). Then, the multi-objective problem minθ [. . . , s+i ,−s

−
i , . . .]

> is a dual of
Problem 2 with thresholds τ1 = τ2 and the margin α = 0.

Let ua(T ; θ) = [. . . , s+i − s−i , . . .]
> be the combined scores of a chosen anchor. In the setup

of Example 4.3, methods that address Problem 1 using the well known triplet loss [26] optimize,
minθ

∑
a∈A [1>ua(T ; θ) + α]+, for the hinge loss [.]+. The setup of [26] involves only one positive

and one negative at a time. Similarly, n-pair loss [43] involves one positive and multiple negatives.
Notice that for α = 0, the triplet loss is optimal when the positiveness score of the positive and the
negativeness score of the negative are equal. These scores are kept apart by introducing a margin
α. In this paper, we show that such a margin is problematic in the context of localization and
suggest explicitly maximizing the gap between positiveness and negativeness scores based on our
Proposition 4.2. In the following, we will first present our choice of influence functions. Later, we
will formulate the loss function, which encourages the gap maximization between the two scores.

4.1 Influence functions g+ and g−

Although any choice of strictly increasing and decreasing functions are eligible as influence functions,
a careful choice is necessary for the desired outcome in practice. While doing so, two aspects need
to be considered: (i) the intersection point of two influence functions represents the threshold τ ;
(ii) influence functions must be bounded within the interval of the plausible geometric distances.
Possible choices are the common linear, log, or sigmoid activation functions. We use the following
sigmoid-based influence functions, illustrated in Figure 1, with slope γ and offset λ = τγ:

g+(y) =
1

1 + exp (λ− γy)
and g−(y) =

1

1 + exp (γy − λ)
. (4)

4.2 Loss function for gap maximization

Although any monotone submodular function can be used to combine multiple objectives into a single
one; a careful choice is necessary for the desired outcome in practice. Some examples include vector
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Figure 1: Left to right: influence functions of (4); positiveness and negativeness scores plotted over
feature and geometric distances; gradients with respect to feature distance (of the difference of scores
as an alternative to (5)) over the space of feature and geometric distances. A point q = (dx, df )
represents a pair of geometric and feature distances of an image with respect to some anchor. The
gradient at point q shows how the feature f at location x needs to be treated. For example, far away
features of close by images are pushed downwards such that the feature distances are minimized.
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Figure 2: Left to right: training image locations for Oxford RobotCar, test reference and test query
image locations for Oxford RobotCar and Pittsburgh, and all training and test set sizes.

norms, weighted norms, or the sum of exponential. Let two vectors s+a (T ; θ) = [. . . , s+i , . . .]
> and

s−a (T ; θ) = [. . . , s−i . . .]
> represent positiveness and negativeness scores for a given anchor. Inspired

by [28]4, we select a submodular function such that the final optimization problem becomes,

min
θ

∑
a∈A

{
log(1 + 1> exp(ηs+a − µ))/η + log(1 + 1> exp(µ− νs−a ))/ν

}
, (5)

where η, ν represent the slope and µ represents offset, similarly as in (4). Note that the two terms
in (5) are identical, except for the scores and the user controlled slope offset. Intuitively, the first
term minimizes the positiveness scores whereas, the second term maximizes the negativeness scores.
Recall from (3), both positiveness and negativeness scores are defined for the same image. Note that
maximizing the gap between s+i and s−i pulls feature fi closer to a for d(xi, xa) < τ . On the other
hand, the same objective also pushes fi away from a when d(xi, xa) > τ . The strength of pulling and
pushing depends upon the distance between d(xi, xa) and τ , with no action when d(xi, xa) = τ . An
illustration for this behaviour, with a simple difference maximizing the gap, is shown in Figure 1.

5 Experimental Evaluation

Training datasets. We conduct experiments with models trained on three different publicly avail-
able real world datasets–ImageNet [44], Pittsburgh (Pitts250k) [45], and Oxford RobotCar [46]. The
Pittsburgh and Oxford RobotCar models are trained for localization. The ImageNet model, referred
to as off-the-shelf, is trained for classification and re-purposed for localization without retraining. For
the Pittsburgh and ImageNet models, we use the publicly available checkpoints of [16]. For Oxford
RobotCar, we curate our own large-scale training dataset with >1M images, suitable for learning
localization features, by carefully removing noisy labels from [46]. Given that the original Oxford
RobotCar dataset is somewhat noisy, we filter out bad or atypical locations by removing location
outliers and exclude under and overexposed images. The resulting training dataset contains over one
million images taken under various conditions, such as night, snow, overcast, sun, clouds, rain, and
dusk. The first plot in Figure 2 shows our Oxford RobotCar training image locations. For the sake of
reproducibility, we provide a list of all included images in the supplementary material.

4Note that [28] does not make use of the geometric distances.
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Testing datasets. We report results on four different test sets: our own Oxford RobotCar [46] test
set, Pittsburgh (Pitts250k) [45], RobotCar Seasons (a subset of Oxford RobotCar [46]) and CMU
Seasons (a subset of the CMU Visual Localization Dataset [47]). For Oxford RobotCar, we select a
test region which is geographically disjoint from our training region (see Figure 2). The choice of
reference images for our Oxford RobotCar test set is based on two assumptions. Firstly, the reference
storage is limited, which is why we only select a limited number of reference images. Secondly, it is
justified to choose the easiest condition as a reference, given that anyone designing an image-retrieval
based localization system will most likely have control over the initial reference conditions. In that
light, we choose an overcast reference sequence. This condition has less glare than sunny sequences
and better lighting than night images. In its original form, Pittsburgh contains 250k reference images.
For faster testing, we ignore all reference images that are more than 100 meters away from the nearest
query and remove all images with pitch 2 (i.e. images that mostly show sky). The locations of the
remaining images are shown in Figure 2. For reproducibility, we include a list of all Oxford RobotCar
and Pittsburgh test images in the supplementary material. For the evaluation on RobotCar Seasons
and CMU Seasons we use the online long-term visual localization benchmark [19]. The table in
Figure 2 shows the numbers of reference and query images for the four different test sets.

Network architecture and training. We use a VGG-16 [14] network cropped at the last convolu-
tional layer and extend it with a NetVLAD [16] layer as implemented by [48], initializing the network
with off-the-shelf ImageNet [44] classification weights, i.e. weights that have not yet been retrained
for localization. For dimensionality reduction, we use PCA with whitening. For Pittsburgh, Oxford
Seasons, and CMU Seasons, the PCA is calculated using the reference images. For our Oxford
RobotCar test set, the PCA is calculated using 5000 images from our Oxford RobotCar training set.
All results reported in this paper use a final feature size of 256 (for results with different sizes, please
refer to the supplementary material). Please note that this size is much smaller than the 4096 used
by [16]. This is the reason why our results obtained with the Pittsburgh checkpoint of [16] on the
online benchmark [19] are different from the results of the same method on the leader board.
All models are trained on a single Nvidia GPU. We use the training parameters of [16], reducing the
learning rate to 0.000001. Each of our training tuples consists of 1 anchor, 12 close neighbors and 12
further away images. Images are down-scaled such that the largest side has a length of 240px. With
the smaller image sizes, it becomes possible to train VGG-16 in its entirety and not only down to
conv5 layer as it is done by [16]. Given that our Oxford RobotCar training set contains numerous
sequences that run through the same locations, but not every location is visited the same number of
times, we redefine the concept of one epoch as having selected one anchor for each one-meter section
along the standard driving route. For each anchor image, we sample the close neighbors from within
a radius of r1 and with a maximum yaw difference to the anchor of 30 degrees. The further away
images are sampled at least r2 distance away. For our method and for log-ratio loss, we set r1 and
r2 to 15m. For all other methods we set r1 to 10m and r2 to 25m in accordance with [16, 31, 30].
For our method and log-ratio loss, the close and further away images are merged into one tensor and
treated indistinguishably during loss calculation. For the other methods, close neighbors become
positives, and further away images become negatives. Similar to [16] we use hard negative mining
with a mining cache size of 1000, which is updated every 250 steps. Half of all negatives are mined
hard negatives. To assert diversity among negatives, we require that each negative is at least r2 away
from all other negatives in the tuple. The training is stopped once the validation performance stops
improving. Multi-similarity loss [28] and our method converge within one, log-ratio within two, and
all other methods within three epochs.

Evaluation metric. We consider an image to be correctly localized if the distance between the
top-1 retrieved reference and query location is smaller than a given distance threshold d. For any
given testing condition, we report the percentage of correctly localized images, i.e. the localization
accuracy. The evaluations on CMU Seasons and RobotCar Seasons also use an angle error threshold
in addition to the distance threshold. Please note that the long-term visual localization benchmark [19]
is designed to evaluate 6DOF structure-based pose estimation methods, while all methods reported in
this paper are pure retrieval-based methods. It is possible that even if a method succeeds in finding
the geometrically closest reference image, that the pose of that reference is too different from the
query image pose and will not be counted as correctly localized. Thus, our evaluations use higher
thresholds d and report an upper bound, i.e. the highest possible accuracy achievable by a purely
retrieval-based method without a secondary structure-based pose refinement step. Please also note
that while structure-based methods often obtain better results at small thresholds, retrieval-based
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Oxford RobotCar Pittsburgh Mean
Night Overcast Snow Sunny

Thresholds d [m] 5.0/10.0/15.0 5.0/10.0/15.0 5.0/10.0/15.0 5.0/10.0/15.0 5.0/10.0/15.0 5.0/10.0/15.0
Upper bound 100.0/100.0/100.0 92.7/99.3/100.0 99.9/100.0/100.0 100.0/100.0/100.0 57.3/96.8/98.0 90.0/99.2/99.6

Off-the-shelf [16] 4.4/6.5/8.0 54.5/69.1/72.1 70.2/84.0/86.3 76.8/84.7/86.6 21.7/44.6/52.2 45.5/57.8/61.1
Triplet trained on Pittsburgh [16] 5.4/7.9/9.3 57.8/74.3/79.4 76.9/90.5/92.3 79.6/87.2/89.3 26.0/52.9/61.5 49.1/62.6/66.4
Triplet [16] 22.7/34.3/36.4 60.9/76.8/79.6 83.5/95.8/97.2 84.6/92.4/93.7 24.0/47.9/55.5 55.1/69.5/72.5
Quadruplet [27] 20.2/30.5/33.8 59.2/76.0/78.6 82.1/94.9/96.5 84.8/92.2/94.1 23.4/46.6/53.8 53.9/68.1/71.3
Lazy triplet [30] 18.3/24.3/26.5 63.9/79.8/82.5 83.5/96.3/97.2 83.8/91.1/92.9 23.2/46.0/53.1 54.5/67.5/70.5
Lazy quadruplet [30] 27.1/40.2/42.3 56.6/74.5/77.6 84.5/96.1/97.1 83.7/93.3/94.8 23.5/47.6/55.2 55.1/70.4/73.4
Trip. + Huber dist. [31] 31.6/42.9/45.3 56.1/74.0/76.5 83.8/95.9/97.2 84.2/92.6/93.9 21.6/43.6/50.4 55.5/69.8/72.6
Log-ratio [41] 25.0/31.0/33.4 69.3/86.2/88.2 86.0/98.1/98.8 83.1/94.8/95.5 19.6/40.1/47.3 56.6/70.0/72.6
Multi-similarity [28] 30.5/51.3/57.4 62.5/85.8/88.5 86.6/99.0/ 99.7 83.4/95.5/97.2 24.7/50.8/59.0 57.5/76.5/80.4
Ours 32.9/ 54.3/ 60.0 67.0/ 90.1/ 93.2 87.8/ 99.1/99.5 89.8/97.1/ 98.3 25.9/ 53.1/ 61.8 60.7/ 78.7/ 82.6

Table 1: Oxford RobotCar and Pittsburgh top-1 localization accuracy. The highest value per condition
and threshold for correct localization is marked in bold. All methods except off-the-shelf and triplet
trained on Pittsburgh were trained on the Oxford RobotCar dataset.

methods offer easier map building and maintenance. Retrieval-based methods are also used as an
initial step in hybrid methods [4].

Oxford RobotCar, Night

Figure 3: Selected visual results of the oxford robotCar in the night. We show the query image,
Grad-CAM on the query image, Grad-CAM on the retrieved image, retrieved image, and the distance
between retrieved and query images. Results obtained by our method are shown in the last row.

Baselines and SoA comparison. We compare our loss introduced in Section 4 to seven different
baselines which we all train on our Oxford Robotcar training set. Our comparison focuses on
losses which have previously been studied in the context of localization (triplet loss [16], quadruplet
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Figure 4: Top-1 localization accuracy on the Oxford RobotCar dataset (four conditions) and Pittsburgh
as a function of the distance threshold d for correct retrieval. All methods except off-the-shelf and
triplet trained on Pittsburgh were trained on the Oxford RobotCar dataset. The train and test sets do
not share any co-visible locations. The top five plots show a comparison between our method and
nine other methods. The bottom five plots compare the performance of different influence functions
on our method. It also compares our final loss function (5) against a simple sum baseline loss.
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RobotCar Seasons
Night rain Overcast winter Sun Rain Snow Dawn Dusk Night Overcast summer Mean

Thresholds d [m] .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0
Thresholds [deg] 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10

Off-the-shelf [16] 0.2 / 0.2 / 2.5 2.1 / 16.4 / 71.3 2.4 / 6.5 / 32.0 6.9 / 25.4 / 87.9 2.9 / 12.7 / 64.2 3.5 / 13.0 / 54.9 5.6 / 21.3 / 81.0 0.0 / 0.5 / 4.1 3.2 / 18.6 / 72.4 3.0 / 12.7 / 52.3
Triplet trained on Pittsburgh [16] 0.0 / 0.5 / 3.9 2.1 / 16.7 / 73.3 2.2 / 7.0 / 40.4 7.4 / 27.8 / 90.3 5.9 / 17.0 / 72.2 3.7 / 13.7 / 56.5 7.4 / 24.1 / 80.5 0.0 / 0.2 / 5.5 3.2 / 19.0 / 74.9 3.5 / 14.0 / 55.3
Triplet [16] 0.2 / 2.0 / 18.2 2.8 / 21.0 / 81.0 3.9 / 12.2 / 63.3 7.4 / 30.4 / 93.3 5.7 / 18.8 / 85.1 4.8 / 19.3 / 75.8 7.1 / 27.4 / 88.8 0.5 / 1.6 / 13.5 4.3 / 20.5 / 78.6 4.1 / 17.0 / 66.4
Quadruplet [27] 0.5 / 2.7 / 21.1 2.3 / 20.8 / 81.3 2.2 / 9.3 / 62.0 7.6 / 29.2 / 94.8 5.1 / 18.6 / 83.0 4.6 / 19.3 / 77.8 5.8 / 22.8 / 90.6 0.2 / 3.0 / 14.6 4.8 / 20.3 / 79.3 3.7 / 16.2 / 67.2
Lazy triplet [30] 0.7 / 3.6 / 23.0 2.3 / 19.5 / 82.3 2.2 / 10.4 / 59.3 8.1 / 28.3 / 94.8 5.7 / 18.2 / 85.1 4.6 / 16.4 / 73.5 6.6 / 25.4 / 88.3 0.0 / 0.9 / 9.1 3.7 / 18.1 / 72.4 3.8 / 15.6 / 65.3
Lazy quadruplet [30] 0.5 / 1.8 / 17.5 2.1 / 16.9 / 82.6 3.0 / 10.7 / 68.0 6.7 / 28.3 / 93.6 5.3 / 17.2 / 81.4 6.0 / 18.8 / 75.4 7.1 / 24.4 / 87.1 0.0 / 0.7 / 9.1 4.5 / 19.2 / 78.6 3.9 / 15.3 / 65.9
Trip. + Huber dist. [31] 0.0 / 2.0 / 14.3 2.1 / 19.5 / 74.1 2.2 / 10.4 / 59.3 9.3 / 31.8 / 93.8 4.3 / 17.4 / 75.7 5.8 / 19.3 / 73.3 7.1 / 24.6 / 82.0 0.0 / 0.9 / 13.2 3.9 / 17.5 / 74.1 3.9 / 15.9 / 62.2
Log-ratio [41] 0.2 / 1.4 / 14.8 2.3 / 20.3 / 82.1 4.1 / 13.3 / 76.7 6.4 / 28.7 / 95.7 6.1 / 21.1 / 84.3 6.0 / 16.6 / 71.8 4.6 / 23.6 / 87.6 0.0 / 0.2 / 2.3 2.8 / 19.2 / 79.3 3.6 / 16.0 / 66.1
Multi-similarity [28] 0.7 / 2.5 / 20.9 1.0 / 16.2 / 79.2 2.4 / 10.9 / 77.0 6.9 / 26.4 / 94.1 4.1 / 18.2 / 82.8 4.6 / 16.8 / 76.2 4.8 / 23.9 / 90.4 0.0 / 0.7 / 8.2 3.2 / 15.6 / 81.0 3.1 / 14.6 / 67.8
Ours 0.2 / 1.8 / 15.9 2.1 / 19.7 / 79.7 3.5 / 14.1 / 80.0 8.3 / 27.3 / 94.5 5.3 / 21.7 / 87.7 4.6 / 17.4 / 73.3 5.6 / 22.6 / 91.6 0.0 / 1.4 / 8.4 4.1 / 19.0 / 89.2 3.7 / 16.1 / 68.9

CMU Seasons
Urban Suburban Park Overcast Sunny Foliage Mixed foliage No foliage Low sun Cloudy Snow Mean

Thresholds d [m] .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0
Thresholds [deg] 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10

Off-the-shelf [16] 7.8 / 18.5 / 54.9 2.9 / 8.5 / 36.2 2.6 / 6.8 / 32.0 5.1 / 12.7 / 45.5 4.8 / 11.7 / 42.7 4.8 / 11.9 / 43.6 4.5 / 11.0 / 37.4 5.3 / 14.0 / 48.8 3.9 / 10.2 / 36.9 6.4 / 15.4 / 49.9 3.8 / 9.4 / 34.6 4.7 / 11.8 / 42.0
Triplet trained on Pittsburgh [16] 9.1 / 21.5 / 64.3 3.2 / 9.5 / 45.0 2.5 / 6.9 / 32.7 5.6 / 14.1 / 51.8 5.1 / 12.5 / 47.1 5.2 / 12.9 / 48.6 5.2 / 12.7 / 43.7 6.3 / 16.0 / 55.4 4.6 / 12.2 / 43.4 7.0 / 16.7 / 56.0 4.5 / 11.3 / 42.2 5.3 / 13.3 / 48.2
Triplet [16] 9.4 / 22.6 / 71.2 3.9 / 11.8 / 60.1 3.2 / 9.2 / 45.2 5.8 / 15.0 / 59.9 4.9 / 12.6 / 52.3 4.9 / 12.9 / 53.8 6.3 / 15.6 / 58.6 7.6 / 20.0 / 71.1 5.9 / 15.7 / 59.6 7.5 / 18.4 / 66.3 6.6 / 16.4 / 60.3 6.0 / 15.5 / 59.9
Quadruplet [27] 10.7 / 25.2 / 73.3 4.4 / 13.0 / 61.4 3.9 / 10.8 / 47.9 6.6 / 16.6 / 61.0 5.6 / 14.0 / 53.2 5.7 / 14.4 / 54.7 7.3 / 18.0 / 61.6 8.5 / 22.2 / 74.8 6.7 / 17.8 / 62.9 9.0 / 21.4 / 69.2 7.5 / 19.6 / 65.7 6.9 / 17.5 / 62.3
Lazy triplet [30] 9.9 / 23.5 / 69.8 4.1 / 11.9 / 58.2 3.5 / 10.1 / 42.0 5.9 / 14.8 / 54.6 5.1 / 12.9 / 47.2 5.1 / 12.9 / 48.4 6.6 / 16.6 / 57.1 8.3 / 22.2 / 75.0 6.3 / 16.9 / 60.0 8.4 / 20.1 / 65.8 7.3 / 19.6 / 66.0 6.4 / 16.5 / 58.6
Lazy quadruplet [30] 11.4 / 26.9 / 72.7 4.9 / 13.9 / 64.1 3.7 / 10.7 / 44.1 7.1 / 17.2 / 59.3 5.8 / 14.5 / 49.9 5.9 / 14.8 / 51.5 7.6 / 18.8 / 60.6 9.3 / 24.5 / 77.5 7.2 / 19.1 / 63.7 9.2 / 22.2 / 67.0 8.1 / 21.2 / 68.8 7.3 / 18.5 / 61.7
Trip. + Huber dist. [31] 9.5 / 22.9 / 69.0 4.4 / 12.4 / 57.3 3.0 / 8.4 / 39.6 6.1 / 15.1 / 55.8 5.3 / 13.4 / 51.0 5.3 / 13.5 / 51.8 6.1 / 15.1 / 53.6 7.4 / 19.0 / 65.6 5.7 / 15.0 / 54.3 7.5 / 18.1 / 62.1 6.1 / 15.3 / 54.9 6.0 / 15.3 / 55.9
Log-ratio [41] 10.5 / 24.9 / 71.4 4.6 / 13.4 / 57.4 3.5 / 10.2 / 42.8 6.1 / 15.4 / 54.2 5.2 / 12.9 / 47.4 5.1 / 13.1 / 48.4 7.7 / 18.8 / 61.0 8.1 / 22.5 / 72.0 7.1 / 19.0 / 63.2 8.3 / 20.2 / 63.9 7.6 / 20.6 / 65.3 6.7 / 17.4 / 58.8
Multi-similarity [28] 12.0 / 28.8 / 81.6 5.1 / 14.6 / 63.9 3.8 / 10.9 / 52.7 8.1 / 20.2 / 71.0 6.9 / 17.8 / 64.0 7.1 / 18.1 / 65.6 8.0 / 20.1 / 67.3 7.4 / 19.2 / 68.2 6.6 / 17.6 / 63.6 9.5 / 22.9 / 73.8 6.6 / 16.4 / 58.1 7.4 / 18.8 / 66.3
Ours 12.7 / 30.7 / 84.6 5.1 / 14.9 / 67.9 4.5 / 12.6 / 56.8 8.5 / 21.6 / 74.2 7.4 / 19.1 / 66.8 7.4 / 19.3 / 68.4 8.5 / 21.5 / 71.0 8.3 / 21.7 / 73.9 7.4 / 19.7 / 68.8 9.6 / 23.8 / 76.1 7.6 / 19.0 / 65.7 7.9 / 20.4 / 70.4

Table 2: Top-1 localization accuracy on RobotCar Seasons (top) and CMU Seasons (bottom).

loss [27], lazy triplet and quadruplet loss [30], and triplet loss with Huber distance [31]). We also
compare to log-ratio loss [41] which, similarly to our method, avoids binary class labels. Finally,
we compare to multi-similarity loss [28], which has partially inspired our method and is the current
state of the art. In addition to these seven baselines trained by us on Oxford RobotCar, we also
report results obtained with the checkpoints provided by [16] (off-the-shelf and triplet trained on
Pittsburgh). Table 1 and the top half of Figure 4 show the baseline and state of the art comparison
obtained with our evaluation setup on Oxford RobotCar and Pittsburgh, while Table 2 shows the
results for RobotCar Seasons and CMU Seasons from the online benchmark. Our method performs
best on all four test sets. In addition to the influence functions in (4) we also test linear and tanh
functions as well as a simple sum alternative

∑
a∈A s−a −

∑
a∈A s+a to (5). The results in the bottom

five plots of Figure 4 indicate that a combination of (5) and (4) performs best. A set of qualitative
results obtained by the proposed method and the compared ones is shown in Figure 3.

6 Conclusion

In this paper, we studied the problem of learning image features for retrieval-based visual localization
and realized that there exists no theoretical framework that formalizes the process of learning such
features. We showed why the existing ad-hoc based approaches are not suitable for the localization
task. We introduced a formal problem definition and its formulation as a multi-objective optimization,
and established the relationships between them. Our formulation allowed us to derive variants of
loss functions, which were then used to train deep convolutional neural networks. We highlight one
of those variants, for which our tests on four large-scale datasets (including one dataset created by
ourselves) demonstrated a significant superiority over the state-of-the-art methods. We believe that
our work opens up a new direction for learning image features targeted explicitly for localization.
Our dataset and source code is made publicly available at https://github.com/janinethoma/
soft_contrastive_learning.

Broader Impact

This paper addresses the topic of retrieval-based visual localization. We present a formal problem
statement and derive improved loss function variations for feature learning. While we are making
our source code and data publicly available, we do not consider them a finished product. Any
potential benefits and disadvantages depend on how people choose to use our method and how they
handle failure cases. E.g. one obvious application of retrieval-based visual localization—pedestrian
navigation—clearly benefits its users: they find their destination more quickly. A negligently or
maliciously implemented navigation solution, however, could also lead people astray. Similarly,
suppose our method is used in conjunction with a structure-based method for autonomous driving
or robot navigation. In that case, it mostly leads to positive outcomes (e.g. increased safety and
efficiency) as long as failure cases are adequately handled, and robots are not used for unethical tasks.
To summarize, our method by itself does not have any direct negative ethical or social consequences.
If it is integrated into a product, it is the quality and intention of the product that determine the broader
impact.
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The images used for training our networks were taken in Oxford. It is, therefore, to be expected that—
if someone chooses to use our pre-trained models—they will work best in Oxford or similar places.
The underlying theoretical formulation and loss functions, however, are entirely location-agnostic.
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