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Abstract

The Frank-Wolfe algorithm is a classic method for constrained optimization prob-
lems. It has recently been popular in many machine learning applications because
its projection-free property leads to more efficient iterations. In this paper, we study
projection-free algorithms for convex-strongly-concave saddle point problems with
complicated constraints. Our method combines Conditional Gradient Sliding with
Mirror-Prox and shows that it only requires Õ(1/

√
ε) gradient evaluations and

Õ(1/ε2) linear optimizations in the batch setting. We also extend our method to
the stochastic setting and propose first stochastic projection-free algorithms for
saddle point problems. Experimental results demonstrate the effectiveness of our
algorithms and verify our theoretical guarantees.

1 Introduction

In this paper, we study the following saddle point problems:

min
x∈X

max
y∈Y

f(x,y)

where the objective function f(x,y) is convex-concave and L-smooth; X and Y are convex and
compact sets. Besides this general form, we also consider the stochastic minimax problem:

min
x∈X

max
y∈Y

f(x,y) , Eξ[F (x,y; ξ)], (1)

where ξ ∈ Ξ is a random variable. One popular specific setting of (1) is the finite-sum case where ξ is
sampled from a finite set Ξ = {ξi}ni=1. Denoting Fi(x,y) , F (x,y; ξi), we can write the objective
function as

f(x,y) ,
1

n

n∑
i=1

Fi(x,y). (2)

We are interested in the cases where the feasible set is complicated such that projecting onto X × Y
is rather expensive or even intractable. One example of such case is the nuclear norm ball constraint,
which is widely used in machine learning applications such as multiclass classification [5], matrix
completion [2, 14, 17], factorization machine [21], polynomial neural nets [22] and two-player games
whose strategy space contains a large number of constraints [1].

The Frank-Wolfe (FW) algorithm [6] (a.k.a. conditional gradient method) is initially proposed for
constrained convex optimization. It has recently become popular in the machine learning community
∗Corresponding author
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because of its projection-free property [13]. The Frank-Wolfe algorithm calls a linear optimization
(LO) oracle at each iteration, which is usually much faster than projection for complicated feasible
sets. Recently, FW-style algorithms for convex and nonconvex minimization problems has been
widely studied [9, 10, 11, 17, 19, 28, 29, 31, 33, 34, 35]. However, the only known projection-free
algorithms for minimax optimization are for very special cases (e.g. the saddle point belongs to the
interior of the feasible set [7]).

In this paper, we propose a projection-free algorithm, which we refer to as Mirror-Prox Conditional
Gradient Sliding (MPCGS), for convex-strongly-concave saddle point problems. Our method lever-
ages the idea from some projection-type methods [24, 32], which is based on proximal point iterations.
By combining the idea of Mirror-Prox [24] with the conditional gradient sliding (CGS) [19], MPCGS
only requires at most Õ(1/

√
ε) exact gradient evaluations and Õ(1/ε2) linear optimizations to guar-

anteeO(ε) suboptimality error in expectation. We also extend our framework to the stochastic setting
and propose Mirror-Prox Stochastic Conditional Gradient Sliding (MPSCGS), which requires to
compute at most Õ(1/ε2) stochastic gradients and call the LO oracle for at most Õ(1/ε2) times.
To the best of our knowledge, MPSCGS is the first stochastic projection-free algorithm for convex-
strongly-concave saddle point problems. We also conduct experiments on several real-world data sets
for robust optimization problem to validate our theoretical analysis. The empirical results show that
the proposed methods outperform previous projection-free and projection-based methods when the
feasible set is complicated.

Related Works Most existing works on constrained minimax optimization solve the problem with
projection. We only provide some representative literature. For the batch setting, the classical
extragradient method [16] considered a more general variational inequality (VI). Nemirovski [24]
proposed Mirror-Prox method which achieves a convergence rate of O(1/ε) for solving VI. Recently,
Thekumparampil et al. [32] improved the convergence rate to O(1/

√
ε) when the objection function

is strongly-convex-concave. For the stochastic setting, Chavdarova et al. [3], Palaniappan and Bach
[27] adopted the variance reduction methods to obtain linear convergence rate for strongly-convex-
strongly-concave objection functions.

The projection-free methods for saddle point problems are very few. Hammond [8] found that
FW algorithm with a step size O(1/k) converges for VI when the feasible set is strongly convex.
Recently, Gidel et al. [7] proposed SP-FW algorithm for strongly-convex-strongly-concave saddle
point problem, which achieves a linear convergence rate under the condition that the saddle point
belongs to the interior of the feasible set and the condition number is small enough. They also
provided an away-step Frank-Wolfe variant [17], called SP-AFW, to address the polytope constraints.
However, SP-AFW has to store history information and perform extra operations in each iteration.
Roy et al. [30] extended SP-FW to the zeroth-order setting and studied a gradient-free projection-free
algorithm which has the theoretical guarantee under the same assumptions on the objective function
as SP-FW. He and Harchaoui [12] proposed a projection-free algorithm for non-smooth composite
saddle point problem. Their method requires to call a composite LO oracle, which is not suitable for
general case.

Some recent works focus on hybrid algorithms which combine projection-based and projection-
free methods. For example, Cox et al. [4], Juditsky and Nemirovski [15] transformed a VI with
complicated constraints to a “dual” VI which is projection-friendly. Lan [18], Nouiehed et al. [26]
solved the saddle point problem by running projection-free methods on X and performing projection
on Y . In contrast, our methods are purely projection-free.

Paper Organization In Section 2, we provide preliminaries and relevant backgrounds. We present
our results for the batch setting and stochastic setting in Section 3 and Section 4 respectively. We
give empirical results for our algorithm in Section 5, followed by a conclusion in Section 6.

2 Preliminaries and Backgrounds

In this section, we first present some notation and assumptions used in this paper. Then we introduce
oracle models which are necessary to our methods, followed by an example of application. After
that we provide some properties of saddle point problems.Finally, we introduce CGS and its variants,
which are used in our algorithms.

2



2.1 Notation and Assumptions

Given a differentiable function f(x,y), we use ∇xf(x,y) (or ∇yf(x,y)) to denote the partial
gradient of f with respect to x (or y) and define fS(x,y) = 1

|S|
∑
ξ∈S F (x,y; ξ). We use the

notation Õ to hide logarithmic factors in the complexity and denote [n] = {1, 2, . . . , n}.
We impose the following assumptions for our method.
Assumption 1. We assume the saddle point problem (1) satisfies:

• f(x,y) is L-smooth, i.e., for every (x1,y1), (x2,y2) ∈ X × Y , it holds that

‖∇f(x1,y1)−∇f(x2,y2)‖2 ≤ L2
(
‖x1 − x2‖2 + ‖y1 − y2‖2

)
.

• f(·,y) is convex for every y ∈ Y , i.e., for any x1, x2 and y, it holds that

f(x1,y)− f(x2,y) ≥ ∇xf(x2,y)>(x1 − x2).

• f(x, ·) is µ-strongly concave for every x ∈ X , i.e., for any x, y1 and y2, it holds that

f(x,y1)− f(x,y2) ≤ ∇yf(x,y2)>(y1 − y2)− µ

2
‖y1 − y2‖2.

• X and Y are convex compact sets with diameter DX and DY respectively.

We use κ = L/µ to denote the condition number.
Assumption 2. In the stochastic setting, we make the following additional assumptions:

• E[∇F (x,y; ξ)] = ∇f(x,y) for every (x,y) ∈ X × Y and ξ ∈ Ξ.

• E‖∇F (x,y; ξ)−∇f(x,y)‖2 ≤ σ2 for every (x,y) ∈ X × Y , ξ ∈ Ξ and constant σ > 0.

• f(x,y) is L-average smooth, i.e., for every (x1,y1), (x2,y2) ∈ X × Y and ξ ∈ Ξ, it holds that

E‖∇F (x1,y1, ξ)−∇F (x2,y2, ξ)‖2 ≤ L2(‖x1 − x2‖2 + ‖y1 − y2‖2).

In the convex-concave setting, for any (x̂, ŷ) ∈ X × Y , we have the following inequality:

min
x∈X

f(x, ŷ) ≤ f(x̂, ŷ) ≤ max
y∈Y

f(x̂,y).

Furthermore, Problem (1) has at least one saddle point solution (x∗,y∗) ∈ X × Y which satisfies:

min
x∈X

f(x,y∗) = f(x∗,y∗) = max
y∈Y

f(x∗,y).

We measure the suboptimality error by the primal-dual gap: maxy∈Y f(x̂,y) −minx∈X f(x, ŷ),
which is widely used in saddle point problems. We further define ε-saddle point as follows:
Definition 1. A point (x̂, ŷ) ∈ X × Y is an ε-saddle point of a convex-concave function f if:

maxy∈Yf(x̂,y)−min
x∈X

f(x, ŷ) ≤ ε. (3)

Notice that Gidel et al. [7] adopted a different criterion: w(x̂, ŷ) = f(x̂,y∗)−f(x∗, ŷ). It is obvious
that the left-hand side of (3) is an upper bound of w(x̂, ŷ).

2.2 Oracle models

In this paper, we consider the following oracles for different settings:

• First Order Oracle (FO): Given (x,y) ∈ X × Y , the FO returns f(x,y) and ∇f(x,y).
• Stochastic First Order Oracle (SFO): For a function Eξ[F (x,y; ξ)] where ξ ∼ P , SFO returns
F (x,y; ξ′) and ∇F (x,y; ξ′) where ξ′ is a sample drawn from P .

• Incremental First Order Oracle (IFO): In the finite-sum setting, IFO takes a sample i ∈ [n] and
returns Fi(x,y) and∇Fi(x,y).

• Linear Optimization Oracle (LO): Given a vector g ∈ Rd and a convex and compact set Ω ⊆ Rd,
the LO returns a solution of the problem minv∈Ω〈v,g〉.
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Algorithm 1 CGS Method for strongly convex functions
Input: L-smooth and µ-strongly-convex function h, convex and compact set Ω, total iterations N .
Input: The initial point x̄0 ∈ Ω satisfies h(x̄0)−h(x∗) ≤ δ0.

1: M ←
√

24L/µ.
2: for t = 1, 2, . . . , N do
3: x0 ← x̄t−1, u0 ← x0

4: for k = 1, 2, . . . ,M do
5: λk ← 2

k+1 , βk ← 2L
k , ηt,k ← 8Lδ02−t

µNk

6: wk ← (1− λk)xk−1 + λkuk−1

7: uk ← CndG(∇h(wk),uk−1, βk, ηt,k,Ω)
8: xk ← (1− λk)xk−1 + λkuk
9: end for

10: x̄t = xM
11: end for

2.3 Example Application: Robust Optimization for Multiclass Classification

We consider the multiclass classification problem with h classes. Suppose the training set is D =
{(ai, bi)}ni=1, where ai ∈ Rd is the feature vector of the i-th sample and bi ∈ [h] is the corresponding
label. The goal is to find an accurate linear predictor with parameter X = [x>1 ,x

>
2 , · · · ,x>h ] ∈ Rh×d

that predicts b = arg maxj∈[h] x
>
j a for any input feature vector a ∈ Rd.

The robust optimization model [23] with multivariate logistic loss [5, 36] under nuclear norm ball
constraint can be formulated as the following convex-concave minimax optimization:

min
X∈X

max
y∈Y

f(X,y) ,
1

n

n∑
i=1

yi log

1 +
∑
j 6=yi

(
x>j ai − x>yiai

)− λ

2
‖ny − 1n‖22, (4)

where X =
{
X ∈ Rh×d : ‖X‖∗ ≤ τ

}
and Y = {y ∈ Rn : yi ≥ 0,

∑n
i=1 yi = 1}. It is obvious that

the objective function (4) is convex-strongly-concave, which satisfies our assumptions. In this case,
projecting onto X requires to perform full SVD, which takes O(hdmin{h, d}) time. On the other
hand, the linear optimization on X only needs to find the top singular vector, whose cost is linear to
the number of non-zero entries in the gradient matrix.

2.4 Conditional Gradient Sliding

Conditional Gradient Sliding (CGS) [19] is a projection-free algorithm for convex minimization.
It leverages Nesterov’s accelerate gradient descent [25] to speed-up Frank-Wolfe algorithms. For
strongly-convex objective function, CGS only requires O(

√
κ log(1/ε)) FO calls and O(1/ε) LO

calls to find an ε-suboptimal solution. We present the details of CGS in Algorithm 1. Notice that the
k-th iteration of CGS considers the following sub-problem

min
u∈Ω

〈∇h(wk),u〉+
βk
2
‖u− uk−1‖2,

which can be efficiently solved by the conditional gradient method in Algorithm 2. Lan and Zhou
[19] also extended CGS to stochastic setting and proposed stochastic conditional gradient sliding
(SCGS). Later, Hazan and Luo [11] proposed STOchastic variance-Reduced Conditional gradient
sliding (STORC) for finite-sum setting whose complexities of IFO and LO are O((n+ κ2) log(1/ε))
and O(1/ε) respectively.

3 Mirror-Prox Conditional Gradient Sliding

For the batch setting of (1), we propose Mirror-Prox Conditional Gradient Sliding (MPCGS), which
is presented in Algorithm 3. Our MPCGS method combines ideas of Mirror-Prox algorithm [32] and
CGS method [19]. The key idea of MPCGS is to solve a proximal problem in each iteration, which
makes xk and yk satisfy following conditions:
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Algorithm 2 Procedure q+ =CndG(r,q, β, η,Ω)
1: q1 ← q.
2: for t = 1, 2, . . . do
3: pt ← arg maxx∈Ω〈r + β(qt − q),qt − x〉, τt ← 〈r + β(qt − q),qt − pt〉
4: If τt ≤ η, set q+ = qt and terminate the procedure.
5: θt ← min

{
1, τt

β‖qt−pt‖2

}
, qt+1 ← (1− θt)qt + θtpt

6: end for

• yk is an εk-approximate maximizer of f(xk, ·), i.e., f(xk,yk) ≥ maxy f(xk,y)− εk;

• The update of xk corresponds to an CGS updating step (Algorithm 1) for −f(·,yk), i.e.,

vk = CndG(∇xf(zk,yk),vk−1, αk, ζk,X ), xk = (1− γk)xk−1 + γkvk.

The procedure of solving the proximal problem is presented in Algorithm 4. In the Prox-step
procedure, we iteratively compute an εcgs-approximate maximizer of f(xr−1, ·) and then update vr
and xr according to yr. Since f(x, ·) is smooth and strongly concave for all x ∈ X , the number of
calls to the FO and LO oracles performed by CGS method for finding an εk-approximate maximizer
can be bounded by O(

√
κ log(1/εcgs)) and O(1/εcgs) respectively.

On the other hand, in Algorithm 4 the CndG procedure computes vr as an ζ-approximate solution of
the following problem:

min
u∈X

{
∇xf(z,y∗(xr−1))>u +

α

2
‖u− v‖2

}
.

Thus, the idealized updating of xr in Algorithm 4 is

xr = (1− γ)x + γ · arg min
u∈X

{
∇xf(z,y∗(xr−1))>u +

α

2
‖u− v‖2

}
.

Since ψ(x) , (1−γ)x+γ ·arg minu∈X {∇xf(z,y∗(xr−1))>u+ α
2 ‖u−v‖

2} is a (1/2)-contraction
mapping with a unique fixed point (see the proof of Lemma 2 in the Appendix), the Prox-step
procedure only requires O(log(1/ε)) iterations if εcgs and ζ are small enough.

The following theorem shows the convergence rate of solving problem (1) by Algorithm 3.

Theorem 1. Suppose the objective function f(x,y) satisfies Assumption 1. By setting

γk =
3

k + 2
, αk =

6κL

k + 1
, ζk =

LD2
X

384k(k + 1)
, εk =

κLD2
X

k(k + 1)(k + 2)

for Algorithm 3, then we have

max
y∈Y

f(xk,y)−min
x∈X

f(x, ȳk) ≤ 11κLD2
X

(k + 1)(k + 2)
.

Theorem 1 implies the upper bound complexities of the algorithm as follows.

Corollary 1. Under the same assumption of Theorem 1, Algorithm 3 requires Õ
(
κ
√
LD2
X /ε

)
FO

complexity and Õ
(
κ2L2D2

XD
2
Y/ε

2
)

LO complexity to achieve an ε-saddle point.

4 Mirror-Prox Stochastic Conditional Gradient Sliding

In this section, we extend MPCGS to the stochastic setting (1). Recall that we adopt CGS to find
ε-approximate maximizer of problem maxy∈Y f(xk,y) in the batch setting, which only require
logarithmic iterations. In the stochastic case, we would like to use the STORC [11] algorithm instead.
Since the original STORC can only be applied to the finite-sum situation, we have to first study an
inexact variant of STORC which does not depend on the exact gradient. Then we leverage the inexact
STORC algorithm to establish our projection-free algorithm for stochastic saddle point problems.
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Algorithm 3 Mirror-Prox Conditional Gradient Sliding
Input: Objective function f(x,y), parameters γk, αk, N , x0, y0, εk and ζk.
Output: xN , ȳN .

1: v0 ← x0

2: for k = 1, 2, . . . , N do
3: zk ← (1− γk)xk−1 + γkvk−1.
4: (xk,yk,vk)← Prox-step(f,xk−1,yk−1, zk,vk−1, γk, αk, ζk, εk).
5: ȳk ← 3

k(k+1)(k+2)

∑k
s=1 s(s+ 1)ys.

6: end for

Algorithm 4 Procedure (xR,yR,vR)=Prox-step(f,x0,y0, z,v, γ, α, ζ, ε)

1: εcgs ← ε/(64κ), εmp ← 4γ
√

2κLεcgs/α2 + 2ζ/α, R← dlog2(4DX /εmp)e.
2: for r = 1, . . . , R do
3: Use CGS method (Algorithm 1) with objective function −f(xr−1, ·) and start point y0 to

compute yr such that: f(xr−1,yr) ≥ maxy∈Y f(xr−1,y)− εcgs
4: vr ← CndG(∇xf(z,yr),v, α, ζ,X ), xr ← (1− γ)x0 + γvr
5: end for

4.1 Inexact Stochastic Variance Reduced Conditional Gradient Sliding

We propose Inexact STORC (iSTORC) algorithm to solve the following stochastic convex optimiza-
tion problem:

min
x∈Ω

h(x) = Eξ[H(x; ξ)], (5)

where ξ ∈ Ξ is a random variable; the feasible set Ω is convex, compact and has diameter D. We
assume that h(x) is L-smooth and µ-strongly convex. We also suppose that the algorithm can access
the stochastic gradient H(x; ξ) which satisfies:

• E[∇H(x; ξ)] = ∇h(x), ∀x ∈ Ω, ∀ξ ∈ Ξ.

• E[‖∇H(x; ξ)−∇h(x)‖2] ≤ σ2, ∀x ∈ Ω,∀ξ ∈ Ξ.

• E[‖∇H(x1; ξ)−∇H(x2; ξ)‖2] ≤ L2‖x1 − x2‖2. ∀(x1,x2) ∈ Ω2,∀ξ ∈ Ξ

The idea of iSTORC is to approximate the exact gradient in STORC by appropriate number of
stochastic gradient samples. The following theorem shows the convergence rate of iSTORC.

Theorem 2. Running Inexact STORC (Algorithm 5) with the following parameters:

λk =
2

k + 1
, βk =

3L

k
,M =

⌈
4
√

2κ
⌉
, ηt,k =

κLD2

2t−2Mk
,S = 4800Mκ,Qt =

⌈
1200 · 2t−1σ2√κ

L2D2

⌉
,

we have

E[h(x̄t)− h(x∗)] ≤ LD2

2t+1
,

where x∗ ∈ arg minx∈Ω h(x).

Theorem 2 implies the following upper bound complexities of iSTORC.

Corollary 2. To achieve x̄t such that E[h(x̄t) − h(x∗)] ≤ ε, iSTORC (Algorithm 5) requires
O
(
(
√
κ/(Lε) + κ2) log(LD2/ε)

)
SFO complexity and O

(
LD2/ε

)
LO complexity.

Remark 1. If the objective function has the finite-sum form, we can choose Qt = {ξ1, . . . , ξn} and
obtain the same upper complexities bound as STORC.

Remark 2. Notice that the SFO complexity of SCGS is O(κ/(Lε)). When 2−
√
κ < ε < κ−1.5,

iSTORC has better SFO complexity than SCGS.
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Algorithm 5 Inexact STORC (iSTORC)
Input: L-smooth and µ-strongly convex function h(x), initial point x̄0 ∈ Ω and total iteration N .
Input: Parameters γk, βk, Qt, S, M and ηt,k.

1: for t = 1, 2, . . . , N do
2: x0 ← x̄t−1, u0 ← x0.
3: Draw Qt samples Qt = {ξj}Qt

j=1, and compute ν ← ∇hQt
(x0).

4: for k = 1, 2, . . . ,M do
5: wk ← (1− λk)xk−1 + λkuk−1.
6: Draw S samples St,k = {ξt,k,j}Sj=1 and compute rk ← ∇hSt,k(wk)−∇hSt,k(x0) + ν.
7: uk ←CndG(rk,uk−1, βk, ηt,k,Ω), xk ← (1− λk)xk−1 + λkuk.
8: end for
9: x̄t ← xM .

10: end for

4.2 Mirror-Prox Stochastic Conditional Gradient Sliding

We present our Mirror-Prox Stochastic Conditional Gradient Sliding (MPSCGS) in Algorithm 6. The
idea of MPSCGS is similar to that of MPCGS. The main difference is that we solve the proximal
problem in MPSCGS by a stochastic proximal step, where we adopt the proposed iSTORC algorithm.
Specifically, in each iteration we ensures that xk and yk satisfy following conditions:

• yk is an εk-approximate maximizer of f(xk, ·) in expectation, i.e.,

E[f(xk,yk)] ≥ E[max
y∈Y

f(xk,y)]− εk;

• The update of xk and vk ensures that

vk = CndG(∇xfPk
(zk,yk),vk−1, αk, ζk,X ), xk = (1− γk)xk−1 + γkvk.

The following theorem shows the convergence rate of solving problem (1).
Theorem 3. Suppose the objective function f(x,y) satisfies Assumption 1 and 2. If we set

γk =
3

k + 2
, αk =

6κL

k + 1
, ζk =

LD2
X

576k(k + 1)
, εk =

κLD2
X

k(k + 1)(k + 2)
, Pk =

⌈
96σ2(k + 1)3

κL2D2
X

⌉
for Algorithm 6, then we have

E
[
max
y∈Y

f(xk,y)−min
x∈X

f(x, ȳk)

]
≤ 12κLD2

X
(k + 1)(k + 2)

.

Theorem 3 implies the following corollary of oracle complexity.
Corollary 3. Under the assumption in Theorem 3 and the assumption that objective function has
finite-sum form of (2), Algorithm 6 needs Õ

(
(n + κ2)

√
κLD2

X /ε + κσ2D2
X /ε

2
)

IFO complexity
and Õ

(
κ2L2D2

XD
2
Y/ε

2
)

LO complexity to achieve an ε-saddle point.
Corollary 4. Under the assumption in Theorem 3 and the assumption that objective function has the
expectation form of (1), Algorithm 6 needs Õ

(
κ2.5

√
LD2
X /ε+(κ1.5+κσ2)D2

X /ε
2
)

SFO complexity

and Õ
(
κ2L2D2

XD
2
Y/ε

2
)

LO complexity to achieve an ε-saddle point.

5 Experiments

In this section, we empirically evaluate the performance of our methods on the robust multiclass
classification problem introduced in Section 2.3. Specifically, we choose the nuclear norm ball with
radius τ = 100 and the regularization parameter λ = 1/n. We compare our methods with saddle
point Frank-Wolfe (SPFW) [7] and stochastic variance reduce extragradient (SVRE) [3]. SPFW is a
projection-free algorithm as discussed before, while SVRE is the state-of-the-art projection-based
stochastic methods for saddle point problems. We conduct experiments on three real-world data
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Algorithm 6 Mirror-Prox Stochastic Conditional Gradient Sliding
Input: Objective function f(x,y), parameters γk, αk, N , x0, y0, εk, Pk and ζk.
Output: xN , ȳN .

1: v0 ← x0.
2: for k = 1, 2, . . . , N do
3: zk ← (1− γk)xk−1 + γtvk−1.
4: Draw Pk samples Pk = {ξj}Pk

j=1.
5: (xk,yk,vk)← Stochastic-Prox-step(f,xk−1,yk−1, zk,vk−1, γk, αk, ζk,Pk, εk).
6: ȳk ← 3

k(k+1)(k+2)

∑k
s=1 s(s+ 1)ys.

7: end for

Algorithm 7 Procedure (xR,yR,vR)=Stochastic-Prox-step(f,x0,y0, z,v, γ, α, ζ,P, ε)

1: εcgs ← ε
64κ , εmp ← 8γ2(

4κLεcgs
α2 + 2ζ

α + 2σ2

|P|α2 ), R←
⌈
log2

4D2
X

εmp

⌉
.

2: for r = 1, . . . , R do
3: Use iSTORC method (Algorithm 5) with objective function −f(xr−1, ·) and start point y0 to

compute yr such that: E[f(xr−1,yr)] ≥ E[maxy∈Y f(xr−1,y)]− εcgs
4: vr ← CndG(∇xfP(z,yr),v, α, ζ,X ), xr ← (1− γ)x0 + γvr
5: end for

sets from the LIBSVM repository2: rcv1 (n = 15, 564, d = 47, 236, h = 53), sector (n = 6, 412,
d = 55, 197, h = 105) and news20 (n = 15, 935, d = 62, 061, h = 20).

Since the primal-dual gap is hard to compute, we evaluate algorithms by the following FW-gap [13]:

G(x,y) = max
u∈X
〈x− u,∇xf(x,y)〉+ max

v∈Y
〈y − v,−∇yf(x,y)〉.

which is an upper bound of primal-dual gap and easy to compute. We measure the actual running time
rather than number of iterations because the computational cost of projection, linear optimization and
computing gradients are quite different.

We implement the mini-batch version of SVRE with batch size 100. The learning rate of SVRE is
searched in {10−1, 10−2, . . . , 10−6}. On the other hand, the parameters of projection-free methods
follows what the theory suggests. We report the experimental result in Figure 1.

In all experiments, our methods outperform baselines. The SVRE only performs a few iterations due
to its heavy computational cost of the projection on to the trace norm ball. SPFW converges slowly
for it does not have theoretical guarantee on the convex-strongly-concave case. We also find that
MPSCGS converges faster than MPCGS, because the stochastic algorithms take advantages when n
is very large.
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Figure 1: We demonstrate the perfomance of algorithms by time (s) versus log(FW-gap) for robust
multiclass classification with nuclear norm ball constraint on datasets “rcv1”, “sector”, and “news20”.

2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

8



6 Conclusion and Future Works

In this paper, we propose projection-free algorithms for solving saddle point problems with compli-
cated constraints in both batch and stochastic settings. Our methods are purely projection-free and do
not require that the saddle point problem has special structures. We also provide convergence analysis
for our algorithms in the convex-strongly-concave case. The experimental results demonstrate the
effectiveness of our algorithms on three real world data sets. On the other hand, we believe that there
is room for improving the complexity of the LO oracles, which will be our future studies. In addition,
we will investigate how to extend our framework to the general convex-concave case and establish
stronger convergence results in the strongly-convex-strongly-concave case.

Broader Impact

This paper studies projection-free algorithms for convex-strongly-concave saddle point problems.
From a theoretical viewpoint, our method propose the first stochastic projection-free algorithm for
saddle point problems without special conditions on the problem. From a practical viewpoint, our
method can be applied to many machine learning applications which solve minimax problem with
complicated constraints, e.g. robust optimization, matrix completion, two-player games and much
more.
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A Proofs For MPCGS

In this section, we assume f(x,y) satisfies Assumption 1.

A.1 Definitions and Lemmas

We define the following functions:

y∗(x) = arg max
y∈Y

f(x,y),

ψk(x) = (1− γk)xk−1 + γk · arg min
v∈X

{
∇xf(zk,y

∗(x))>v +
αk
2
‖v − vk−1‖2

}
.

Since f(x, ·) is µ-strongly-concave, y∗(x) is unique. Then, we have the following two lemmas.

Lemma 1 ([20, Lemma 4.3]). y∗(x) is κ-Lipschitz continuous.

Lemma 2. ψk(x) is a 1
2 -contraction.

Proof. Let

∇1 = ∇xf(zk,y
∗(x1)), v1 = arg min

v∈X

{
∇>1 v +

αk
2
‖v − vk−1‖2

}
;

∇2 = ∇xf(zk,y
∗(x2)), v2 = arg min

v∈X

{
∇>2 v +

αk
2
‖v − vk−1‖2

}
.

Then we have
‖ψk(x1)− ψk(x2)‖ = γk‖v1 − v2‖.

According to the optimality of v1 and v2, we have

〈∇1 + αk(v1 − vk−1),v1 − v2〉 ≤ 0;

〈∇2 + αk(v2 − vk−1),v2 − v1〉 ≤ 0.

Summing over inequalities, we get

〈∇1 −∇2,v1 − v2〉+ αk‖v1 − v2‖2 ≤ 0

Thus,

‖v1 − v2‖2 ≤ −〈∇1 −∇2,v1 − v2〉/αk ≤
1

2
‖v1 − v2‖2 +

1

2
‖∇1 −∇2‖2/α2

k,

which indicates that

‖v1 − v2‖ ≤
‖∇1 −∇2‖

αk

(a)
≤ L‖y∗(x1)− y∗(x2)‖

αk

(b)
≤ κL‖x1 − x2‖

αk

Here (a) follows from the L-smoothness of f and (b) follows from Lemma 1.
Since αk =

6κyL
k+1 and γk = 3

k+2 , we have

‖ψk(x1)− ψk(x2)‖ ≤ γkκL‖x1 − x2‖
αk

≤ 1

2
‖x1 − x2‖.

Lemma 3. Assume the input parameters of the procedure Prox-step (Algorithm 4) is choosed as
follows:

γ =
3

k + 2
, α =

6κL

k + 1
, ζ =

LD2
X

384k(k + 1)
, ε =

κLD2
X

k(k + 1)(k + 2)
.

Then the Prox-step returns (xR,yR,vR) which satisfies

f(xR,yR) ≥ max
y∈Y

f(xR,y)− ε.
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Proof. Let ψ(x) = (1− γ)x0 + γ arg minu∈X {∇xf(z,y∗(xr))
>u + α

2 ‖v − u‖2}. According to
Lemma 2, ψ(x) is a 1

2 -contraction.

By the optimality, we get

〈∇xf(z,y∗(xr−1)) + α(v∗r−1 − v),v∗r−1 − vr〉 ≤ 0. (6)

Since vr = CndG(∇xf(z,yr),v, α, ζ,X ), we have

〈∇xf(z,yr) + α(vr − v,vr − v∗r−1〉 ≤ ζ. (7)

Sum Eq.(6) and Eq.(7) together, we have

〈∇xf(z,y∗(xr−1))−∇xf(z,yr),v
∗
r−1 − vr〉+ α‖v∗r−1 − vr‖2 ≤ ζ.

Thus, we can get

‖v∗r−1 − vr‖2 ≤
ζ

α
− 1

α
〈∇xf(z,y∗(xr−1))−∇xf(z,yr),v

∗
r−1 − vr〉

≤ ζ
α

+
1

2
‖v∗r−1 − vr‖2 +

‖∇xf(z,y∗(xr−1))−∇xf(z,yr)‖2

2α2
,

which means

‖v∗r−1 − vr‖2 ≤
2ζ

α
+
‖∇xf(z,y∗(xr−1))−∇xf(z,yr)‖2

α2
.

By the L-smoothness of f , we have

‖v∗r−1 − vr‖ ≤
√
L2

α2
‖y∗(xr−1)− yr‖2 +

2ζ

α

(a)
≤
√

2κL

α2
(f(xr−1,y∗(xr−1))− f(xr−1,yr)) +

2ζ

α

(b)
≤
√

2κLεcgs
α2

+
2ζ

α

(8)

where (a) is by the µ-strongly-concavity of f(x, ·) and (b) is by the stopping condition of CGS.
Assume the fix point of ψ(·) is x̃. Then we bound ‖xr − x̃‖ as follows:

‖xr − x̃‖ =‖(1− γ)xk−1 + γvr − ψ(x̃)‖
≤‖ψ(xr−1)− ψ(x̃)‖+ ‖(1− γ)xk−1 + γvr − (1− γ)xk−1 − γv∗r−1‖

≤1

2
‖xr−1 − x̃‖+ γ‖vr − v∗r−1‖

≤1

2
‖xr−1 − x̃‖+

εmp
4

≤2−r‖x0 − x̃‖+
εmp
2

where the second inequality follows from Lemma 2. Since R =
⌈
log2

4DX
εmp

⌉
, we know that

‖xR−1 − x̃‖ ≤ 2 · 2−R‖x0 − x̃‖+
εmp
2
≤ 2 · εmp

4
+
εmp
2

= εmp.

Then, we can get

‖yR − y∗(xR)‖ ≤‖y∗(xR)− y∗(x̃)‖+ ‖y∗(xR−1)− y∗(x̃)‖+ ‖y∗(xR−1)− yR‖

≤κ(‖xR − x̃‖+ ‖xR−1 − x̃‖) +

√
2

µ
εcgs

≤2κεmp +

√
2

µ
εcgs

=8κγk

√
2κLεcgs
α2
k

+
2ζk
αk

+

√
2

µ
εcgs

12



where the second inequality comes from Lemma 1 and the concavity of f(x, ·). According to the
value of input parameters, we can get

‖yR − y∗(xR)‖ ≤

√
κD2
X

k(k + 1)(k + 2)
+

√
κD2
X

32k(k + 1)(k + 2)
≤

√
2κD2

X
k(k + 1)(k + 2)

.

By the L-smoothness of f and the optimality of y∗(xR), we have

f(xR,yR) ≥f(xR,y
∗(xR)) + 〈∇yf(xR,y

∗(xR)),yR − y∗(xR)〉 − L

2
‖yR − y∗(xR)‖2

≥f(xR,y
∗(xR))− L

2
‖yR − y∗(xR)‖2

≥f(xR,y
∗(xR))− κLD2

X
k(k + 1)(k + 2)

= f(xR,y
∗(xR))− ε.

In addition, by the updating formula of Prox-step, it is obvious that the Line 4 of Algorithm 3 ensures
that vk = CndG(∇xf(zk,yk),vk−1, αk, ζk,X ) and xk = (1− γk)xk−1 + γkvk.

A.2 Proof of Theorem 1

Proof. According to the smoothness, for any x̃ ∈ X , we have

f(xk,yk)

≤f(zk,yk) +∇xf(zk,yk)>(xk − zk) +
L

2
‖xk − zk‖2

=(1− γk)(f(zk,yk) +∇xf(zk,yk)>(xk−1 − zk)) + γk(f(zk,yk) +∇xf(zk,yk)>(x̃− zk))

+ γk∇xf(zk,yk)>(vk − x̃) +
γ2
kL

2
‖vk − vk−1‖2

≤(1− γk)f(xk−1,yk) + γkf(x̃,yk) + γk∇xf(zk,yk)>(vk − x̃) +
γ2
kL

2
‖vk − vk−1‖2.

(9)

where the last inequality comes from the convexity of f(·,yk). Notice that the update of vk and the
stopping condition of CndG procedure ensures that

max
x∈X
〈∇xf(zk,yk) + αk(vk − vk−1),vk − x〉 ≤ ζk. (10)

Combining Eq.(9) and (10) we can get

f(xk,yk)− f(x̃,yk)

≤(1− γk)(f(xk−1,yk)− f(x̃,yk)) + γkζk − γkαk(vk − vk−1)>(vk − x̃) +
γ2
kL

2
‖vk − vk−1‖2

=(1− γk)(f(xk−1,yk)− f(x̃,yk)) + γkζk +
γkαk

2

(
‖vk−1 − x̃‖2 − ‖vk − x̃‖2

)
+
γk
2

(Lγk − αk)‖vk − vk−1‖2.

(11)

Let Φ(k) = k(k + 1)(k + 2)(f(xk,yk)− f(x̃,yk)). According to line 4 of Algorithm 3, we have

f(xk,yk) ≥ max
y∈Y

f(xk,y)− εk.

13



Thus, we have
Φ(k) ≤Φ(k − 1) + k(k − 1)(k + 1)(f(xk−1,yk)− f(xk−1,yk−1)− f(x̃,yk) + f(x̃,yk−1))

+ k(k + 1)(k + 2)
(
γkηt +

γkαk

2
(‖vk−1 − x̃‖2 − ‖vk − x̃‖2)

)
≤Φ(k − 1) + k(k − 1)(k + 1)(εk−1 − f(x̃,yk) + f(x̃,yk−1))

+ k(k + 1)(k + 2)
(
γkζk +

γkαk

2
(‖vk−1 − x̃‖2 − ‖vk − x̃‖2)

)
≤Φ(0) +

k∑
s=1

s(s− 1)(s+ 1)εs−1 −
k∑

s=1

s(s− 1)(s+ 1)(f(x̃,ys)− f(x̃,ys−1))

+

k∑
s=1

s(s+ 1)(s+ 2)
(
γsζs +

γsαs

2
(‖vs−1 − x̃‖2 − ‖vs − x̃‖2)

)
(12)

Notice that
k∑
s=1

s(s+ 1)(s+ 2)γsζs =
1

128
kLD2

X (13)

and
k∑
s=1

s(s+ 1)(s+ 2)
γsαs

2
(‖vs−1 − x̃‖2 − ‖vs − x̃‖2)

=9κL

k∑
s=1

s(‖vs−1 − x̃‖2 − ‖vs − x̃‖2)

≤9κL

k−1∑
s=0

‖vs − x̃‖2 ≤ 9kκLD2
X .

(14)

Substituting Eq.(13) and Eq.(14) into Eq.(12) and using the fact that Φ(0) = 0, we have

Φ(k) ≤
k∑
s=1

s(s− 1)(s+ 1)εs−1 −
k∑
s=1

s(s− 1)(s+ 1)(f(x̃,ys)− f(x̃,ys−1)) + 10kκLD2
X .

Thus, for any ỹ ∈ Y , we have

k∑
s=1

s(s− 1)(s+ 1)εs−1 + 10kκLD2
X

≥Φ(k) +

k∑
s=1

s(s− 1)(s+ 1)(f(x̃,ys)− f(x̃,ys−1))

≥Φ(k)− 3

k−1∑
s=1

s(s+ 1)f(x̃,ys) + k(k − 1)(k + 1)f(x̃,yk)

=k(k + 1)(k + 2)f(xk,yk)− 3

k∑
s=1

s(s+ 1)f(x̃,ys)

(a)
≥k(k + 1)(k + 2)f [f(xk,yk)− f(x̃, ȳk)]

≥k(k + 1)(k + 2)[f(xk, ỹ)− f(x̃, ȳk)− εk]

where (a) is by the concavity of f(x, ·) and the definition of ȳk. Then, we can obtain the bound of
the primal-dual gap:

f(xk, ỹ)−f(x̃, ȳk) ≤ 1

k(k + 1)(k + 2)

(
k∑
s=1

s(s+ 1)(s+ 2)εs + 10kκLD2
X

)
≤ 11κLD2

X
(k + 1)(k + 2)
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where the last equation comes from the fact that εs =
κLD2

X
s(s+1)(s+2) .

A.3 Proof of Corollary 1

According to Theorem 2.5 of [19], the CGS method requires O
(√

κ log
κLD2

Y
εk

)
FO calls and

O
(
κLD2

Y
εk

)
LO calls, where R is the number of iteration of the Prox-step procedure. Thus,

the FO and LO complexity of MPCGS are respectively O
(∑N

k=1

∑R
r=1

√
κ log

κLD2
Y

εk

)
and

O
(∑N

k=1

∑R
r=1

(
κLD2

Y
εk

+
αkD

2
X

ζk

))
. Theorem 1 implies that N should be the order Θ

(√
κLD2

X
ε

)
.

Plugging in all parameters obtains the complexity of MPCGS.

B Proof of Inexact STORC Algorithm

In this section, we provide the details for the analysis of iSTORC (Algorithm 5). We suppose that

the objective function h(x) satisfies assumptions in Section 4.1. We define Dt =
√

κD2

2t−1 for any
t ∈ [N ].

B.1 Technical Lemmas

Lemma 4 (Lemma 3 of [11]). At the t-th outer iteration of iSTORC (Algorithm 5), we suppose that
E[‖x0 − x∗‖] ≤ D2

t . Then for any k, we have

E[h(xk)− h(x∗)] ≤ 8LD2
t

k(k + 1)

if E[‖rs −∇h(ws)‖2] ≤ L2D2
t

Ms(s+1) for all s ≤ k.

Lemma 5. For iSTORC, we have

E[‖∇hQt(x)−∇h(x)‖2] ≤ L2D2
t

4M2(M + 1)
.

Proof. In expectation setting, we have

E[‖∇hQt
(x)−∇h(x)‖2] ≤ σ2

Qt
≤ L2D2

t

4M2(M + 1)
.

B.2 Proof of Theorem 2

Proof. We prove by this theorem by induction. For t = 0, by the smoothness and the convexity of h,
we have

h(x̄0) ≤ h(x∗) +∇h(x∗)>(x̄0 − x∗) +
L

2
‖x̄0 − x∗‖2 ≤ h(x∗) +

LD2

2
.

Then, we suppose E[h(x̄t−1)− h(x∗)] ≤ LD2

2t and consider the t-th outer iteration.
By the strong convexity and the inductive assumption, we have

E[‖x0 − x∗‖2] ≤ 2

µ
E[h(x̄t−1)− h(x∗)] ≤ LD2

µ2t−1
= D2

t .

Now we use another induction on the inner iteration to show that it holds E[h(xk)−h(x∗)] ≤ 8LD2
t

k(k+1)

for any 1 ≤ k ≤M .
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For k = 1, by the fact that w1 = x0 and Lemma 5, we have

E[‖r1 −∇h(w1)‖2] = E[‖∇hQt
(x0)−∇h(x0)‖2] ≤ L2D2

t

4M

for both finite-sum setting and expectation setting. Then, by Lemma 4 we can obtain

E[h(x1)− h(x∗)] ≤ 4LD2
t .

Now we suppose E[h(xs)− h(x∗)] ≤ 8LD2
t

s(s+1) for s < k where k ≥ 2. We consider the case s = k.

Since the variance of a variable is less than its second-order moment, we can get

ESt,s,Qt [‖rs −∇h(ws)‖2]

=ESt,s,Qt [‖∇hSt,s(ws)−∇hSt,s(x0) +∇hQt(x0)−∇h(ws)‖2]

≤2ESt,s [‖∇hSt,s(ws)−∇hSt,s(x0)− (∇h(ws)−∇h(x0))‖2] + 2EQt [‖∇hQt(x0)−∇h(x0)‖2]

≤2ESt,s [‖∇hSt,s(ws)−∇hSt,s(x0)‖2] + 2EQt [‖∇hQt(x0)−∇h(x0)‖2]

≤2L2

S
‖ws − x0‖2 + 2EQt [‖∇hQt(x0)−∇h(x0)‖2].

(15)

Since ‖ws−x0‖2 ≤ 2‖ws−x∗‖2 +2‖x0−x∗‖2, then we bound E[‖x0−x∗‖2] and E[‖ws−x∗‖2]
separately.

For E[‖x0 − x∗‖2], we have

E[‖x0 − x∗‖2] ≤ D2
t =

2κD2
t

2κ
≤ 64κD2

t

M(M + 1)
. (16)

Since ws = (1− λs)xs−1 + λsus−1 and xs−1 = (1− λs−1)xs−2 + λs−1us−1, we have

ws =
λs−1 + λs − λs−1λs

λs−1
xs−1 −

λs − λs−1λs
λs−1

xs−2

Thus, we have

‖ws − x∗‖2 =

∥∥∥∥λs−1 + λs − λs−1λs
λs−1

(xs−1 − x∗)− λs − λs−1λs
λs−1

(xs−2 − x∗)

∥∥∥∥2

≤2

∥∥∥∥λs−1 + λs − λs−1λs
λs−1

(xs−1 − x∗)

∥∥∥∥2

+ 2

∥∥∥∥λs − λs−1λs
λs−1

(xs−2 − x∗)

∥∥∥∥2

≤8‖xs−1 − x∗‖2 + 2‖xs−2 − x∗‖2

(17)

where the last inequality comes from the fact λs ≤ λs−1 ≤ 1.

If s = 2, we can obtain

L2E[‖w2 − x0‖2] ≤L2E[16‖x1 − x∗‖2 + 6‖x0 − x∗‖2]

≤32κLE[h(x1)− h(x∗)] +
384κL2D2

t

(M + 1)2

≤768κL2D2
t

s(s+ 1)
+

384κL2D2
t

s(s+ 1)
=

1152κL2D2
t

s(s+ 1)

where the second inequality comes from the strong convexity of h(x) and Eq. (16), the third inequality
comes from the induction hypothesis.

If s ≥ 3, we can obtain

L2E[‖ws − x∗‖2] ≤8L2E[‖xs−1 − x∗‖2] + 2L2E[‖xs−2 − x∗‖2]

≤16κLE[h(xs−1)− h(x∗)] + 4κLE[h(xs−2)− h(x∗)]

≤128κL2D2
t

s(s− 1)
+

32κL2D2
t

(s− 2)(s− 1)
≤ 448κL2D2

t

s(s+ 1)

(18)
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which indicates that

L2E[‖ws − x0‖2] ≤ L2E[2‖ws − x∗‖2 + 2‖x0 − x∗‖2] ≤ 1024κL2D2
t

s(s+ 1)

where the last inequality is due to Eq.(16) and Eq.(18). Substituting all these pieces into Eq.(15), we
can obtain

ESt,s,Qt
[‖rs −∇h(ws)‖2] ≤2L2

S
‖ws − x0‖2 + 2EQt

[‖∇hQt
(x0)−∇h(x0)‖2]

≤2400κL2D2
t

s(s+ 1)S
+

2σ2

Qt

≤ L2D2
t

2Ms(s+ 1)
+

L2D2
t

2Ms(s+ 1)
=

L2D2
t

Ms(s+ 1)

where the last inequality comes from the fact that s ≤M . By Lemma 4, we know that E[h(xs)−
h(x∗)] ≤ 8LD2

t

s(s+1) , which completes that induction.

B.3 Proof of Corollary 2

Proof. Theorem 2 implies that N should be the order Θ
(

log2
LD2

ε

)
. Thus, the SFO complexity of

iSTORC is

O

(
N∑
t=1

(
Qt +

M∑
k=1

S

))
= O

((√
κ

Lε
+ κ2

)
log2

(
LD2

ε

))
.

Since the CndG procedure requiresO
(
βkD

2

ηt,k

)
iterations, the LO complexity of iSTORC isO

(
LD2

ε

)
.

C Proof for MPSCGS

In this section, we assume f(x,y) satisfies Assumption 1 and Assumption 2. We also use the same
definition of y∗(·) and ψk(·) as in Section A.1. We denote σ2

k = σ2

Pk
additionally.

C.1 Notation and Lemma

Lemma 6. We set the input of Stochastic-Prox-step (Algorithm 7) as

γ =
3

k + 2
, α =

6κL

k + 1
, ζ =

LD2
X

576k(k + 1)
, ε =

κLD2
X

k(k + 1)(k + 2)
, P =

⌈
96σ2(k + 1)3

κL2D2
X

⌉
,

then the output (xR,yR,vR) satisfies

E[f(xR,yR)] ≥ E
[
max
y∈Y

f(xR,y)

]
− ε.

Proof. Let ψ(x) = (1− γ)x0 + γ arg minu∈X
{
∇xf(z,y∗(xr))

>u + α
2 ‖v − u‖2

}
. According to

Lemma 2, ψ(x) is a 1
2 -contraction. Let v∗r = arg minu∈X {∇xf(z,y∗(xr))

>u+ α
2 ‖v−u‖2}, then

ψ(xr) = (1− γ)x0 + γv∗r .

By the optimality, we get

〈∇xf(z,y∗(xr−1)) + α(v∗r−1 − v),v∗r−1 − vr〉 ≤ 0. (19)

Since vr = CndG(∇xfP(z,yr),v, α, ζ,X ), we have

〈∇xf(z,yr) + α(vr − v),vr − v∗r−1〉 ≤ ζ (20)

17



Sum Eq.(19) and Eq.(20) together, we have

〈∇xf(z,y∗(xr−1))−∇xfP(z,yr),v
∗
r−1 − vr〉+ α‖v∗r−1 − vr‖2 ≤ ζ

Thus, we can get

E[‖v∗r−1 − vr‖2] ≤ ζ
α
− 1

α
E[〈∇xf(z,y∗(xr−1))−∇xfP(z,yr),v

∗
r−1 − vr〉]

≤ ζ
α

+
1

2
E[‖v∗r−1 − vr‖2] +

E[‖∇xf(z,y∗(xr−1))−∇xfP(z,yr)‖2]

2α2

which indicates

E[‖v∗r−1 − vr‖2]

≤E[‖∇xf(z,y∗(xr−1))−∇xfP(z,yr)‖2]

α2
+

2ζ

α

≤E[2‖∇xf(z,y∗(xr−1))−∇xf(z,yr)‖2 + 2‖∇xf(z,yr)−∇xfP(z,yr)‖2]

α2
+

2ζ

α

Denote σ̂2 = σ2

P . By the L-smoothness of f , we can obtain

E[‖v∗r−1 − vr‖2] ≤2L2

α2
E[‖y∗(xr−1)− yr‖2] +

2ζ

α
+

2σ̂2

α2

≤4κL

α2
E[f(xr−1,y

∗(xr−1))− fP(xr−1,yr)] +
2ζ

α
+

2σ̂2

α2

≤4κLεcgs
α2

+
2ζ

α
+

2σ̂2

α2

where we use the µ-strongly-concavity of f(x, ·) and the stopping condition of iSTORC. Then we
bound E[‖xr − x̃‖2] as follows:

E[‖xr − x̃‖2] =E[‖(1− γ)z + γvr − ψ(x̃)‖2]

≤2E[‖ψ(xr−1)− ψ(x̃)‖2] + 2E[‖(1− γ)z + γvr − (1− γ)z− γv∗r−1‖2]

≤1

2
E[‖xr−1 − x̃‖2] + 2γ2E[‖vr − v∗r−1‖2]

≤1

2
E[‖xr−1 − x̃‖2] +

εmp
4

≤2−rE[‖x0 − x̃‖2] +
εmp
2

Since R =
⌈
log2

(
4D2
X

εmp

)⌉
, we know that

E[‖xR−1 − x̃‖2] ≤ 2 · 2−RE[‖x0 − x̃‖2] +
εmp
2
≤ 2 · εmp

4
+
εmp
2

= εmp

Then, we can get

E[‖yR − y∗(xR)‖2] ≤3E
[
‖y∗(xR)− y∗(x̃)‖2 + ‖y∗(xR−1)− y∗(x̃)‖2 + ‖y∗(xR−1)− yR‖2

]
≤3κ

(
E
[
‖xR − x̃‖2 + ‖xR−1 − x̃‖2

])
+

6

µ
εcgs

≤6κεmp +
6

µ
εcgs

=48κγ2

(
4κLεcgs
α2

+
2ζ

α
+

2σ2

α2

)
+

6

µ
εcgs

where the second inequality comes from Lemma 1 and the concavity of f(x, ·). According to the
value of input parameters, we can get

E[‖yR − y∗(xR)‖2] ≤ 2κD2
X

k(k + 1)(k + 2)
.
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By the L-smoothness of f and the optimality of y∗(xR), we have

E[f(xR,yR)] ≥E[f(xR,y
∗(xR)) + 〈∇yf(xR,y

∗(xR)),yR − y∗(xR)〉 − L

2
‖yR − y∗(xR)‖2]

≥E[f(xR,y
∗(xR))− L

2
‖yR − y∗(xR)‖2]

≥E
[
f(xR,y

∗(xR))− κLD2
X

k(k + 1)(k + 2)

]
= E[f(xR,y

∗(xR))]− ε.

C.2 Proof of Theorem 3

Proof. Similar to Eq.(9) in section A.2, for any x̃ ∈ X , we have

f(xk,yk) ≤ (1−γk)f(xk−1,yk)+γkf(x̃,yk)+γk∇xf(zk,yk)>(vk− x̃)+
γ2
kL

2
‖vk−vk−1‖2.

Let dk = ∇xfPk
(zk,yk). Notice that the update of vk and the stopping condition of CndG procedure

ensures that

max
x∈X
〈dk + αk(vk − vk−1),vk − x〉 ≤ ζk.

Combining the previous two inequality, we can obtain

f(xk,yk) ≤(1− γk)f(xk−1,yk) + γkf(x̃,yk) + γkd
>
k (vk − x̃) +

γ2
kL

2
‖vk − vk−1‖2

+ γk(∇xf(zk,yk)− dk)>(vk − x̃)

≤(1− γk)f(xk−1,yk) + γkf(x̃,yk) + γkζk − γkαk(vk − vk−1)>(vk − x̃)

+
γ2
kL

2
‖vk − vk−1‖2 + γk(∇xf(zk,yk)− dk)>(vk − x̃)

=(1− γk)f(xk−1,yk) + γkf(x̃,yk) + γkζk +
γkαk

2
(‖vk−1 − x̃‖2 − ‖vk − x̃‖2)

+
γk
2

(
(Lγk − αk)‖vk − vk−1‖2 + 2(dk −∇xf(zk,yk))>(vk−1 − vk)

)
+ γk(dk −∇xf(zk,yk))>(x̃− vk−1)

(21)

Due to the fact αk ≥ Lγk and −‖a‖2 + 2a>b ≤ ‖b‖2, we have

(Lγk −αk)‖vk − vk−1‖2 + 2(dk −∇xf(zk,yk))>(vk−1 − vk) ≤ ‖dk −∇xf(zk,yk)‖2

αk − Lγk
(22)

Combining Eq.(21) and Eq.(22), we get

E[f(xk,yk)− f(x̃,yk)] ≤(1− γk)E[f(xk−1,yk)− f(x̃,yk)] + γkζk

+
γkαk

2
E[‖vk−1 − x̃‖2 − ‖vk − x̃‖2] +

γkE[‖dk −∇xf(zk,yk)‖2]

2(αk − Lγk)

Let δk = dk − ∇xf(zk,yk), then E[‖δk‖2] ≤ σ2
k. Let Φ(k) = k(k + 1)(k + 2)E[f(xk,yk) −

f(x̃,yk)]. According to Lemma 6, we have E[f(xk,yk)−maxy∈Y f(xk,y)] ≥ −εk. Thus, we can
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obtain
Φ(k) ≤Φ(k − 1) + k(k − 1)(k + 1)E[f(xk−1,yk)− f(xk−1,yk−1)− f(x̃,yk) + f(x̃,yk−1)]

+ k(k + 1)(k + 2)γk

(
ζk +

αk

2
E[‖vk−1 − x̃‖2 − ‖vk − x̃‖2] +

σ2
k

2(αk − Lγk)

)
≤Φ(k − 1) + k(k − 1)(k + 1)E[εk−1 − f(x̃,yk) + f(x̃,yk−1)]

+ k(k + 1)(k + 2)γk

(
ζk +

αk

2
E[‖vk−1 − x̃‖2 − ‖vk − x̃‖2] +

σ2
k

2(αk − Lγk)

)
≤Φ(0) +

k∑
s=1

s(s− 1)(s+ 1)εs−1 −
k∑

s=1

s(s− 1)(s+ 1)E[f(x̃,ys)− f(x̃,ys−1)]

+

k∑
s=1

s(s+ 1)(s+ 2)γs

(
ζs +

αs

2
E[‖vs−1 − x̃‖2 − ‖vs − x̃‖2] +

σ2
s

2(αs − Lγs)

)

=

k∑
s=1

s(s− 1)(s+ 1)εs−1 + 3

k−1∑
s=1

s(s+ 1)E[f(x̃,ys)]− k(k − 1)(k + 1)E[f(x̃,yk)]

+

k∑
s=1

s(s+ 1)(s+ 2)γs

(
ζs +

αs

2
E[‖vs−1 − x̃‖2 − ‖vs − x̃‖2] +

σ2
s

2(αs − Lγs)

)

(23)

According to the parameter setting, we have
k∑
s=1

s(s+ 1)(s+ 2)γsζs =
1

192
kLD2

X ,

k∑
s=1

s(s+ 1)(s+ 2)
γsσ

2
s

2(αs − Lγs)
≤ kLD2

X (24)

We also have
k∑
s=1

s(s+ 1)(s+ 2)
γsαs

2
(‖vs−1 − x̃‖2 − ‖vs − x̃‖2)

=9κL

k∑
s=1

s(‖vs−1 − x̃‖2 − ‖vs − x̃‖2)

≤9κL

k−1∑
s=0

‖vs − x̃‖2 ≤ 9kκLD2
X .

(25)

Substituting Eq.(24) and Eq.(25) into Eq.(23) and using the fact that Φ(0) = 0, we have

Φ(k) ≤
k∑
s=1

s(s−1)(s+1)εs−1+3

k−1∑
s=1

s(s+1)E[f(x̃,ys)]−k(k−1)(k+1)E[f(x̃,yk)]+11kκLD2
X .

Then, for any ỹ ∈ Y , we have
k∑
s=1

s(s− 1)(s+ 1)εs−1 + 11kκLD2
X

≥Φ(k)− 3

k−1∑
s=1

s(s+ 1)E[f(x̃,ys)] + k(k − 1)(k + 1)E[f(x̃,yk)]

=k(k + 1)(k + 2)E[f(xk,yk)]− 3

k∑
s=1

s(s+ 1)E[f(x̃,ys)]

≥k(k + 1)(k + 2)E[f(xk,yk)− f(x̃, ȳk)]

≥k(k + 1)(k + 2)E[f(xk, ỹ)− f(x̃, ȳk)− εk]

where the second to last inequality is by the concavity of f(x, ·) and the definition of ȳk. Then, we
can obtain the bound of the expectation of the primal-dual gap:

E[f(xk, ỹ)−f(x̃, ȳk)] ≤ 1

k(k + 1)(k + 2)

(
k∑
s=1

s(s+ 1)(s+ 2)εs + 11kκLD2
X

)
≤ 12κLD2

X
(k + 1)(k + 2)
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where the last equation comes from the fact that εk =
κLD2

X
k(k+1)(k+2) .

C.3 Proof of Corollary 3

If the objective function is of finite-sum form, the performance of iSTORC is the same as STORC.
According to Corollary 2 of [11], the iSTORC algorithm requires O

(
(n+ κ2) log

κLD2
Y

εk

)
IFO

calls and O
(
κLD2

Y
εk

)
LO calls. Thus, the IFO and LO complexity of MPCGS are respectively

O
(∑N

k=1(Pk +
∑R
r=1(n+ κ2) log

κLD2
Y

εk
)
)

and O
(∑N

k=1

∑R
r=1

(
κLD2

Y
εk

+
βkD

2
X

ζk

))
, where R is

the number of iterations of Stochastic-Prox-step. Theorem 3 implies that N should be the order

Θ

(√
κLD2

X
ε

)
. Plugging in all parameters obtains the complexity of MPSCGS.

C.4 Proof of Corollary 4

Suppose the objective function has expectation form. According to Corollary 2, the the iSTORC
algorithm requires O

(
(
√
κ/(Lεk) + κ2) log

κLD2
Y

εk

)
SFO calls and O

(
κLD2

Y
εk

)
LO calls. The rest

analysis follows the proof of Corollary 3.
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