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Abstract

We consider the classic problem of (ε, δ)-PAC learning a best arm where the goal
is to identify with confidence 1− δ an arm whose mean is an ε-approximation to
that of the highest mean arm in a multi-armed bandit setting. This problem is one
of the most fundamental problems in statistics and learning theory, yet somewhat
surprisingly its worst case sample complexity is not well understood. In this paper
we propose a new approach for (ε, δ)-PAC learning a best arm. This approach leads
to an algorithm whose sample complexity converges to exactly the optimal sample
complexity of (ε, δ)-learning the mean of n arms separately and we complement
this result with a conditional matching lower bound. More specifically:

• The algorithm’s sample complexity converges to exactly n
2ε2 log 1

δ as n grows
and δ ≥ 1

n ;
• We prove that no elimination algorithm obtains sample complexity arbitrarily

lower than n
2ε2 log 1

δ . Elimination algorithms is a broad class of (ε, δ)-PAC
best arm learning algorithms that includes many algorithms in the literature.

When n is independent of δ our approach yields an algorithm whose sample
complexity converges to 2n

ε2 log 1
δ as n grows. In comparison with the best known

algorithm for this problem our approach improves the sample complexity by a
factor of over 1500 and over 6000 when δ ≥ 1

n .

1 INTRODUCTION

In this paper we study the classic problem of (ε, δ)− PAC learning a best arm. In this problem there
is a set A of n arms and sampling an arm a ∈ A generates a random variable ξ(a) drawn from some
unknown distributionD(a) ⊆ [0, 1]1. The mean of every arm a is denoted µ(a) and an optimal arm is
a? ∈ arg maxa∈A µ(a). A strategy (ε, δ)-learns the best arm if it returns a ∈ A s.t. µ(a) ≥ µ(a?)−ε
with confidence at least 1− δ over the arm distribution and randomization of the strategy. The goal is
to (ε, δ)-learn the best arm with minimal worst case sample complexity over all distributions in [0, 1].

By the celebrated Hoeffding bound we know that it suffices to sample each arm 1
2ε2 log 1

δ times to
ensure we are ε-close to its true mean with confidence 1− δ, and that without additional information
this bound is optimal. A trivial solution is then to estimate the mean of each arm using sufficiently-
many samples and take the arm whose empirical mean is largest. A trivial upper bound for learning a
best arm using this approach is 2n

ε2 log n
δ .

1All the results in this paper can be generalized for any sub-Gaussian distribution as discuss in Appendix E.
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In a seminal paper, Even-Dar et al. considered the problem of (ε, δ)-learning a best arm when the
number of arms n is asymptotically large [12]. They introduce MEDIAN ELIMINATION which is an
(ε, δ)-learning strategy whose sample complexity is O

(
n
ε2 log 1

δ

)
. To date, MEDIAN ELIMINATION

is the best algorithm for provably (ε, δ)-learning a best arm in terms of sample complexity when n
is sufficiently large. As such it is a fundamental building block in a variety of algorithms (see e.g.
[20, 22, 32, 18, 7]), and has applications in a broad range of domains. Unfortunately, the constant
terms hiding in the O notation of the sample complexity of MEDIAN ELIMINATION are quite large.
For n = 100 its sample complexity exceeds 1000× ( nε2 log 1

δ ), and grows to over 3 times as n grows.

In terms of lower bounds, the best known bound for this problem is by Manor and Tsitisklis who show
that n

128ε2 log 1
4δ samples are necessary for (ε, δ)-learning a best arm [27]. Thus, the gap between the

best known upper and lower bounds exceeds 300,000 and begs the obvious question:

What is the optimal sample complexity of PAC learning a best arm?

Main contributions. In this paper we address this question and take fundamentally new approaches
to obtain upper and lower bounds for (ε, δ)-learning a best arm. At a high level, our algorithms are
designed so that their probability of failure diminishes as the number of arms grows. For a lower
bound, we observe that our algorithm as well as many other algorithms for learning a best arm in the
literature can be broadly characterized as iteratively sampling and discarding arms until one arm is
left. We call algorithms that fit this description elimination algorithms and prove a tight lower bound
on this class that matches our upper bound. Our results can be summarized as follows:

1. We describe a new algorithm whose sample complexity converges with n to exactly n
2ε2 log 1

δ

when n ≥ 1
δ . This bound exactly matches the sample complexity of (ε, δ)-PAC learning the

mean of each arm separately according the Hoeffding bound. In comparison to MEDIAN
ELIMINATION the sample complexity is lower by a factor greater than 6000 when n is large.
Namely, for any given λ < 1 there is a δ0 such that for any δ < δ0 and n > 1/δ there exist
an algorithm that (ε, δ)-learns a best arm with sample complexity :(

1 + λ
) n

2ε2
log

1

δ
.

2. When n is independent of δ, we describe a simplified version of the algorithm whose sample
complexity converges to 2n

ε2 log 1
δ ; Namely, for any λ > 0 there exist δ0 and n0 such that

for any δ < δ0 and n ≥ n0, there exist an algorithm that (ε, δ)-learns a best arm with
sample complexity at most:

(
2 + λ

)
n
ε2 log 1

δ . Furthermore, for any δ < 0.05, any n > 0

and ε ∈ (0, 1) our approach yields an algorithm whose sample complexity is 18n
ε2 log 1

δ .
In comparison to MEDIAN ELIMINATION this reduces the sample complexity by a factor
greater than 300.

3. Lastly, we prove a matching lower bound; For every β > 0 there exist ε0, δ0 such that
for any elimination algorithm which finds an ε best arm with success probability 1 − δ
where ε < ε0, δ < δ0, there exist n0 such that if n > n0, the algorithm requires at least(
1
2 − β

)
n
ε2 log 1

δ queries.

Technical overview and central insights that led to these results are presented in Appendix G. Our
results are in the standard (ε, δ)-PAC learning model, i.e. the goal is to find an ε-best arm with
probability 1− δ and sample complexity is measured in the worst case across any distribution in [0, 1]
(or any subgaussian, see Appendix E). Before moving forward, it would be instructive to discuss this
problem setting as well as closely related settings. Additional related work is in Appendix H.

Learning an ε-best arm. As the state-of-the-art algorithm for (ε, δ)-PAC learning a best arm, ME-
DIAN ELIMINATION is widely used as a sub-procedure (e.g. [20, 22, 32, 18, 7, 30]). An improvement
on its sample complexity as suggested here achieves dramatically lower sample complexity for all
procedures that employ MEDIAN ELIMINATION. The interesting regime in this problem setting is the
one where n is large, as otherwise it suffices to use the naive sampling strategy of sampling each arm
with approximation ε

2 and confidence δ
n and selecting the arm with largest empirical mean.2

2In particular, our algorithms use the naive elimination strategy when n < 105. For MEDIAN ELIMINATION
the naive strategy has better sample complexity for any n < 21500.
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Learning an exact best arm. In the exact best arm learning problem the goal is to (0, δ)-PAC learn
the best arm (see e.g. [3, 22, 18, 17, 29, 28, 14]). This problem is computationally more demanding
as arm means can be arbitrarily close and one seeks optimal sample complexity that depends on
the arm distributions. For exact best arm learning several algorithms use ε-best arm learning as a
subroutine, where our work is directly applicable (e.g. [22, 18, 17]). For exact best arm learning, the
optimal sample complexity bounds for exponential distributions is achieved in [14].

Instance based analysis. The nature of exact best arm learning necessitates specific assumptions
about the relevant families of distributions for the arms. This motivates a series of works that deviate
from the (ε, δ)-PAC learning setting where the sample complexity is worst case across all distributions.
In particular, a recent line of work analyzes the sample complexity as a function of the given instance
(i.e. set of distributions) and δ for both exact best arm and ε-best arm problems [14, 10, 15, 9]. In
this genre, variants of explore and exploit algorithms known as track-and-stop algorithms turned out
to be efficient in the number of samples under some assumptions. For for ε-best arm, an instance-
based optimal algorithm was shown in [15] under the assumption that there is such a unique arm.
Recently, [9] show how to generalize this approach without assuming a unique ε-best arm. By using a
function T (µ̄) from set of distributions to the reals, they show that for any instance µ̄ which belongs
to the one-parameter one-dimensional canonical exponential family, (1 + o(1))T (µ̄) log 1

δ samples
are necessary and sufficient for (ε, δ)-learning a best arm, when n is fixed and δ goes to 0.

From instance-based to worst case analysis. When the number of arms n is fixed and δ goes to
0 and the distribution is bounded in [0, 1], a worst case sample complexity bound can be trivially
achieved via the naive elimination strategy. Thus, while this is an interesting regime for instance-based
analysis, it is not interesting for worst case analysis. On the other hand, when fixing δ and letting
the number of arms grow, it is not clear what is the asymptotic sample complexity of the problem in
worst case, and it cannot be deduced from the instance based analysis. The main contribution of our
work is showing upper and lower bounds for this problem.

Running time. Beyond worst case vs. instance based guarantees, elimination algorithms are
exponentially faster compared to other approaches like track-and-stop. The algorithms we present
here run in O(log2 n) parallel time in the PRAM model [16], hence giving a total implementation in
poly-logarithmic time complexity which is an exponential improvement compared to [15, 9].

1.1 Paper organization

We present our algorithms in order of increasing complexity. The first is the SIMPLE APPROXI-
MATE BEST ARM algorithm introduced in Section 2 which makes assumptions about the input. In
Section 3 we present APPROXIMATE BEST ARM which removes these assumptions and achieves
sample complexity 18n

ε2 log 1
δ for δ < 0.05 and any n which easily generalizes to achieve a bound

that converges to 2n
ε2 log 1

δ as n grows. In Section 4 we present the APPROXIMATE BEST ARM
LIKELIHOOD ESTIMATION BY HOEFFDING whose sample complexity asymptotically matches the
Hoeffding bound of estimating the mean of every arm separately. Our lower bound is presented in
Section 5. Lastly, in Section 6 we show simulations demonstrating that in practice, there is a large gap
between the sample complexity of our algorithms and MEDIAN ELIMINATION. Additional literature
review is in Appendix H. Running time and implementation issues are discussed in Appendix I.

2 SIMPLE APPROXIMATE BEST ARM ALGORITHM

In this section we present the Simple Approximate Best Arm (SABA) algorithm. SABA is a sim-
plified version of the algorithm described in the next section. Its simplicity is achieved by mak-
ing assumptions about the input to provably (ε, δ)-learn an a best arm. Namely, it assumes that
n ≥ max{105, 1/δ4} and that there is a unique ε-best arm, i.e. all the arms in the input are ε-far
from a?. SABA is a concatenation of two procedures. The first is AGGRESSIVE ELIMINATION which
is the main algorithmic idea behind this paper. The second is NAÏVE ELIMINATION which trivially
samples all arms sufficiently many times and selecting the one with largest empirical mean.
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2.1 Naïve Elimination

The following procedure is the naïve sampling approach to finding a best arm.

Algorithm 1 NAÏVE ELIMINATION

input ε, δ > 0, arms A, noisy oracle for µ : A→ [0, 1]

output arm in A with largest empirical mean with 2
ε2 log |A|δ samples

The sample complexity of NAÏVE ELIMINATION is trivially 2|A|
ε2 log |A|δ and it returns an arm that

is ε-close to a? with probability at least 1 − δ. We say that an arm a ∈ A is η-close to a′ ∈ A if
µ(a′)− µ(a) ≤ η and η-far if µ(a′)− µ(a) > η. One can obtain the approximation and confidence
by bounding the likelihood of underestimating a? and overestimating arms that are ε-far from a?. For
completeness we give full details in Appendix A. Throughout the paper we repeatedly use NAÏVE
ELIMINATION with different values of n and various approximation and confidence parameters. Also
in Appendix A is the formal statement of the Hoffding Bound which is in much use in this work.

2.2 Agressive Elimination

The AGGRESSIVE ELIMINATION procedure that we introduce here iteratively discards arms with
low empirical mean until reducing the total number of arms to n3/4

2 . To do so, in each round i the
procedure samples every arm (i+ 1) 2

ε2 log 1
δ times and selects the (δ+φ(n)) fraction of arms whose

sampled mean is highest into the next round. Intuitively, φ(n) is a small fraction s.t. the (δ + φ(n))
fraction of arms with largest sampled mean is likely to include a?. It is technically defined as:

φ(n) =

√
6 log(n)

n3/4
. (1)

We will rely on this definition in Lemma 1 when analyzing the likelihood of a? remaining in the final
set of arms returned by the procedure. In particular, we bound the likelihood that a? is underestimated
and that other arms are overestimated. This definition of φ(n) is designed in such a way that we can
later bound the likelihood that too many arms are overestimated, under certain assumptions.

The second term we define is t(n) which is the number of iterations AGGRESSIVE ELIMINATION

requires until reaching n3/4

2 arms when we shrink the number of arms in each iteration by δ + φ(n):

t(n) =

 log n+ 4 log 2

4 log
(

1
δ+φ(n)

)
 . (2)

Given these definitions we now formally describe and analyze AGGRESSIVE ELIMINATION below.

Algorithm 2 AGGRESSIVE ELIMINATION

input ε, δ > 0, arms A0, noisy oracle for µ : A0 → [0, 1]
1: for i ∈ {0, 1, 2, . . . , t(n)} do
2: apply `i+1 = (i+ 1)

⌈
2
ε2 log 1

δ

⌉
samples ∀a ∈ Ai

3: Ai+1 ← the b|Ai| × (δ + φ(n))c best arms in Ai
4: end for

output At(n)+1

Sample complexity. We will express the sample complexity of AGGRESSIVE ELIMINATION using
G(n, δ) defined below. Importantly, G(n, δ) converges to 0 as n grows and δ goes to 0:

G(n, δ) =

t(n)∑
i=1

(δ + φ(n))i(i+ 1) (3)
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Claim 1. ∀ε, δ ∈ [0, 1], n ≥ 1 the sample complexity of AGGRESSIVE ELIMINATION is bounded by:(
1 +G(n, δ)

)
×
⌈

2n

ε2
log

1

δ

⌉
.

Proof. Each iteration i uses `i+1 = (i + 1)
⌈

2
ε2 log 1

δ

⌉
estimates on |Ai| ≤ n(δ + φ(n))i arms. In

total:

t(n)∑
i=0

|Ai| × `i+1 ≤
t(n)∑
i=0

n (δ + φ(n))
i
(i+ 1)×

⌈
2

ε2
log

1

δ

⌉
=
(

1 +G(n, δ)
)
×
⌈

2n

ε2
log

1

δ

⌉
.

Later in the paper we ignore the rounding of d 2
ε2 log 1

δ e and b(δ + φ(n))c when clear that the
effect is negligible. The important takeaway is that the sample complexity of AGGRESSIVE
ELIMINATION converges to 2n

ε2 log 1
ε as the number of arms grows and δ becomes small because

limn→∞,δ→0G(n, δ) = 0. Later in the paper we usually use non-asymptotic notion of δ, and G(n, δ)
is estimated more carefully.

Likelihood of a? surviving. Next we analyze the likelihood of the best arm a? to appear in the
n3/4

2 arms output of the AGGRESSIVE ELIMINATION procedure. We begin with a simple lemma
that analyzes the likelihood of |Ai| · (δ + φ(n)) arms – the number of arms with largest empirical
mean we select in each iteration – to be ε

2 -overestimated. An arm a ∈ A is η-underestimated if its
empirical mean µ̂(a) is evaluated to be less than η of its true value, i.e. µ̂(a) < µ(a)− η. An arm
a ∈ A is η-overestimated if µ̂(a) > µ(a) + η. The proof is deferred to Appendix A.

Lemma 1. For every iteration i ∈ {0, 1, . . . , t(n)} of AGGRESSIVE ELIMINATION the probability
that more than |Ai| · (δ + φ(n)) arms are ε

2 -overestimated at iteration i is smaller than 1
n6 .

The main idea that we now show is that with sufficient probability in every round, a? is not ε
2 -

underestimated and sufficiently few ε-far arms are ε
2 -overestimated. Showing this implies that in

every round a? is one of the arms with highest empirical mean and selected to the next round.

Claim 2. Suppose the ε-best arm a? is unique, i.e. all arms are ε-far from a?. Then, the likelihood
that AGGRESSIVE ELIMINATION returns a set of arms At(n)+1 that does not contain a? is at most:

δ

(
1

1− δ

)
+

(
n5log

(
1

δ + φ(n)

))−1
.

Proof. We will analyze the likelihood that a? is not selected into Ai+1, given that it is in Ai, for every
i ∈ {0, 1, . . . , t(n)}. In every iteration i we can bound the likelihood of a? being ε

2 -underestimated:

Pr
[
µ̂(a?) < µ(a?)− ε

2

]
≤ e

−ε2`i+1
2 = e−(i+1) log

1
δ = δi+1

By definition of AGGRESSIVE ELIMINATION a? is not inAi+1 only if there are at least |Ai|(δ+φ(n))
arms in Ai whose empirical mean is higher than that of a?. By the assumption of the claim, we know
that all other arms are ε-far from a?. If a? does not survive to the next round it is because it was
ε
2 -underestimated or at least |Ai|(δ + φ(n)) arms were ε

2 -overestimated. By Lemma 1 we know that
the likelihood of more than |Ai|(δ + φ(n)) arms to be ε

2 -overestimated is n−6. Thus, by a union
bound, in every iteration i ∈ {0, 1, . . . , t(n)} the likelihood of discarding a? is at most δi+1 + n−6.
The likelihood that a? does not survive the last elimination is at most:

t(n)∑
i=0

(
δi+1+

1

n6

)
=

t(n)∑
i=0

δi+1

+
t(n)

n6
< δ

(
1

1− δ

)
+

1

n5
(

log 1
δ+φ(n)

) .
The main takeaway is that when n is sufficiently large as a function of δ, there is a high probability
that a? is in the set of arms returned by the procedure when the rest of arms are ε-far from a?.
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2.3 A Simple Algorithm under Favorable Conditions

At this point learning a best arm under favorable conditions seems rather straightforward: we
implement AGGRESSIVE ELIMINATION and then run NAÏVE ELIMINATION on the remaining set of
n3/4

2 arms. We present the algorithm formally below and give details of the analysis in Appendix A.

Algorithm 3 SIMPLE APPROXIMATE BEST ARM

input arms A, ε, δ > 0, noisy oracle for µ : A→ [0, 1]
1: AT ← AGGRESSIVE ELIMINATION(A, ε, δ2 )

output NAÏVE ELIMINATION(AT , ε,
δ
e )

Claim 3. Assume that there is a unique ε-best arm in A. Then ∀δ ≤ 0.05 and n ≥ max{1/δ4, 105},
SABA (ε, δ)-learns a best arm with sample complexity 4n

ε2 log 1
δ .

3 APPROXIMATE BEST ARM ALGORITHM

In this section we present the Approximate Best Arm (ABA) algorithm which is a modification of
SABA. We first discuss how to remove the assumptions SABA makes and then describe the algorithm.

Removing n ≥ max{1/δ4, 105} assumption. When we seek a bound that holds for any n (i.e. not
an asymptotic bound for n→∞) we avoid this assumption by simply running NAÏVE ELIMINATION
when the parameters do not respect these conditions. It is easy to verify that when n < 1/δ4 or
n < 105 and δ < 0.05 we can (ε, δ)-learn a best arm by running NAÏVE ELIMINATION(A, ε, δ) and
the sample complexity is then 10n

ε2 log 1
δ . When we analyze the asymptotic result in Section 3.1, we’ll

show a different modification of the algorithm that doesn’t require running NAÏVE ELIMINATION.

Removing the unique ε-best arm assumption. To avoid this assumption we will slightly decrease
ε and apply AGGRESSIVE ELIMINATION with ε0 = α · ε using α ∈ [0, 1] that we later define. In
addition, we will select a random set of size n7/8

2 . Together, this guarantees that we are likely to have
an arm that is ε0-close to a?, either in the random set or the output of AGGRESSIVE ELIMINATION:

• We prove a claim similar to Claim 2 but under weaker conditions. Specifically we show
that as long as there are fewer than n3/8

4 arms that are ε0-close to a?, then with sufficient
confidence a? will be one of the arms returned in AT ;

• Otherwise, there are more than n3/8

4 arms that are ε0-close to a? and one will surface with

overwhelming probability (as a function of n) in a random set R of size n7/8

2 .

Consequently, it is very likely that there is an ε0-close arm either in AT or in the random set R (or
both) and running NAÏVE ELIMINATION with appropriate parameters on AT ∪R will return an ε-best
arm with probability at least 1− δ.

The algorithm. The Approximate Best Arm (ABA) algorithm described below is a modification of
SABA that incorporates the modifications discussed above.

Algorithm 4 APPROXIMATE BEST ARM

input arms A, α, ε, δ > 0, noisy oracle for µ : A→ [0, 1]

1: initialize R← n7/8

2 arms selected u.a.r.
2: if n < max{105, δ−4} output NAÏVE ELIMINATION(A, ε, δ)
3: AT ← AGRESSIVE ELIMINATION(A,α · ε, δ2 )

output NAÏVE ELIMINATION(AT ∪R, (1− α)ε, δe )

We first generalize Claim 2 for the case in which there isn’t necessarily a unique ε-best arm a? but
rather at most n

3/8

4 arms that are ε-close to a?. The proof is similar and deferred to Appendix B.
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Claim 4. Suppose that there are at most n
3/8

4 arms that are ε-close to a? in A and the rest are ε-far.
Then, the likelihood that AGGRESSIVE ELIMINATION(A, ε, δ) returns a set of arms At(n)+1 that
does not contain a? /∈ At(n)+1 is at most:

δ

(
1

1− δ

)
+

(
n log

(
1

δ + φ(n)

))−1
.

We now state the approximation and confidence of ABA. We provide proof sketches that are devoid
of some of the calculations, and give full proofs in Appendix B.

Lemma 2. For any δ ≤ 0.05 ABA initialized with α = 1− 1/e returns an ε-best arm w.p. ≥ 1− δ.

Sketch. If n < max{1/δ4, 105} we invoke NAÏVE ELIMINATION which is guaranteed to return an
ε-best arm with confidence 1 − δ. Otherwise, we assume that n ≥ max{1/δ4, 105} and we can
analyze the performance of AGGRESSIVE ELIMINATION invoked with αε and δ′ = δ/2.

In the case that there are at most n3/8

4 arms that are αε-close to a? then according to Claim 4
AGGRESSIVE ELIMINATION invoked with αε and δ′ = δ/2 will not include a? in AT w.p. at most:

δ′
(

1

1− δ′

)
+

(
n log

(
1

δ′ + φ(n)

))−1
< (1− 1/e)δ

Conditioned on a? ∈ AT the likelihood that NAÏVE ELIMINATION on AT ∪R with approximation
(1− α)ε < ε does not return an ε-best arm is at most δ/e. Thus, if there are at most n

3/8

4 arms that
are αε-close to a? the algorithm terminates with an ε-best arm with probability at least 1− δ.

Otherwise, there are at least n
3/8

4 arms that are αε-close to a?. Since we select arms to R u.a.r. and

|R| = n7/8

2 the likelihood of not having any arms that are αε-close in R is smaller than (1− 1/e)δ.
Let ã be an arm that is αε-close to a? in R. When we run NAÏVE ELIMINATION with approximation
(1−α)ε and δ/e, we are guaranteed that with probability at least 1− δ/e no arm that is ε-far from a?

will have empirical mean higher than that of ã. Since ã is αε-close to a? and α < 1 this implies that
the algorithm returns an arm that is at least ε-close to a? w.p. at least 1− δ in this case as well.

Theorem 1. For any δ ≤ 0.05 ABA initialized with α = 1− 1/e returns an ε-best arm w.p. at least
1− δ using total number of samples of at most: 18× n

ε2 log 1
δ .

Sketch. If n < 1/δ4 or n < 105 we invoke NAÏVE ELIMINATION and its sample complexity is
10n
ε2 log 1

δ . According to Claim 1 the sample complexity of AGGRESSIVE ELIMINATION with
approximation αε and confidence δ1+c the sample complexity is:

1

α2

(
2n

ε2
log

1

δ

(
(1 + c)

(
1 +G(n, δ1+c)

)))
(4)

For any δ < 0.05 we have that δ1+c < δ/2 for c = 1/4. Thus, since we ran AGGRESSIVE
ELIMINATION with confidence δ/2 and α = 1− 1/e the sample complexity is at most:

1

α2

(
2n

ε2
log

1

δ

(
(1 + c)

(
1 +G(n, δ1+c)

)))
< 8

(
n

ε2
log

1

δ

)
For the sample complexity of the NAÏVE ELIMINATION notice that it is applied on B = AT ∪ R.
Since α = 1− 1/e and |B| = n3/4

2 + n7/8

2 , the sample complexity of NAÏVE ELIMINATION is:

1

(1− α)2

(
2|B|
ε2

log

(
|B|
δ

))
< 10

(
n

ε2
log

1

δ

)
(5)

Therefore, the sample complexity of AGGRESSIVE ELIMINATION and NAÏVE ELIMINATION is
18× n

ε2 log 1
δ and the total sample complexity is bounded by 18n

ε2 log 1
δ .
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3.1 Asymptotic Sample Complexity

In our exposition of ABA above, we fixed some parameters to show that it achieves low sample
complexity for any value of n. This sample complexity is due (1) NAÏVE ELIMINATION to ensure
that n > max{105, 1/δ4} and (2) a convex combination of AGGRESSIVE ELIMINATION and NAÏVE
ELIMINATION applied on a sublinear number of arms AT ∪R. Intuitively, to remove (1), if we allow
n grow, we can remove the NAÏVE ELIMINATION procedure. For (2) Recall from Claim 1 that the
sample complexity of AGGRESSIVE ELIMINATION is:(

1 +G(n, δ)
)
× 2n

ε2
log

1

δ
.

Since limn→∞,δ→0G(n, δ) = 0, this converges to sample complexity of 2n
ε2 log 1

δ . What remains
is the NAÏVE ELIMINATION applied on a sublinear number of arms AT ∪R. Intuitively, since the
number of arms is sublinear in n, as n grows the sample complexity converges to 0. We elaborate on
the asymptotic results in Appendix B.1 and prove the following theorem.

Theorem 2. For any λ > 0 there exist δ0 and n0 s.t. for any δ < δ0 and n ≥ n0, ABA (ε, δ)-learns

a best arm with sample complexity at most:
(

2 + λ
)
n
ε2 log 1

δ .

4 APPROXIMATE BEST ARM BY HOEFFDING

We now describe the Approximate Best Arm Likelihood Estimation (ABALEH) algorithm. This
algorithm is a variant of ABA which achieves a sample complexity that is arbitrarily close to that of
(ε, δ)-learning the mean of every arm. Unlike ABA here we must assume that n ≥ 1/δ.

In this algorithm, we want to circumvent the barrier of 2× n
ε2 log 1

δ of ABA and get to the complexity
of (1 + λ) × n

2ε2 log 1
δ for arbitrarily small λ > 0. The main idea is that to determine that one

arm is better than the other (assuming they are ε-far) it is also possible to estimate one of them to
accuracy (1− ζ)ε and the other to accuracy ζε for ζ > 0 that we choose later. We sample each arm
(1 + λ

2 ) 1
2ε2 log 1

δ times, but in the analysis we apply a different Hoeffding bound per arm:

1. For the best arm, in the analysis we apply a Hoeffding bound with accuracy (1− ζ)ε and
failure probability� δ. This ensures the best arm is approximated up to almost ε;

2. For any other arm we apply Hoeffding with accuracy ζε, and failure probability� δ. The
number of samples on each arm is still bounded by (1 + λ

2 ) 1
2ε2 log 1

δ , as we pay for the
additional accuracy with higher failure probability. This is where we need δ to be small.

Note that we do not assume the algorithm knows which is the best arm, but the analysis can apply
different theorems to different arms. Since there are n− 1 arms which are not the best arm, and n is
large, we can know how many of them failed the Hoeffding bound. As long as this number is not
too large (say 0.001n) we can be sure that the best arm moves the next stage with high probability.
To choose ζ, notice that if there were only two arms, it would be wise to choose ζ = 1/2, but for

an arbitrary number of arms we use a smaller ζ and take ζ = 1 − (1 − λ
16 )
√

1− λ
8 where λ is a

parameter of the algorithm. We defer the proofs to Appendix C.

Algorithm 5 APPROXIMATE BEST ARM LIKELIHOOD ESTIMATION BY HOEFFDING

input ε, δ, λ ∈ (0, 1), arms A, noisy oracle for µ : A→ [0, 1]

1: α←
√

1− λ
8

2: R← a random set of n3/4 arms
3: apply (1 + λ

2 )( 1
2ε2 log 1

δ ) samples ∀a ∈ A
4: A0 ← the λn

50 highest estimated arms in A
5: AT ← AGRESSIVE ELIMINATION(A0, εα,

δ
4 )

output NAÏVE ELIMINATION(AT ∪R, (1-α)ε, δ4 )

8



Lemma 3. Suppose λ < 1, δ ≤ δ0 where δ0 is the solution to λ
100 = δ

λ2/256
0 , and n > 1/δ. If there

are at most n2/3 arms which are αε-close to a? then w.p. at least 1− δ
2 we have that a? is one of the

λn
50 highest estimated arms in A.

Given Lemma 3, the proof now follows in a similar manner to previous proofs by bounding the
sample complexity and approximation and confidence of all sub procedures.

Theorem 3. For any given λ < 1 there is a δ0 s.t. for any δ < δ0 and n > 1/δ ABALEH (ε, δ)-learns
a best arm with sample complexity at most:(

1 + λ
) n

2ε2
log

1

δ
.

5 LOWER BOUND

We now consider the family of elimination algorithms denoted F and defined as follows. An
algorithm is in F if it begins when S = A is the set of all possible arms and then: (i) pulls each arm
in S once (ii) eliminates some of the arms in S, and (iii) if |S| = 1 terminate, else, go back to (i).

Since best arm algorithms have very little degrees of freedom many of them are elimination algorithms.
Essentially, the only limitation here is that the algorithm’s decisions are irrevocable: if the algorithm
considers an arm to be suboptimal and discards it from consideration, it cannot revoke and decision
and consider the arm again. We defer the full proof of the lower bound to Appendix D.

Theorem 4. For every β > 0 there exist ε0, δ0 such that for any algorithm in F which finds an ε
best arm with success probability 1− δ where ε < ε0, δ < δ0, there exist n0 such that if n > n0, the
algorithm requires at least

(
1
2 − β

)
n
ε2 log 1

δ queries.

6 Experiments

To illustrate the efficiency of the algorithms we conducted a simple numerical experiment. A
reasonable concern may be that while our results suggest a dramatic improvement over the sample
complexity of MEDIAN ELIMINATION this improvement may only be due to tighter analysis. In this
section we rule out this possibility by experimentally comparing the actual sample complexity (not
analysis) of our algorithms (SABA, ABA and ABALEH) with MEDIAN ELIMINATION and NAÏVE
ELIMINATION. Note that all algorithms are guaranteed to (ε, δ)-learn the best arm, and thus our
interest is in their sample complexity. Since our algorithms relative sample complexity improves as n
grows we were interested in observing this improvement emprically. Due to lack of space, we differ
the full results to Appendix F. In short, we show that for reasonable input sizes, ABALEH have a
sample complexity which is 100 times more efficient than MEDIAN ELIMINATION.
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7 Broader Impact

Learning a best arm is a fundamental, well-studied, problem largely because it captures the most basic
experimental question: given n treatments, each with a stochastic outcome, which one is best? Cancer
treatment, drug discovery, gene detection, manufacturing quality assurance, financial fraud detection,
spam detection, software testing, are all examples of direct applications of learning a best arm.
Providing dramatically faster algorithms for these applications without compromising on guarantees
will impact areas well outside machine learning. Specifically, this work provides an algorithm that
is 6000 times faster than the state-of-the-art. In addition to asymptotic bounds that converge as the
number of arms grows to what we conjecture is the optimal sample complexity, we provide dramatic
speedups for any number of arms. The result is an extremely efficient simple algorithm for learning
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a best arm with strong theoretical guarantees that can be used across all applications of learning a
best arm. The simplicity and speed of the algorithms presented here are such that any practitioner
can implement them and accelerate their experimental setup immediately. We trust that we will see
immediate action across a broad set of application domains.
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A Simple Approximate Best Arm Algorithm

Theorem 5 (Hoeffding bound). Let X1, ..., Xm be independent random variables bounded by the
interval [0, 1], X̄ = 1

m

∑m
i=1Xm and m = 1

2ε2 log 1
δ , then Pr(X̄ − E[X̄] ≥ ε) ≤ δ.

Claim 5. The sample complexity of NAÏVE ELIMINATION is 2|A|
ε2 log |A|δ and it returns an arm that

is ε-close to a? with probability at least 1− δ.

Proof. To see this, suppose that a? is not returned by NAÏVE ELIMINATION. If another arm is
returned that is ε-close to a? then we are done. Otherwise, assume that NAÏVE ELIMINATION returns
an arm a that is ε-far. Since any arm is sampled 1

2(ε/2)2 log 1
δ times, by the Hoeffding bound we know

that the likelihood of either ε
2 -underestimating a? or ε

2 -overestimating an ε-far arm is δ
|A| . There are

at most |A| − 1 arms that are ε-far from a?. By a union bound, a? is not ε2 underestimated and none
of the ε-far arms are ε

2 -overestimated w.p. at least 1− δ. Thus a? has larger empirical mean than any
of the ε-far arms, implying that the procedure returns an ε-best arm w.p. at least 1− δ.

Lemma 1. For every iteration i ∈ {0, 1, . . . , t(n)} of AGGRESSIVE ELIMINATION the probability
that more than |Ai| · (δ + φ(n)) arms are ε

2 -overestimated at iteration i is smaller than 1
n6 .

Proof. In every iteration i ∈ {0, 1, . . . , t(n)} the likelihood of arm a ∈ A being ε
2 -overestimated is:

Pr
[
µ̂(a) > µ(a) +

ε

2

]
≤ e

−ε2`i+1
2 = e−(i+1) log

1
δ = δi+1

Therefore, in expectation, there are |Ai| · δi+1 arms that are ε
2 -overestimated. Let Xa denote the

random variable that indicates whether arm a is ε
2 overestimated, X =

∑
a∈Ai Xa and X̂ be the

number of arms that are ε
2 -overestimated at iteration i. Again, by Hoeffding, the likelihood of more

than |Ai|(δ + φ(n)) being ε
2 -overestimated:

Pr
[
|Ai| · (δ + φ(n)) arms

ε

2
-overestimated

]
= Pr

[
X̂ − E[X] ≥ (δ + φ(n))|Ai| − E[X]

]
(6)

= Pr
[
X̂ − E[X] ≥ (δ − δi+1 + φ(n))|Ai|

]
(7)

≤ Pr
[
X̂ − E[X] ≥ φ(n)|Ai|

]
(8)

≤ exp
(
−2φ(n)2|Ai|

)
(9)

≤ exp
(
−φ(n)2n3/4

)
(10)

=
1

n6
(11)

In (7) we use the fact that E[X] = |Ai| · δi+1, in (8) we used the fact that δ ≤ 1, in (10) we used the
fact that there are at least n

3/4

4 arms in Ai, and in (30) we used the definition of φ(n) in (1).

Claim 3. Assume that there is a unique ε-best arm in A. Then ∀δ ≤ 0.05 and n ≥ max{1/δ4, 105},
SABA (ε, δ)-learns a best arm with sample complexity 4n

ε2 log 1
δ .

Proof. The proof follows from the sample complexity and approximation and confidence of AG-
GRESSIVE ELIMINATION and NAÏVE ELIMINATION. The sample complexity is the total number of
samples required to implement AGGRESSIVE ELIMINATION with δ/2 and NAÏVE ELIMINATION on
the remaining arms with δ/e. A convenient way to express the sample complexity of AGGRESSIVE
ELIMINATION is to use a constant c for which δ1+c = δ/2. The sample complexity of AGGRESSIVE
ELIMINATION with δ1+c is:

(1 + c)
(
1 +G(n, δ1+c)

)
× 2n

ε2
log

1

δ
(12)

In our case, if we assume that δ < 0.05 then for c = 1/4 we get that δ1+c < δ/2.
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For NAÏVE ELIMINATION executed on n3/4

2 arms with δ/e the sample complexity is:

(
1

2n
1
4

(
1 +

3 log n+ 4

4 log 1
δ

))
× 2n

ε2
log

1

δ
(13)

For n ≥ 105 and δ < 0.05 the sample complexity of SABA is (12) + (13) < 4n
ε2 log 1

δ .

In terms of approximation and confidence, for n ≥ 105 then φ(n) < 0.12 and for δ < 0.05 we get
log( 1

δ′+φ(n) ) > 1. Applying AGGRESSIVE ELIMINATION on δ′ = δ/2 when δ ≤ 0.05 implies that
a? is not in AT w.p. at most:

δ′
(

1

1− δ′

)
+

1

n5 log( 1
δ′+φ(n) )

<
20δ

39
+

1

n5
<

(
1− 1

e

)
δ

Finally, assuming that a? is in AT then the probability it is not returned by NAÏVE ELIMINATION is
at most δ/e. By union bound, the likelihood that a? is either not in At+1 or not selected by NAÏVE
ELIMINATION is at most δ.

B Approximate Best Arm Algorithm

Claim 4. Suppose that there are at most n
3/8

4 arms that are ε-close to a? in A and the rest are ε-far.
Then, the likelihood that AGGRESSIVE ELIMINATION(A, ε, δ) returns a set of arms At(n)+1 that
does not contain a? /∈ At(n)+1 is at most:

δ

(
1

1− δ

)
+

(
n log

(
1

δ + φ(n)

))−1
.

Proof. Since there are at most n3/8

4 arms that are ε-close, we know that in every iteration i ∈
{0, 1, . . . , t(n)} there are at least |Ai| − n3/8

4 that are ε-far from a?. In the worst case, in every
iteration every one of the ε-close arms is overestimated in such a way that its empirical mean is
larger than that of a?. In this case, the only way that a? is not included in round Ai+1 is if a?

is ε
2 -underestimated and there are more than |Ai|(δ + φ(n)) − n3/8

4 arms that are ε-far that are ε
2

overestimated.

As in the proof of Claim 2 using the Hoeffding bound we know that the likelihood of a? being
ε
2 -underestimated is at most δi+1. The likelihood of an arm being ε

2 -overestimated is at most δi+1 and
in expectation there are |Ai|δi+1 arms that are ε

2 -overestimated in every iteration i. Let Xa denote
the random variable that indicates whether arm a is ε

2 -overestimated, X =
∑
a∈Ai Xa and X̂ be the

number of arms that are ε
2 -overestimated at iteration i. Again, by Hoeffding, the likelihood of more

than |Ai|(δ + φ(n))− n3/8

4 being ε
2 -overestimated:
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Pr

[
X̂ ≥ (δ + φ(n))|Ai| −

n3/8

4

]
= Pr

[
X̂ − E[X] ≥ (δ + φ(n))|Ai| − E[X]− n3/8

4

]
(14)

= Pr

[
X̂ − E[X] ≥ (δ − δi+1 + φ(n))|Ai| −

n3/8

4

]
(15)

≤ Pr

[
X̂ − E[X] ≥ φ(n)

(
|Ai| −

n3/8

4φ(n)

)]
(16)

≤ Pr

[
X̂ − E[X] ≥ φ(n)

(
|Ai| −

n3/4

12

)]
(17)

≤ Pr

[
X̂ − E[X] ≥ φ(n)

(
2

3
|Ai|

)]
(18)

≤ exp

(
−2 · 4φ(n)2|Ai|

9

)
(19)

≤ exp

(
−2φ(n)2n3/4

9

)
(20)

=
1

n4/3
(21)

In (15) we use the fact that E[X] = |Ai| · δi+1, in (16) we used the fact that δ ≤ 1, in (17) we used
the fact that φ(n) > 3n−3/8 for n ≥ 5, in eq:delta4 and (20) we used the fact that there are at least
n3/4

4 arms in Ai, and in (21) we used the definition of φ(n) in (1).

Having calculated the likelihood that a? is ε
2 -underestimated to be δi+1 and the likelihood that there

are at least |Ai|(δ+φ(n))− n3/8

4 arms that are ε
2 -overestimated, by a union bound, in every iteration

i ∈ {0, 1, . . . , t(n)} the likelihood of discarding a? is at most:

δi+1 +
1

n4/3

Taking a union bound over the likelihood that a? is discarded in every iteration i ∈ {0, 1, . . . , t(n)}
we get that the likelihood that a? does not survive the last elimination step is at most:

t(n)∑
i=0

(
δi+1+

1

n4/3

)
=

t(n)∑
i=0

δi+1

+
t(n)

n4/3
< δ

(
1

1− δ

)
+

1

n
(

log 1
δ+φ(n)

) .

Lemma 2. For any δ ≤ 0.05 ABA initialized with α = 1− 1/e returns an ε-best arm w.p. ≥ 1− δ.

Proof. If n < max{1/δ4, 105} we invoke NAÏVE ELIMINATION which is guaranteed to return an
ε-best with confidence 1− δ. Otherwise, we assume that n ≥ max{1/δ4, 105} and we can analyze
the performance of AGGRESSIVE ELIMINATION invoked with αε and δ′ = δ/2.

In the case that there are at most n3/8

4 arms that are αε-close to a? then according to Claim 4
AGGRESSIVE ELIMINATION invoked with αε and δ′ = δ/2 will include a? in AT w.p. at least :

δ′
(

1

1− δ′

)
+

(
n log

(
1

δ′ + φ(n)

))−1
When δ′ = δ

2 and δ < 0.05 we have that δ′
(

1
1−δ′

)
< 20

39δ. When δ < 0.05 then log
(

1
δ′+φ(n)

)
> 1

and since n ≥ 1/δ4 we have that (
n log

(
1

δ′ + φ(n)

))−1
< δ4.
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Together we have that the likelihood that a? is not in AT returned by AGGRESSIVE ELIMINATION is:

δ′
(

1

1− δ′

)
+

(
n log

(
1

δ′ + φ(n)

))−1
< (1− 1/e)δ

Conditioned on a? ∈ AT the likelihood that NAÏVE ELIMINATION on AT ∪R with approximation
(1− α)ε < ε does not return an ε-best arm is at most δ/e. Thus, if there are are at most n

3/8

4 arms
that are αε-close to a? the algorithm terminates with an ε-best arm with probability at least 1− δ.

Otherwise, there are at least n
3/8

4 arms that are αε-close to a?. Since we select arms to R u.a.r. and

|R| = n7/8

2 the likelihood of not having any arms that are αε-close in R is at most:

(
1− n3/8

4n

)|R|
=

(
1− 1

4n5/8

)n7/8

2

=

((
1− 1

4n5/8

)4n5/8)n1/4

8

< e−
n1/4

8

When we have n > 105 then e−
n1/4

8 < 1
n1/4 (1− 1/e). Since n > 1/δ4 we get that the likelihood of

an αε-close to a? not appearing in R is smaller than (1−1/e)δ. Let ã be an arm that is αε-close to a?
in R. When we run NAÏVE ELIMINATION with approximation (1− α)ε and δ/e, we are guaranteed
that with probability at least 1− δ/e no arm that is ε-far from a? will have empirical mean higher
than that of ã. Since ã is αε-close to a? and α < 1 this implies that the algorithm returns an arm that
is at least ε-close to a? w.p. at least 1− δ in this case as well.

Lemma 4. For any δ ≤ 0.05 ABA initialized with α = 1− 1/e has sample complexity at most:

18n

ε2
log

1

δ
.

Proof. If n < 1/δ4 or n < 105 we invoke NAÏVE ELIMINATION and its sample complexity is
10n
ε2 log 1

δ . To see this, notice that if n < 1/δ4 the sample complexity of NAÏVE ELIMINATION is:

2n

ε2
log

n

δ
=

2n

ε2

(
log

1

δ
+ log(n)

)
≤ 2n

ε2

(
log

1

δ
+ 4 log

1

δ

)
=

10n

ε2
log

1

δ

If n < 105 then when δ < 0.05 the sample complexity of NAÏVE ELIMINATION is:

2n

ε2
log

n

δ
=

2n

ε2
log

1

δ

(
1 +

log n

log 1
δ

)
<

10n

ε2
log

1

δ
.

According to Claim 1 the sample complexity of AGGRESSIVE ELIMINATION with approximation ε
and confidence δ is: (

1 +G(n, δ)
)
× 2n

ε2
log

1

δ
.

Therefore, when running with approximation αε and confidence δ′ = δ1+c the sample complexity is:

1

α2

(
2n

ε2
log

1

δ

(
(1 + c)

(
1 +G(n, δ1+c)

)))
(22)

For any δ < 0.05 we have that δ1+c < δ/2 for c = 1/4. Thus, since we ran AGGRESSIVE
ELIMINATION with confidence δ/2 and α = 1− 1/e the sample complexity is at most:

1

α2

(
2n

ε2
log

1

δ

(
(1 + c)

(
1 +G(n, δ1+c)

)))
<

1

(1− 1/e)2

(
2n

ε2
log

1

δ

(
5

4

(
1 +G(n, δ

5
4 )
)))

=
10

4(1− 1/e)2
×
(
n

ε2
log

1

δ

((
1 +G(n, δ

5
4 )
)))

<
10

4(1− 1/e)2
×
(
n

ε2
log

1

δ
× 1.2

)
< 8×

(
n

ε2
log

1

δ

)
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For the sample complexity of the NAÏVE ELIMINATION notice that it is applied on AT ∪R where
|AT | = n3/4

2 and |R| = n7/8

2 . For any n ≥ 105 we have that n
3/4

2 < n7/8

8 and therefore |AT ∪R| ≤
5
8 · n

7/8. Since α = 1− 1/e the sample complexity of NAÏVE ELIMINATION is:

1

(1− α)2

(
5

8

2n7/8

ε2
log(

5

8
· n

7/8

δ
)

)
<

1

(1− α)2

(
5

8

2n7/8

ε2
log

(
n7/8

δ

))
(23)

=
10 · e2

8 · n1/8

(
n

ε2
log

n7/8

δ

)
(24)

=
10 · e2

8 · n1/8

(
n

ε2

(
7

2
log(n−1/4) + log

1

δ

))
(25)

<
10 · e2

8 · n1/8

(
n

ε2

(
7

2
log

1

δ
+ log

1

δ

))
(26)

=
45 · e2

8 · n1/8

(
n

ε2
log

1

δ

)
(27)

≤ 45 · e2

8 · 105/8

(
n

ε2
log

1

δ

)
(28)

< 10

(
n

ε2
log

1

δ

)
(29)

Therefore, the sample complexity of AGGRESSIVE ELIMINATION and NAÏVE ELIMINATION is
smaller then:

18×
(
n

ε2
log

1

δ

)
.

B.1 Asymptotic Sample Complexity

Generalization of φ(n). Recall that in our algorithm we condition on n1/4 ≥ 1/δ and otherwise
implement NAÏVE ELIMINATION(A, ε, δn ). In general, ∀d ≥ 0 if nd < 1/δ we can (ε, δ)-learn the
best arm using NAÏVE ELIMINATION(A, ε, δn ) with sample complexity

2n

ε2

(
log

1

δ
+

log(nd)

d

)
= 2

(
1 +

1

d

)
n

ε2
log

1

δ

For any choice of d we can modify the AGGRESSIVE ELIMINATION to produce the same confidence
and approximation guarantees under the assumption that nd ≥ 1/δ, for any d ∈ [0,

√
n]. To do so

all we need to do is make a modest modification in the definition of φ(n). Under an assumption
nd ≥ 1/δ our definition of φ(n) was designed to satisfy the following inequality:

exp

(
−φ(n)2

(
|Ai| −

n3/8

4φ(n)

))
≤ 1

10 · nd log n
(30)

the left hand expression is the likelihood of the event that in an iteration i the number of arms that are
ε-far from a? that are overestimated is such that a? is not included in the next round. The righthand
expression becomes smaller than δ/(10 log(n)) when nd > 1/δ.

We can therefore generalize the definition of φ(n) to φ(n, d) as follows:

φ(n, d) =

√
log(10) + d log(n) + log log(n)

n3/4

The larger d is so is the sample complexity, but for d =
√
n we get our desired asymptotic behavior.

In particular get limn→∞ φ(n, d) = 0, thus for any δ < 1 we get limn→∞G(n, δ) = 0 and the

number of rounds until the algorithm terminates t(n) = log n×
(

log
(

1
δ+φ(n,d)

)−1)
approaches

log n as well.
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If n
√
n < 1

δ we may use the AGGRESSIVE ELIMINATION and getting a sample complexity of

2n

ε2
log

n

δ
=

2n

ε2

(
log

1

δ
+ log(n)

)
≤ 2n

ε2

(
log

1

δ
+ log(log2(

1

δ
))

)
and there exist δ0 s.t. if δ < δ0, the total sample complexity is (2 + λ) nε2 log 1

δ for any λ > 0.

Choosing α as a function of n. The sample complexity of ABA is a convex combination of the
sample complexity of AGGRESSIVE ELIMINATION and NAÏVE ELIMINATION:

1

α2

(
2n

ε2
log

1

δ

(
(1 + c)

(
1 +G(n, δ1+c)

)))
+

1

(1− α)2

(
5

8

2n7/8

ε2
log

(
5

8
· n

7/8

δ

))
(31)

If we choose α = (1− n− 1
16 ) then as n tends to infinity, in the limit the sample complexity is:

(1 + c)

(
2n

ε2
log

1

δ

)
Where we relied on the fact that for any fixed δ < 1, limn→∞G(n, δ1+c) = 0 for any choice of
c > 0. Recall that we use c to shrink δ so that instantiating AGGRESSIVE ELIMINATION with δ1+c is
guaranteed to include a? in its output w.p. at least (1− 1/e)δ. As δ becomes smaller we require a
smaller choice of c as well. Thus, for any c there exists a δ0 s.t. for any δ < δ0 running AGGRESSIVE
ELIMINATION with δ1+c is guaranteed to include a? in its output with probability at least (1− 1/e)δ.
Theorem 6. For any λ > 0 there exist δ0 and n0 s.t. for any δ < δ0 and n ≥ n0, ABA (ε, δ)-learns
a best arm with sample complexity at most:(

2 + λ
) n
ε2

log
1

δ
.

C Approximate Best Arm Likelihood Estimation by Hoeffding

Lemma 3. Suppose λ < 1, δ ≤ δ0 where δ0 is the solution to λ
100 = δ

λ2/256
0 , and n > 1/δ. If there

are at most n2/3 arms which are αε-close to a? then w.p. at least 1− δ
2 we have that a? is one of the

λn
50 highest estimated arms in A.

Proof. First, we apply a Hoeffding bound on the estimation of a?. Suppose that we would like to
estimate the value of a? to accuracy ε · (1− λ

16 )α, with success probability at least 1− δ
4 . The number

of samples this requires is

log 4
δ

2α2ε2(1− λ
16 )2

=
log 4

δ

2α2ε2(1− λ
8 + λ2

256 )
≤

log 1
δ

2ε2α2(1− λ
8 )
≤

log 1
δ

2ε2(1− λ
4 )

=

(
1 +

λ

2

)
1

2ε2
log

1

δ

where the first inequality uses δ < δ0 and the second one uses λ < 1. Since we have taken sufficiently
many samples, the Hoeffding inequality applies.

For any other arm, we apply the Hoeffding bound to estimate its mean with accuracy ε · λ16 , but with
failure probability 1− δλ2/256. The number of samples this requires is:

256

2ε2λ2
log

1

δλ2/256
=

1

2ε2
log

1

δ

where we took the exponent out of the logarithm. Achieving this approximation and confidence is
possible in this case as well since we are actually performing (1 + λ

2 ) 1
2ε2 log 1

δ samples on each arm.

But since δ < δ0, and λ
100 = δ

λ2/256
0 , this approximation is achievable when failure probability for

each arm is bounded from above by λ
100 . Hence the probability that we estimate more than λ

80 arms
incorrectly is exponentially small in n. Since n > 1/δ this failure probability is at most δ4 .

Taking a union bound over both events, we get that with probability at least 1− δ
2 we have that a? was

estimated up to error ε(1− λ
8 )α, and at most λn80 arms were estimated to error at least αελ8 . Condition

on this event. Now there are two types of arms that we may estimate to be larger than a?:
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• Arms which are εα close to a?: there are fewer than n2/3 < 3λn
400 such arms, since n > 1

δ0
;

• Arms which were estimated incorrectly: there are at most λn80 such arms.

As λn
80 + 3λn

400 = λn
50 and |A0| = λn

50 , w.p. ≥ 1− δ
2 the arm a? is chosen to A0.

Lemma 5. For any λ ∈ [0, 1], δ ≤ δ0 where δ0 is the solution to λ
100 = δ

λ2/64
0 suppose n > 1/δ.

Then ABALEH returns an ε -best arm w.p. at least 1− δ.

Proof. Let G denote the set of arms which are αε close to a?. We consider two cases. First,
if |G| < n2/3 then according to Lemma 3 with probability at least 1 − δ

2 we have a? ∈ A0.

Conditioning on this event, note that since n > 1/δ0 we have that n2/3 <
(
λn
100

)3/4
and hence we can

apply Claim 2 and deduce that with probability 1− δ
4 we have that AT contains an εα approximate

best arm. Finally, in this case with probability 1 − δ
4 we have NAÏVE ELIMINATION finds the an

(1− α)ε approximate best arm to an αε approximate best arm, which gives an ε best arm as required.
Summing the errors and applying a union bound proves the lemma.

On the other hand, if |G| ≥ n2/3, then with probability 1− 2−O(n1/6) ≥ 1− δ
2 (since n ≥ 1/δ) we

have that T ∩ G will be non empty. Again, with probability at least 1 − δ
4 NAÏVE ELIMINATION

returns a (1− α)ε approximate best arm to an αε approximate best arm, which gives an ε best arm as
required. Again, a union bound shows that the probability of error is at most δ4 + δ

2 < δ.

Sample complexity. The sample complexity of ABALEH is the sum of the sample complexity of
its three procedures:

1. The first iteration has sample complexity(
1 +

λ

2

)(
n

2ε2
log

1

δ

)
2. The sample complexity of calling AGGRESSIVE ELIMINATION(A0, εα,

δ
4 ) is

10λn

50 · ε2α2
log

4

δ
<

99λ

200

(
n

2ε2
log

1

δ

)
where we substituted α and used λ < 1;

3. Running NAÏVE ELIMINATION(AT ∪R, (1-α)ε, δ4 ) when n > 1/δ0 has sample complexity
at most:

2n3/4

ε2

(
log n+ log

1

δ

)
<

λ

100

(
n

2ε2
log

1

δ

)

D Lower Bound

Theorem 7. For every β > 0 there exist ε0, δ0 such that for any algorithm in F which finds an ε
best arm with success probability 1− δ where ε < ε0, δ < δ0, there exist n0 such that if n > n0, the
algorithm requires at least

(
1
2 − β

)
n
ε2 log 1

δ queries.

Proof. Suppose that there exists some algorithm A ∈ F which uses less than
(
1
2 − β

)
n
ε2 log 1

δ

queries. Then it must be that after (1 + ν)× 1
ε2

(
1
2 − β

)
log 1

δ iterations, |S| ≤ n
1+ν . But this means

that A can succeed with the following task, with probability at least 1− δ:

Given m = (1 + ν) 1
ε2

(
1
2 − β

)
log 1

δ / samples on each arm, choose 1
1+ν of the arms, such that this

set contains an ε best arm. We will use ν = 0.0001β.

Consider the following distribution: A bad arm is 0 w.p. 1
2 . and 1 w.p. 1

2 . A good arm is 0 w.p.
p = 1

2 − ε and 1 w.p. 1− p. There are n− 1 bad arms, and one good arm. Hence,A needs to identify
ν

1+ν of the arms, such that the good arm will not be in this set.
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The optimal policy for this task given (1 + ν)m samples on each arm which maximizes the success
probability, is to look at the number of zeroes each arm has, and to predict that the νn

1+ν arms which
have the largest number of zeroes do not include the good arm. But the success probability of this
policy can be bounded as follows:

For any ξ > 0 there exists n0 such that if n > n0 w.p. 1− ξ there are at most νn2 bad arms with more
than (1 + 0.001βε)m2 zeroes. We use ξ = δ

2 , which is easily satisfied by n0 = 1000
β2ε2δ2 .

Let XG be a random variable which denotes the number of zeroes of the good arm. We now
bound the probability that the good arm will have too many zeros. That is, Pr [XG > k] where
k = (1 + 0.001βε)m2 . XG is the sum of random binomial variables, so we can apply a reverse tail
bound to it.

According to [31], for p ≤ 1/2 and mp ≤ k ≤ m(1− p) (which is indeed our case), it holds that

Pr [XG > k] ≥ Pr

[
Z >

k −mp√
mp(1− p)

]
where Z is a normal (0, 1) random variable.

We use a standard lower bound by [4] for upper tail of a normal random variables:

Pr[Z > z] ≥ z

z2 + 1
e−

z2

2 .

In our parameters, we have that z = k−mp√
mp(1−p)

= (1+0.0005β)mε√
m(1/4−ε2)

= 2+0.001β
1−4ε2 ε

√
m which for

ε < 0.0001β is more then 2ε
√
m = 2

√
(1 + ν)

(
1
2 − β

)
log 1

δ . There exist δ1 such that for δ < δ1
we have that z is large enough for the following inequality to hold:

z

z2 + 1
e−

z2

2 ≥ e−
z2

2−0.001β .

Since z = 2+0.001β
1−4ε2 ε

√
m = 2+0.001β

1−4ε2

√
(1 + ν)

(
1
2 − β

)
log 1

δ , then for ε < 0.0001β, we have that
z2

2−0.001β < (2 + 0.0001β)2(1 + ν)
(
1
2 − β

)
log 1

δ /(2− 0.001β) < (1− β) log 1
δ .

Combining the inequalities:

Pr
[
XG > (1 + 0.001ε)

m

2

]
≥ δ1−β .

However, if ξ < δ
2 there exist δ2 such that if δ < δ2, we have that

δ1−β − ξ > δ.

This upper bounds the success probability of any algorithm in F making too few queries. Hence, for
δ0 < min{δ1, δ2}, ε0 < 0.0001β and n0 = 1000

β2ε2δ2 the theorem holds.

E Distributional Assumptions

Throughout the paper we use the assumption the the arms’ Distributions are bounded in [0, 1] in order
to use the following version of the Hoeffding’s inequality:

Pr(X̂ − E[X] ≥ t) ≤ e−2nt
2

, where n is the number of samples from a given arm, X is the random variable for the sum of
all of the samples from this arm and X̂ is it its realization. The above bound holds for any sub-
Gaussian distribution with a variance σ2 which is smaller than some constant σ2

0 . Our results may be
generalized for any sub-Gaussian distribution by scaling down the values and adjusting the selection
of ε, this will effect both the upper and lower bound in the same manner and the algorithmic results
are still tight.
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F Experiments

To illustrate the efficiency of the algorithms we conducted a simple numerical experiment. A
reasonable concern may be that while our results suggest a dramatic improvement over the sample
complexity of MEDIAN ELIMINATION this improvement may only be due to tighter analysis. In this
section we rule out this possibility by experimentally comparing the actual sample complexity (not
analysis) of our algorithms (SABA, ABA and ABALEH) with MEDIAN ELIMINATION and NAÏVE
ELIMINATION. Note that all algorithms are guaranteed to (ε, δ)-learn the best arm, and thus our
interest is in their sample complexity. Since our algorithms relative sample complexity improves as n
grows we were interested in observing this improvement emprically.

Experimental setup. We fixed a choice of δ = 0.05 and compared the sample complexity of all
algorithms for n = 300, 000 arms. Since all algorithms scale quadratically with ε, we kept ε = 0.2 in
all our experiments3. The arms arms are distributed in the following way: n− 1 arms are Bernoulli
random variables with mean 0.5 and a single best arm is a Bernoulli random variable with mean
0.7 + 10−13.

Results. We summarize the results in the table below

Algorithm Average number of samples for instance Success (out of 1000 experiments)
MEDIAN ELIMINATION 9.26 · 109 1000
NAÏVE ELIMINATION 2.34 · 108 1000

SABA 8.59 · 106 1000
ABA 1.98 · 108 1000

ABALEH 8.59 · 107 1000

SABA is making assumptions on the input (which hold for this scenario) and is 1000 times more
efficient than MEDIAN ELIMINATION. Without assumptions on the input, ABALEH have a sample
complexity which is 100 times more efficient than MEDIAN ELIMINATION. In fact, even the naive
approach is more efficient than MEDIAN ELIMINATION.

G Technical overview

At a very high level, the idea behind the upper bounds is simple: for a given set of n arms A, suppose
we had an aggressive procedure to discard arms that terminates with a subset of arms AT ⊂ A s.t.
|AT | is sublinear in n and the optimal arm is in AT , i.e. a? ∈ AT . We could then run the most naive
elimination procedure as discussed in the introduction to identify an approximate best arm 4 and the
sample complexity would be small since |AT | is sublinear in n. Specifically, if the sample complexity
of the aggressive elimination was n

2ε2 log 1
δ the total sample complexity converges to n

2ε2 log 1
δ as n

grows, since the naive elimination procedure is applied on sublinear number of arms.

The simple observation above is the philosophy behind the algorithms in this paper. The challenges
are then how to design such aggressive elimination algorithms with low sample complexity that are
guaranteed to not discard a best arm. Since we do not know how to actually design such algorithms,
we instead design aggressive elimination algorithms with low sample complexity that are guaranteed
to terminate with an arm that is sufficiently close the best arm. Since we are not guaranteed to have
the best arm but a sufficiently close one, we then run the naive elimination procedure with higher
precision and are guaranteed to return an (ε, δ)-best arm.

The main challenge that remains to discuss is how to produce an aggressive elimination procedure
that is guaranteed to terminate with a set AT of sublinearly-many arms which includes an arm that is
sufficiently close to the best arm a?. We do this by leveraging the fact that we have a large number of
arms n. More specifically, the number of arms we discard in every step is a function of n. This then
allows us to bound the likelihood of an approximately best arm being discarded in every iteration
by a term that depends on n. Thus, as n grows large, the likelihood that we fail to maintain an
approximately best arm in AT vanishes.

3We verified that changing ε has no effect on the ratio of the number of samples required by the algorithms.
4i.e. the trivial elimination procedure which given k arms, samples each arm 2

ε2
log k

δ
times and selects the

arm with highest empirical mean. It is easy to see that this is an (ε, δ)-learning strategy.
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To gradually introduce the ideas in this paper, we describe three algorithms: SIMPLE APPROXI-
MATE BEST ARM (SABA), APPROXIMATE BEST ARM (ABA), and APPROXIMATE BEST ARM
LIKELIHOOD ESTIMATION BY HOEFFDING (ABALEH). The presentation of SABA allows us to
introduce the aggressive elimination procedure and the combination of this procedure with naive
elimination. We then describe ABA which, unlike SABA, does not make assumptions about the input
and allows the aggressive elimination procedure to terminate with an approximately best arm rather
than a best one as in SABA. The last step is ABALEH which introduces a new technique for analyzing
performance of best arm selection procedures. This technique then allows us to reduce the sample
complexity of the aggressive elimination procedure from 2n

ε2 log 1
δ of ABA to the coveted n

2ε2 log 1
δ .

H Additional Related Work

The study of learning the best arm dates back to classic work by [8], and later by [2], [26], and [25].
More recently, (ε, δ)-PAC guarantees were studied in [11] and later by [12, 27]. There have since been
other variants of this problem studied, including PAC learning a set of arms [5, 21, 24, 6], or the fixed
budget setting where the goal is to minimize δ subject to a budget constraint on samples [5, 3, 13].

Elimination Algorithms. A common approach for the (ε, δ)-PAC problem, is using algorithms
who are based on elimination process such as the Median Elimination by [11] and [12]. In this
framework, the algorithm may be described as series of rounds, where at each round we sample all
non-eliminated arms and at the end of each round we may eliminate some of the arms until reaching
a conclusion. Our work focuses on this family of algorithm and we show a lower bound for those
algorithms that match our upper bound. Our lower bound hold for this class of algorithms.

Lower bounds. [27] show that n
128ε2 log 1

4δ samples are necessary for (ε, δ)-learning a best arm. As
mention before, [9] show that their algorithm which is based on track-and-stop is tight instance-wise
for arm distributions that comes from one-parameter one-dimensional canonical exponential families.
The lower bound hold for any fixed number of arms as δ goes to 0. This lower bound is instance
specific and it not clear on how to deduce worst case lower bound for all instances. Recently, [23]
showed that Θ

(
n
m

)
samples are needed and sufficient when n is the number of arms, m is the number

of ε-best arms, and δ, ε are constants.

Implications Obtaining algorithms with dramatic lower sample complexity for a basic problem
like learning a best arm can have several consequences. First, all previous algorithms that seek
provable guarantees and directly employ MEDIAN ELIMINATION (e.g. [20, 22, 32, 18, 7, 30])
can use the algorithms here instead and achieve dramatically lower sample complexity. From a
practical perspective, MEDIAN ELIMINATION is not a particularly good choice. The naive sampling
strategy of sampling each arm with approximation ε

2 and confidence δ
n and selecting the arm with

largest empirical mean (ε, δ)-learns a best arm and has lower sample complexity than MEDIAN
ELIMINATION whenever the number of arms is smaller than 21500. Nevertheless there is a great deal
of work on heuristics based on MEDIAN ELIMINATION. Our hope is that some of the ideas presented
here would not only contribute to provably learning a best arm, but also heuristics.

I Running Time and Implementation

The algorithm by [9] reaches the optimal sample complexity for many interesting distributions but it’s
main drawback is in aspects of computation time. The Implementation of their algorithm requires to
solve many min-max problems iteratively. Hence having a computation time which is at least squared
in the number of arms.

A main advantage of elimination algorithms compared to other approaches is the possibility of
sampling all (non-eliminated) arms in parallel. In other words, having low adaptive complexity.
[19, 1] show that (ε, δ)-PAC can be solved using Θ(log∗1/δ n) rounds. The number of rounds in the
algorithms that we present is Θ(log∗1/δ n), which is still small compared to algorithms which are not
elimination algorithms and are usually full adaptive.

All of the algorithms that we present are elimination algorithm which are based on following process.
At each round a subset of the n arms is sampled where each armed is sampled at most 2

ε2 log n
δ
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times. After the sampling process, we keep as possible candidates, a fraction of the arms with the
highest mean. The number of samples at each round is a function the round number, and the fraction
of remaining arms is a function of the arms at the beginning of this round. Both of which can be
computed efficiently. The filtering process can be computed in O(log2 n) time in PRAM model [16],
hence giving a total implementation in poly-logarithmic time complexity which is an exponential
improvement compared to [9].
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