
A Bandit OCO with memory

The proof consists of four parts: In A.1 we cover notation for functions and sets relevant to our
analysis. In A.2, we cover some properties of the exploration noises ut. In A.3, we prove a few
important lemmas about the gradient estimator gt. Finally, in A.4 we combine our lemmas from
above with a reduction of the main theorem to obtain our main result.

A.1 Notation and Basic Results

Denote the ball and sphere of dimension d with radius r respectively as

Bdr
.
= {x ∈ Rd : ‖x‖ ≤ r} , Sdr

.
= {x ∈ Rd : ‖x‖ = r}.

Consider a convex set K ⊂ Rd bounded with diameter D and containing the unit ball B.1 For
0 < δ < 1, consider the Minkowski subset:

Kδ
.
= {x ∈ K :

1

1− δ
x ∈ K},

and observe that Kδ is convex and ∀u ∈ Bd1 , x ∈ Kδ we have x+ δu ∈ K because K contains the
unit ball.

Next, we define the δ-smoothed version of a function f : Rd → R to be:

f̂δ(x)
.
= E
v∼B

[f(x+ δv)] (A.1)

The following standard facts about the gradient of a smoothed function can be found in the literature,
e.g. [15] Chapter 6 Lemma 6.7:

Fact A.1. Let f be G-Lipschitz, and f̂δ as defined in eq. A.1. We then have:

1. E
u∼S

[f(x+ δu)u] =
δ

d
∇f̂δ(x)

2. |f̂δ(x)− f(x)| ≤ δG, ∀x ∈ K

We additionally introduce the function f̃t : K → R for loss functions with memory defined as:

f̃t(x)
.
= ft(

×H︷ ︸︸ ︷
x, . . . , x)

Throughout our analysis, it will be helpful to denote the collection of vectors (vt−n, . . . , vt) by
vt−n:t. Using this notation, addition and scalar multiplication will also be compactly expressed as
vt−n:t+αwt−n:t

.
= (vt−n+αwt−n, . . . , vt+αwt). Because we are interested in loss functions with

H inputs, we will mostly be interested in collections of the form vt−H+1:t. To avoid the excessive
use of H ± 1 throughout the rest of the paper, we will introduce the notation H̄ .

= H − 1.

We now introduce the index-wise gradients ∇ift to be the derivative of ft with respect to the i’th
input vector, namely:

∇ift(xt−H̄:t) =
∂ft(xt−H̄ , . . . , xt)

∂xt−H̄+i

such that∇ft = (∇0ft, . . . ,∇H̄ft). We make the following observation about the gradients∇ift.

Lemma A.2. The gradient ∇f̃t(x) = ∂f̃t(x)
∂x is related to the gradient of ft by

∇f̃t(x) =

H̄∑
i=0

∇ift(xt−H̄ , . . . , xt)
∣∣∣∣
xt−H̄=...=xt=x

which we denote as∇f̃t(x) =
H̄∑
i=0

∇if̃t(x).

1We suppress the radius and dimensionality indices for Sd
1 and Bd

1 for the sake of presentation.
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Proof. Applying chain rule over ft(xt−H̄:t) with xt−i(x) = x, i = 0, . . . , H̄ yields the product of
the dH dimensional gradient ∂ft

∂xt−H̄:t
and the dH × d dimensional Jacobian ∂xt−H̄:t

∂x , which is equal
to H copies of the d× d identity matrix. Specifically,

∇f̃t(x) =
∂f̃t(x)

∂x
=
∂ft(xt−H̄:t)

∂xt−H̄:t

>

·
∂xt−H̄:t

∂x

=


∂ft(xt−H̄:t)

∂xt−H̄
...

∂ft(xt−H̄:t)

∂xt


>

·

Id...
Id


=

H̄∑
i=0

∂ft(xt−H̄:t)

∂xt−i
=

H̄∑
i=0

∇ift(xt−H̄ , . . . , xt)
∣∣∣∣
xt−H̄=...=xt=x

where the derivatives ∂ft(xt−H̄:t)

∂xt−H̄:t
are evaluated at xt−H̄ = . . . = xt = x implicitly on lines 2 through

4 for clarity.

Finally, we denote the optimizer over K with respect to all observed loss functions as x? =

arg minx∈K
∑T
t=H ft(x, . . . , x).

A.2 Properties of the random exploration noise

Claim A.3. (Independence) xt is independent of ut−H̄ , . . . , ut.

Proof. Base case: for t ≤ H all xt’s are set arbitrarily to be equal and so the conclusion is immediate.
For t ≥ H: Assume this holds for xt and observe that xt+1 = xt + ηtgt−H̄ is uniquely defined by
xt and gt−H̄ , for which the latter satisfies

gt−H̄ =
d

δ
ft−H̄(xt−2H̄:t−H̄ + ut−2H̄:t−H̄)

H̄∑
i=0

ut−H̄−i.

Now, since ft−H̄ and ut−2H̄:t−H̄ are sampled before ut−H̄+1:t+1, the random variables that uniquely
determine gt are independent from ut−H̄+1:t+1. Furthermore, by induction hypothesis xt is inde-
pendent of ut−H̄ , . . . , ut and clearly also of ut+1. Thus, the components that uniquely define xt+1

are independent of ut−H̄+1:t+1, which means that xt+1 is independent of ut−H̄+1:t+1 as well, as
desired.

Remark. Claim A.3 above allows us to conclude that ut−H̄:t is independent of xt−H̄:t, which
crucially allows us to apply fact A.1 to our gradient estimator gt.

Lemma A.4. The sum of ut−H̄ , . . . , ut for all t has expected squared norm less than or equal to H .

Proof. Since ut ∈R S ∀t, we have E[ui · uj ] = 0 whenever i 6= j, hence

E


∥∥∥∥∥∥
H̄∑
i=0

ut−i

∥∥∥∥∥∥
2
 = E

 H̄∑
i=0

ut−i

 ·
 H̄∑
i=0

ut−i


= E

 H̄∑
i=0

‖ut−i‖2
+ E

∑
i6=j

ut−i · ut−j


= H
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A.3 Properties of the gradient estimator

The goal of this section is to prove a lemma showing that our gradient estimator gt is a valid estimator
of ∇f̃t(xt) by bounding the difference in expectation between the two, as well as bounding the norm
of gt itself. We recall our previous assumptions that the loss functions are bounded by one, have
gradients bounded by ||∇ft|| ≤ G (which is equivalent to ft being G-Lipschitz), and have hessians
bounded by ||∇2ft|| ≤ β (which is equivalent to ft being β-smooth).

We start by bounding the expected square norm of our gradient estimator.

Lemma A.5. The gradient estimator gt satisfies E
[
‖gt‖2

]
≤ d2H

δ2 .

Proof. Combining lemma A.4 with ft(yt−H̄:t) ≤ 1 and the definition of gt, it follows that

E
[
‖gt‖2

]
= Eut−H̄:t


∥∥∥∥∥∥dδ ft (xt−H̄:t + δut−H̄:t

)
·
H̄∑
i=0

ut−i

∥∥∥∥∥∥
2


= E

d2

δ2
ft(yt−H̄:t)

2

∥∥∥∥∥∥
H̄∑
i=0

ut−i

∥∥∥∥∥∥
2


≤ d2

δ2
E


∥∥∥∥∥∥
H̄∑
i=0

ut−i

∥∥∥∥∥∥
2


≤ d2H

δ2
.

Remark: Even if the losses ft are bounded by some constant M > 1, the results for our algorithm
and proofs still hold if one scales down the gradient estimator to 1

M gt, only adding a factor M .

Using the lemma above, we can now bound the distance between our predictions as follows:
Lemma A.6. For x0, . . . , xT selected according to Algorithm 1, we have that:

E
[∥∥xt−H̄:t − (xt+H̄ , . . . , xt+H̄)

∥∥2
]
≤ 4η2

t−H̄
d2H4

δ2
.

Proof. Starting with the first inequality, since xt+1 = Π
Kδ

[xt − ηtgt−H̄ ], we have that:

E
[∥∥(xt−H̄ , . . . , xt)− (xt+H̄ , . . . , xt+H̄)

∥∥2
]

= E

 H̄∑
i=0

∥∥xt+H̄ − xt−i∥∥2


≤ E

 H̄∑
i=0

i+H̄∑
j=1

∥∥xt+H̄−j+1 − xt+H̄−j
∥∥2

 (4-ineq.)

≤ E

 H̄∑
i=0

i+H̄∑
j=1

ηt+H̄−j ‖gt−j‖

2
 (projection property)

≤ E

η2
t−H̄

H̄∑
i=0

i+H̄∑
j=1

‖gt−j‖

2
 (ηt decreasing)

≤ η2
t−H̄

H̄∑
i=0

(2H̄)2 · d
2H

δ2
(C-S & lemma A.5)

≤ 4η2
t−H̄

d2H4

δ2
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Corollary A.7. We also have that

E
[∥∥xt−H̄:t − (xt+H̄ , . . . , xt+H̄)

∥∥] ≤ 2ηt−H̄
dH2

δ
.

Proof. This is an immediate consequence of lemma A.6 since E[‖X‖]2 ≤ E[‖X‖2].

We continue by proving our desired properties about the estimator gt. We first observe the following
property for linear δ-smoothed functions.

Lemma A.8. For f linear and satisfying our assumptions, we have that

E
ut−H̄:t∼

H
⊕
t=1

S

[
d

δ
f(xt−H̄:t + δut−H̄:t)ut−H̄:t

]
= ∇f(xt−H̄:t)

Proof. By the independence of xt−H̄:t and ut−H̄:t (Claim A.3), we can apply Fact A.1 to each index
i = 0, . . . , H̄ and obtain

E
ut−H̄:t∼

H
⊕
t=1

S

[
f(xt−H̄:t + δut−H̄:t)ut−i

]
= E
ut−i∼S

 E
u[t−H̄:t]\{t−i}∼

H−1
⊕
t=1

S

[
f(xt−H̄:t + δut−H̄:t)ut−i

]
= E
ut−i∼S

[
f(xt−H̄:t + δ(0, . . . , ut−i, . . . ,0))ut−i

]
=
δ

d
∇H̄−if̂δ(xt−H̄:t)

=
δ

d
∇H̄−if(xt−H̄:t)

where the second and last lines follow by the linearity of f , the symmetry of the sphere
and the fact that expectation commutes with linear operators. Since ∇f(xt−H̄:t) =
(∇0f(xt−H̄:t), . . . ,∇H̄f(xt−H̄:t)), the lemma then follows.

Using the theorem above, we can generalize Fact A.1 in the following manner:

Theorem A.9. For general convex f satisfying our assumptions, we have:∥∥∥∥∥∥∥ E
ut−H̄:t∼

H
⊕
t=1

S

[
d

δ
f(xt−H̄:t + δut−H̄:t)ut−H̄:t

]
−∇f(xt−H̄:t)

∥∥∥∥∥∥∥ ≤
dδ

2
H3/2

Proof. Consider the linear function f̄xt−H̄:t
(zt−H̄:t) = f(xt−H̄:t) +∇f(xt−H̄:t)(zt−H̄:t − xt−H̄:t).

By lemma A.8 above,

E
ut−H̄:t∼

H
⊕
t=1

S

[
d

δ
f̄xt−H̄:t

(xt−H̄:t + δut−H̄:t)ut−H̄:t

]
= ∇f̄xt−H̄:t

(xt−H̄:t)

= ∇f(xt−H̄:t).
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The lemma then follows when we bound the difference between f and f̄xt−H̄:t
such that:

∥∥∥∥E [dδ f(xt−H̄:t + δut−H̄:t)ut−H̄:t

]
−∇f(xt−H̄:t)

∥∥∥∥
≤
∥∥∥∥E [dδ f(xt−H̄:t + δut−H̄:t)ut−H̄:t

]
− E

[
d

δ
f̄xt−H̄:t

(xt−H̄:t + δut−H̄:t)ut−H̄:t

]∥∥∥∥
≤ E

[
d

δ
|f(xt−H̄:t + δut−H̄:t)− f̄xt−H̄:t

(xt−H̄:t + δut−H̄:t)|
∥∥ut−H̄:t

∥∥] (Jensen)

≤ E
[
d

δ

β

2

∥∥δut−H̄:t

∥∥2 ∥∥ut−H̄:t

∥∥] (Taylor &
∥∥∇2

∥∥ bound)

≤ dδ

2
H3/2

where the expectations are taken over ut−H̄:t ∼
H
⊕
t=1

S.

Corollary A.10. gt satisfies:

∥∥∥∥∥∥E[gt]−
H̄∑
i=0

∇ift(xt−H̄:t)

∥∥∥∥∥∥ ≤ dδ

2
H2

where the expectation is over all randomness in the algorithm.

Proof. By the definition of gt (line 10 of Algorithm 1), we have

∥∥∥∥∥∥E[gt]−
H̄∑
i=0

∇ift(xt−H̄:t)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥E
d
δ
f(xt−H̄:t + δut−H̄:t)

H̄∑
i=0

ut−i

− H̄∑
i=0

∇ift(xt−H̄:t)

∥∥∥∥∥∥
≤
√
H

∥∥∥∥E [dδ f(xt−H̄:t + δut−H̄:t)ut−H̄:t

]
−∇f(xt−H̄:t)

∥∥∥∥ (4-ineq. & C-S)

≤ dδ

2
H2. (lemma A.9)

Lemma A.11. We have that:

E

∥∥∥∥∥∥
H̄∑
i=0

∇ift(xt−H̄:t)−∇f̃t(xt+H̄)

∥∥∥∥∥∥
 ≤ 2

ηt−H̄βdH
5/2

δ
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Proof. Using the results derived thus far, we obtain:

E


∥∥∥∥∥∥
H̄∑
i=0

∇ift(xt−H̄:t)−∇f̃t(xt+H̄)

∥∥∥∥∥∥
2


= E


∥∥∥∥∥∥
H̄∑
i=0

∇ift(xt−H̄:t)−
H̄∑
i=0

∇ift(xt+H̄ , . . . , xt+H̄)

∥∥∥∥∥∥
2
 (lemma A.2)

≤ HE

 H̄∑
i=0

∥∥∇ift(xt−H̄:t)−∇ift(xt+H̄ , . . . , xt+H̄)
∥∥2

 (Cauchy-Schwarz)

= HE
[∥∥∇ft(xt−H̄ , . . . , xt)−∇ft(xt+H̄ , . . . , xt+H̄)

∥∥2
]

≤ Hβ2E
[∥∥(xt−H̄ , . . . , xt)− (xt+H̄ , . . . , xt+H̄)

∥∥2
]

(β-smoothness)

≤ Hβ2
4η2
t−H̄d

2H4

δ2
(lemma A.6)

= 4
η2
t−H̄β

2d2H5

δ2
.

after which our result follows by E[‖X‖]2 ≤ E[‖X‖2].

The lemmas above allow us to obtain our desired result regarding the gradient estimator gt, presented
below.
Corollary A.12. The gradient estimator gt satisfies:

E
[∥∥∥E[gt]−∇f̃t(xt+H̄)

∥∥∥] ≤ dδ

2
H2 + 2

ηt−H̄βdH
5/2

δ

Proof. This follows from Corollary A.10 and Lemma A.11 due to the triangle inequality.

A.4 Proof of Theorem 3.1

We start by performing a reduction from bounding the regret over ft(yt−H̄:t) to that over f̃t−H̄(xt)
against x?δ = ΠKδ(x

?).
Lemma A.13. We have that:

E

[
T∑
t=H

(
ft(yt−H̄:t)− f̃t(x?)

)]
− E

[
T∑
t=H

(
f̃t−H̄(xt)− f̃t−H̄(x?δ)

)]
≤ 3δGDH1/2T +

dGH2

δ

T−H̄∑
t=1

ηt

Proof. First we look at t = H,T − H̄ . By properties of projection, we have that ‖x? − x?δ‖ ≤ δD
and hence G-Lipschitzness guarantees that ft(x?)− ft(x?δ) ≤ GDδ. Further,

E
[(
ft(yt−H̄:t)− f̃t(xt+H̄)

)]
= E

[(
ft(xt−H̄:t + δut−H̄:t)− f̃t(xt+H̄)

)]
≤ GE[||(xt−H̄:t + δut−H̄:t)− (xt+H̄ , . . . , xt+H̄)||]

≤ ηt−H̄
dGH2

δ
+ δGH1/2 (cor. A.7)

summing over t = H,T − H̄ concludes the proof by the conveniency-motivated assumptions

D ≥ 1, H ≤ T, δ ≥ 1

G
√
T

(which are satisfied by our ultimate choice of parameters).

We now move on to bounding f̃t−H̄(xt)− f̃t−H̄(x?δ).
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Observation A.14. If we denote by E the expectation over the ut’s and apply the law of total
expectation, we have that:

E
[
(E[gt−H̄ ]− gt−H̄) · (xt − x?δ)

]
= E

[
E[(E[gt−H̄ ]− gt−H̄) · (xt − x?δ) | (u0, . . . , ut−H̄)]

]
= 0

Observation A.15. By convexity of f̃t−H̄ , we have that:

f̃t−H̄(xt)− f̃t−H̄(x?δ) ≤ ∇f̃t−H̄(xt)
>(xt − x?δ)

Lemma A.16. The delayed regret against x?δ in terms of f̃ satisfies:

E

[
T∑
t=H

f̃t−H̄(xt)

]
−

T∑
t=H

f̃t−H̄(x?δ) ≤
D2

2ηT
+

(
d2H

2δ2
+

2dβDH5/2

δ

) T∑
t=1

ηt +
dδ

2
H2DT +HGD

Proof. Observe that:

‖xt+1 − x?δ‖
2

=
∥∥ΠKδ [xt − ηtgt−H̄ ]− x?δ

∥∥2

≤
∥∥xt − ηtgt−H̄ − x?δ∥∥2

(Pythagoras)

= ‖xt − x?δ‖
2

+
∥∥ηtgt−H̄∥∥2 − 2ηtg

>
t−H̄ · (xt − x

?
δ)

⇒ 2g>t−H̄ · (xt − x
?
δ) ≤

‖xt − x?δ‖
2 − ‖xt+1 − x?δ‖

2

ηt
+ ηt

∥∥gt−H̄∥∥2
(A.2)

Therefore, we get:

E

[
T∑
t=H

f̃t−H̄(xt)

]
−

T∑
t=H

f̃t−H̄(x?δ) = E

[
T∑
t=H

(
f̃t−H̄(xt)− f̃t−H̄(x?δ)

)]

≤ E

[
T∑
t=H

∇f̃t−H̄(xt)
> (xt − x?δ)

]

= E

[
T∑
t=H

(
gt−H̄ + (E[gt−H̄ ]− gt−H̄) + (∇f̃t−H̄(xt)− E[gt−H̄ ])

)>
(xt − x?δ)

]
By equation (A.2), observation A.14 and Cauchy-Schwarz, we have:

≤ 1

2
E

[
T∑
t=H

(
‖xt − x?δ‖

2 − ‖xt+1 − x?δ‖
2

ηt
+ ηt

∥∥gt−H̄∥∥2

)]
+ 0

+ E

[
T∑
t=H

∥∥∥∇f̃t−H̄(xt)− E[gt−H̄ ]
∥∥∥ · ‖xt − x?δ‖

]

≤ 1

2
E

[
T∑

t=H+1

‖xt − x?δ‖
2

(
1

ηt
− 1

ηt−1

)
+
||xH − x?δ ||2

ηH

]
+
d2H

2δ2
·
T∑
t=H

ηt (lem. A.5)

+

T∑
t=H

(
dδ

2
H2 + 2

ηt−H̄βdH
5/2

δ

)
·D +HGD (lem. A.12)

where we used gt = 0 for all t < H and
∥∥∥∇f̃∥∥∥ ≤ G. Since ηt is a decreasing sequence we have:

E

[
T∑
t=H

f̃t−H̄(xt)

]
−

T∑
t=H

f̃t−H̄(x?δ) ≤
D2

2ηT
+
d2H

2δ2
·
T∑
t=H

ηt +
dδ

2
H2DT

+
2dβDH5/2

δ

T∑
t=1

ηt +HGD

We are now able to conclude our main proof.
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Theorem 3.1. Setting step sizes ηt = Θ(t−3/4H−3/2d−1D2/3G−2/3β−1/2) and perturbation
constant δ = Θ(T−1/4H−1/2D1/3G−1/3), Algorithm 1 produces a sequence {yt}Tt=0 that satisfies:

Regret ≤ O
(
T 3/4H3/2dD4/3G2/3β1/2

)
Proof. Putting A.13 and A.16 together, we get:

Regret = E

[
T∑
t=H

(
ft(yt−H̄:t)− f̃t(x?)

)]

≤ 3D2

2ηT
+

(
d2H

2δ2
+

3dβDGH5/2

δ

) T∑
t=1

ηt + dδH2DT + 3δGDH1/2T +HGD

Noting that
∑T
t=1

1
t3/4 ≤ 4T 1/4 + 1, setting the parameters as specified yields the desired result,

concluding the proof of Theorem 3.1.

B Regret Analysis for Known Systems

Proof. Observe that, if we fix xt−H̄ (the state starting H̄ time steps back) and the observed distur-
banceswt−2H̄−1, . . . , wt, then the state xt and action ut at H̄ time steps later are uniquely determined
by the sequence of H policies Mt−H̄ , . . .Mt, which means that ct(xt, ut) can be considered as an
implicit functions of the past H policies played. It then follows that ∀ct, ∃ unique ft such that:

ft(Mt−H̄ , . . .Mt) ≡ ct
(
xt(Mt−H̄:t), ut(Mt−H̄:t)|xt−H , wt−2H̄−1:t

)
.

Due to the analysis by [4], sections 4.3 and 4.4, we know that ft is convex with respect to
Mt−H̄ , . . . ,Mt when xt−H̄ , K, and the perturbations wt are fixed. Furthermore, because ct is
Lipschitz and smooth, ft is G′-Lipschitz and β′-smooth as well, for some G′, β′. This means we
can successfully apply the approach in Algorithm 1 to our current setting. Therefore, by Theorem
3.1 we get that for any fixed initial (κ, γ)-stable K, if we denote the actions taken by Algorithm 2
as uK0 , . . . , u

K
T , and M∗ = arg min

M∈M

∑T
t=H ct(x

K
t (M), uKt (M)) the best DAC policy in hindsight,

then we have that:

E

[
T∑
t=0

ct(x
K
t , u

K
t )

]
−

T∑
t=0

ct(x
K
t (M?), uKt (M?))

≤ H +
D2

2ηT
+

(
d2H

2δ2
+

3dβ′DG′H5/2

δ

) T∑
t=1

ηt + dδH2DT + 3δG′DH1/2T +HG′D

where d = Hmn because each policy Mt consists of H matrices of dimension m× n. Setting H =

Θ(log T ) and the other parameters as in 3.1, we get JT (BPC) − JT (M∗) ≤ O(T 3/4 log5/2 T ),
where the factor log5/2 T follows from d = Θ(H) and H = Θ(log T ). Due to the exponential decay
of the component norms of elements inM, we can treat all other quantities as constants.

C Regret Analysis for Unknown Systems

Proof. We split the regret incurred by Algorithm 4, which we will denote by A, into:
Regret = Regret1 + Regret2 + Regret3

where the first term corresponds to the regret of the system identification phase, the second term
to the regret of algorithm 2 relative to the optimal DAC policy M?, and the final term to the
difference between the performance of M? on the estimated and true dynamics. Specifically, for
M? .

= arg min
M∈M

[J(M |A,B,w)] we have:

Regret1 = JT0
(System identification) (C.1)

Regret2 = JT−T0(A|Â, B̂, ŵ)− JT−T0(M?|Â, B̂, ŵ) (C.2)

Regret3 = JT−T0
(M?|Â, B̂, ŵ)− JT−T0

(M?|A,B,w). (C.3)
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By Lemma 20 in [16], the cost incurred during the system identification phase adds up to Regret1 =

O(T0) = O(T 2/3 log δ̂−1) = O(T 2/3 log T ), and since the regret incurred by the second phase of
the algorithm has an O(T 3/4 log5/2 T ) bound, Regret1 is insignificant to our final result.

Next, since J(M?|Â, B̂, ŵ) ≥ min
M∈M

J(M |Â, B̂, ŵ) and phase 2 corresponds to running Algorithm

2 on Â, B̂ by the Simulation Lemma, Theorem 5.1 implies:

Regret2 ≤ O
(
T 3/4 log5/2 T

)
We now move on to Regret3. Let A,B denote the true, unknown dynamics and let Â, B̂ be output of
Phase 1 after T0 exploration rounds. By Theorem 19 in [16], with probability 1− δ̂, we have that:∥∥∥A− Â∥∥∥

F
,
∥∥∥B − B̂∥∥∥

F
≤ εA,B (C.4)

where T0 = Θ
(
ε−2
A,B log δ̂−1

)
. Our choice of T0 therefore implies that εA,B =

Θ
(
T−1/3 log−1/2 δ̂−1

)
. Now, by our assumptions on the bound on the perturbations there ex-

ists a constant εw such that ‖wt − ŵt‖ ≤ εw. Observe that if Â, B̂ satisfy C.4, then:

‖wt − ŵt‖ =
∥∥∥(xt+1 −Axt −But)− (xt+1 − Âxt − B̂ut)

∥∥∥
≤
∥∥∥A− Â∥∥∥ · ‖xt‖+

∥∥∥B − B̂∥∥∥ · ‖ut‖ (4-inequality)

= O(εA,B)

since by assumption xt and ut are bounded, which means that the smallest value for εw satisfies
εw = O(εA,B). By Lemma 17 in [16] and the formula of state evolution, it follows that for any
M ∈M:

|J(M |Â, B̂, ŵ)− J(M |A,B,w)| ≤ |J(M |Â, B̂, ŵ)− J(M |A,B, ŵ)|+ |J(M |A,B, ŵ)− J(M |A,B,w)|
≤ O(T (εw + εA,B))

≤ O(T 2/3 log−1/2 δ̂−1)

with probability 1− δ̂, and hence Regret3 = O(T 2/3) with probability 1− δ̂ as well.

Adding up everything we get that with probability 1− δ̂:

Regret ≤ O
(
T 2/3 log δ̂−1 + T 3/4 log5/2 T + T 2/3 log−1/2 δ̂−1

)
.

With at most probability δ̂ we obtain worst-case regret of O(T ) since our costs are bounded. Thus
we can set δ̂ = Θ(T−1) and obtain our final regret bound:

Regret ≤ O
(
T 2/3 log δ̂−1 + T 3/4 log5/2 T + +T 2/3 log−1/2 δ̂−1 + δ̂T

)
≤ O(T 3/4 log5/2 T ).

Remark C.1. We see that Algorithm 4 enjoys the same regret bound as Algorithm 2 despite acting in
an unknown system. This is because both the regret incurred during exploration and the difference in
performance between the Â, B̂-optimal DAC and the true optimal DAC are of lower order than the
regret incurred by Algorithm 2.

Remark C.2. Our general results from Section 3 are also suitable for the policy parametrization of
[32]. Under this alternate parametrization, one can overcome the need for controllability for the
case of unknown systems (and require stabilizability and detectability only instead). We leave the
precise implementation of this remark to future work.
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