
A Extra Notations

Here we introduce a few more notations.

We first let ·,�,⊗ denote inner, element-wise, and Kronecker product, respectively. Next,
Let us introduce a few notations: a matrix A ∈ RK×L, a scalar function Fk,`(·) : R 7→ R for
k ∈ [K], ` ∈ [L], a scalar function ψk1,k2,`(·) : R 7→ R for k1, k2 ∈ [K], ` ∈ [L], matrix to ma-
trix functions ra(·) : RK×L 7→ RK×KL, rb(·) : RK×L 7→ RK×L, and r[−](·) : RK×L 7→ RK×KL.
A is given by Ak,` , Pr[yk(x) = `], which represents the probability of kth service pro-
ducing label `. The scalar function Fk,`(X) , Pr[qk(x) ≤ X|y(x) = `] is the probabil-
ity of the produced quality score from the kth service less than a threshold X con-
ditional on that its predicted label is `. The scalar function ψk1,k2,`(·) is defined as

ψk1,k2,`(α) , E
[
rk1

(x)|yk1
(x) = `, qk1

(x) ≤ F−1
k1,`

(α)
]
, i.e., the executed accuracy of the k2

service conditional on that the k1 services produces a label ` and quality score that is less
than F−1

k,` (ρρρk1,`). Then those matrix to matrix functions are given by rak1,K(`−1)+k2
(ρρρ) ,

ψk1,k2,`(ρρρk1,`), rbk,`(ρρρ) , ψk,k,`(ρρρk,`), and r[−](ρρρ) , ra(ρρρ)− rb(ρρρ)⊗ 1TK .

B Algorithm Subroutines

In this section we provide the details of the subroutines used in the training algorithm
for FrugalML. There are in total four components: (i) estimating parameters, (ii) solving
subproblem 3.3 to obtain its optimal value and solution, (iii) constructing the function gi(·),
and (iv) solving the master problem 3.2.

Estimating Parameters. Instead of directly estimating E[ri(x)|Ds,A
[i]
s ], we estimate

A, rb(1K×L), and r[−](·) as defined in Section A, which are sufficient for the subroutines
to solve the subproblem 3.3. Let Â, r̂b(1K×L), and r̂[−](·) be the corresponding estima-
tion from the training datasets. Now we describe how to obtain them from a dataset
{y(xi),{qk(xi), yk(xi)}Kk=1}Ni=1.

To estimate A, we simply apply the empirical mean estimator and obtain Âk,` ,
1
N

∑N
i=1 1{yk(xi)=`}. To estimate rb(1K×L), and r[−](·), we first compute ψ̂k1,k2,`(αm) ,∑N

i=1 1{yk1
(xi)=`,q̂m,k1,`

≥qk1
(xi),yk2

(xi)=y(xi)}∑N
i=1 1{yk1

(xi)=`,q̂m,k1,`
≥qk1

(xi)}
, for αm = m

M ,m ∈ {0} ∪ [M ], where q̂m,k,` ,

Quantile({qk(xi)|yk(xi) = `, i ∈ [N ]}, αm) is the empirical αm-quantile of the quality
score of the kth service conditional on its predicted label being `. Next we estimate

ψk1,k2,`(·) by linear interpolation, i.e., generating ψ̂k1,k2,`(α) ,
ψ̂k1,k2,`

(αm)−ψ̂k1,k2,`
(αm+1)

αm−αm+1
(α−

αm) + ψ̂k1,k2,`(αm), α ∈ [αm, αm+1]. We can now estimate r̂ak1,K(`−1)+k2
(ρρρ) , ψk1,k2,`(ρρρk1,`),

r̂bk,`(ρρρ) , ψ̂k,k,`(ρρρk,`), and finally compute r̂b(1K×L)k,` and r̂[−](ρρρ) , r̂a(ρρρ)− r̂b(ρρρ)⊗ 1TK .

Solving subproblem 3.3. There are 3 steps for solving problem 3.3. First,
for k = i, ` ∈ [L], invoke Algorithm 2 to compute ρ̂k,`(βm),Π̂ΠΠk,`(βm), ĥk,`(βm)
where βm = m

M (b′ − ck),m = 0,1, · · · ,M . Next compute t∗1, t
∗
2, · · · , t∗L =

arg maxt1,··· ,tL∈[L]∪{0}
∑L
`=1 Âk,`ĥk,`(βt`) s.t.

∑L
`=1 t` = M . Finally return ĝi(b

′) ,∑L
`=1 Âk,`ĥk,`(βt∗` ) as an approximation to the de facto optimal value gi(b

′), and the

approximately optimal solution Q̂i(b
′) and P̂[2]

i(b
′), where for ` ∈ [L], j ∈ [K], [P̂[2]

i (b′)]i,`,j ,

Π̂ΠΠi,`
j (βt∗` ), [P̂[2]

i (b′)]i′,`,j , 0, i′ 6= i, [Q̂i(b
′)]i,` ,Quantile({qi(xi)|yi(xj) = `, j ∈ [N ]}, ρ̂i,`(βt∗` )),

and [Q̂i(b
′)]i′,`] = 0, i′ 6= i.

Remark 2. Algorithm 2 effectively solves the problem

max
ρ,ΠΠΠ∈Ω2

r̂bk,`(1K×L) + ρΠΠΠT · r̃k,`(ρ)

s.t. ρ(ΠΠΠ−ΠΠΠ� ek)T c ≤ β,
(B.1)
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Algorithm 2 Solver for Problem B.1.

Input :β,k, `, r̂b(1K×L), r̂[−](·)
Output : the optimal solution ρ̂k,`(β),Π̂ΠΠk,`(β), and the optimal value ĥk,`(β)

1: Construct r̃kl(ρ) ,
[̂
r[−]
k,K(`−1)+1:K`(ρ1K×L)

]T
.

2: Construct φi(µ) , r̂bk,`(1K×L) + min{ βci , µ}r̃
k,`
i (µ)

3: Construct φi,j(µ) , r̂bk,`(1K×L) +
β−µcj
ci−cj

r̃k,`i (µ) + µci−β
ci−cj

r̃k,`j (µ)

4: Compute (µ1, i1) = arg maxµ∈[0,1],i∈[K] φi(µ)
5: Compute (µ2, i2, j2) = arg maxµ∈[ βci

,min{ βcj ,1}],i,j∈[K],ci>cj φi,j(µ).

6: if φi1(µ1) ≥ φi2,j2(µ2) then

7: ρ̂k,`(β) = µ1, Π̂ΠΠk,`(β) =

[
1µ1<

β
ci1

+ β
ci
1µ1≥ β

ci1

]
ei1 , ĥk,`(β) = φi1(µ1)

8: else
9: ρ̂k,`(β) = µ2, Π̂ΠΠk,`(β) =

β/µ2−cj2
cj2−cj2

ei2 +
ci2−β/µ2

ci2−ci2
ej2 , ĥk,`(β) = φi1(µ1).

Return ρ̂k,`(β),Π̂ΠΠk,`(β), ĥk,`(β)

where Ω2 = {(ρρρ,ΠΠΠ)|ρρρ ∈ [0,1],ΠΠΠ ∈ RK ,0 4 ΠΠΠ 4 1,ΠΠΠT · 1K = 1} and r̃kl(ρ) : R 7→ RK is the
transpose of r̂[−]

k,K(`−1)+1:K`(ρ1K×L). Observe that the function r̂[−](·) by construction is piece wise
linear, and thus r̃k`(ρ) is also piece wise linear. Thus, ψi(·) and ψi,j(·) are piece wise quadratic
functions. Thus, the optimization problems in Algorithm 2 (line 4 and line 5) can be efficiently
solved, simply by optimizing a quadratic function for each piece.

Constructing gi(·). We construct an approximation to gi(·), denoted by ĝLIi (·). The con-
struction is based on linear interpolation using ĝi(θm) as well as ĝi(ci) which by definition is
0. More precisely, ĝLIi (θ) , 0, θ ≤ ci, ĝLIi (θ) , ĝi(θm)−ĝi(θm+1)

θm−θm+1
(θ− θm+1) + ĝi(θm+1), θm+1 ≥

θ ≥ θm ≥ ci, and ĝLIi (θ) , ĝi(θm)
θm

θ, θm ≥ θ ≥ ci ≥ θm−1. Here, θm , b′m = ‖2c‖∞
M .

Solving Master Problem 3.2. To solve Problem 3.2, let us first denote Ω3 = {x ∈
R4|x < 0,x1 + x2 = 1} and Ω3,m1,m2 , {x ∈ Ω3|θmi−1xi ≤ xi+3 ≤ θmixi+3, i = 1,2},
for m1 ∈ [M ],m2 ∈ [M ]. For each i1, i2,m1,m2, first compute ĝ

∑
(i1, i2,m1,m2) ,

max(p1,p2,b1,b2)∈Ω3,m1,m2
p1ĝ

LI
i1

(b1/p1) + p2ĝ
LI
i2

(b2/p2) s.t. b1 + b2 = b, a linear programming
by construction. Next compute i∗1, i

∗
2,m

∗
1,m

∗
2 , arg maxi1,i2,m1,m2

ĝ
∑

(i1, i2,m1,m2) and
(p∗1, p

∗
2, b
∗
1, b
∗
2) , max(p1,p2,b1,b2)∈Ω3,m∗1 ,m

∗
2
p1ĝ

LI
i∗1

(b1/p1) + p2ĝ
LI
i∗2

(b2/p2) s.t. b1 + b2 = b. Finally
return the corresponding solution i∗1, i∗2, p∗1, p∗2, b∗1, b∗2.

C Missing Proofs

C.1 Helpful Lemmas

We first provide some useful lemmas throughout this section.

Lemma 4. Suppose the linear optimization problem

max
z∈RK

uT z

s.t. vT z ≤ w,1T z ≤ 1,z ≥ 0

is feasible. Then there exists one optimal solution z∗ such that ‖z∗‖0 ≤ 2.

Proof. Let z∗ be one solution. If ‖z∗‖0 ≤ 2, then the statement holds. Suppose ‖z∗‖0 = nnz> 2
(and thus K ≥ 3). W.l.o.g., let the first nnz elements in z∗ be the nonzero elements. Let
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imin = arg mini:i≤nnz vi and imax = arg maxi:i≤nnz vi. If vimax > vimin , construct z′ by

z′i =


z∗i (= 0), if i > nnz
vT1:nnzz∗1:nnz−vimin

1T z1:nnz

vimax−vimin
, if i = imax

−vT1:nnzz∗1:nnz+vimax 1T z1:nnz
vimax−vimin

, if i = imin

0, otherwise

Otherwise, construct z′ by

z′i =


z∗i (= 0), if i > nnz
1T z∗1:nnz, if i = imax

0, otherwise

Now our goal is to prove that z′ is one optimal solution and ‖z′‖0 ≤ 2.

(i) We first show that z′ is a feasible solution.

(1) vimax > vimin : If i 6∈ {imax, imin}, clearly z′i = 0 ≥ 0. Since z∗ is feasible, z∗1:nnz ≥ 0. By

definition, z′imax
=

vT1:nnzz∗1:nnz−vimin
1T z1:nnz

vimax−vimin
= 1

vimax−vimin

∑nnz
j=1(vj − vimin)z∗j ≥ 0, and similarly

z′imin
≥ 0. Thus, we have z′ ≥ 0.

In addition,

vT z′ =
vT1:nnzz∗1:nnz − vimin

1T z1:nnz

vimax − vimin

vimax
+
−vT1:nnzz∗1:nnz + vimax

1T z1:nnz

vimax − vimin

vimin

= vT1:nnzz∗1:nnz = vT z∗ ≤ w

where the last equality is due to the fact that zi = 0,∀i > nnz. Similiarly, we have

1T z′ =
vT1:nnzz∗1:nnz − vimin1T z1:nnz

vimax
− vimin

+
−vT1:nnzz∗1:nnz + vimax1T z1:nnz

vimax
− vimin

= 1T1:nnzz∗1:nnz = 1T z∗ ≤ 1.

(2) vimax
= vimin

: It is clear that z′ ≥ 0 and 1T z ≤ 1 by definition. Note that by definition
vT z′ = vimax1T z∗1:nnz. vimax = vimin implies that for i = 1,2, · · · ,nnz,vi = vimax , and thus
vimax

1T z∗1:nnz = vT1:nnzz∗1:nnz. Note that only the first nnz elements in z∗ are nonzeros, we have
vT1:nnzz∗1:nnz = vT z∗. That is to say,

vT z′ = vT z∗ ≤ w

Hence, we have shown that vT z′ ≤ w,1T z′ ≤ 1,z′ ≥ 0 always hold, i.e., z′ is a feasible
solution to the linear optimization problem.

(ii) Now we show that z′ is one optimal solution, i.e., uT z′ = uT z∗.

The Lagrangian function of the linear optimization problem is

L(z,µµµ) = uT z +µµµ1(vT z−w) +µµµ2(1T z) +

K∑
i=1

µµµi+2(−zi)

Since z∗ is one optimal solution and clearly LCQ (linearity constraint qualification) is
satisfied, KKT conditions must hold. That is, there exists µµµ such that

∂L(z∗,µµµ)

∂zi
= ui +µµµ1vi +µµµ2 −µµµi+2 = 0,∀i

µµµ1(vT z∗ −w) = 0,µµµ2(1T z∗) = 0,µµµi+2z∗i = 0,∀i
µµµ ≥ 0

vT z∗ ≤ w,1T z∗ ≤ 1,z ≥ 0
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For ease of exposition, denote µ̂µµ = [µµµ3,µµµ4, · · · ,µµµK+2]T . The first condition implies ui =
−µµµ1vi −µµµ2 +µµµi+2,∀i, which is equivalent to u = −µµµ1v−µµµ21 + µ̂µµ. Thus, we have

uT z′ = −µµµ1vT z′ −µµµ21T z′ + µ̂µµT z′

uT z∗ = −µµµ1vT z∗ −µµµ21T z∗ + µ̂µµT z∗

The condition µµµi+2z∗i = 0 implies that at least one of the terms must be 0. Since it holds
for every i, the summation over i is also 0, i.e., µ̂µµT z∗ =

∑K
i=1µµµi+2z∗i = 0. Noting that the

first nnz elements in z∗ are nonzeros, we must have µµµi+2 = 0, i ≤ nnz, and in particular,
µµµimax+2 = µµµimin+2 = 0. Hence, µ̂µµT z′ =

∑K
i=1µµµi+2z′i = µµµimax+2z′imax

+µµµimin+2z′imin
= 0. Thus,

we have

uT z′ = −µµµ1vT z′ −µµµ21T z′

uT z∗ = −µµµ1vT z∗ −µµµ21T z∗

In part (i), it is shown that vT z∗ = vT z′ and 1T z∗ = 1T z′. Hence, we must have

uT z∗ = uT z′

In other words, z′ has the same objective function value as z∗. Since z∗ is one optimal
solution, z′ must also be one optimal solution (since it is also feasible as shown in part (i)).
By definition, ‖z′‖0 ≤ 2, which finishes the proof.

Lemma 5. Let F (w) be the optimal value of the linear optimization problem

max
z∈RK

uT z

s.t. vT z ≤ w,z ≥ 0,Cz ≤ d

where u,C,v ≥ 0, d > 0. Then F (w) is Lipschitz continuous.

Proof. Note that since d > 0, there exists some w∗, such that its corresponding optimal z∗
satisfies Cz∗ < d. Thus, z∗ must also be the optimal solution to

max
z∈RK

uT z

s.t. vT z ≤ w∗,z ≥ 0
(C.1)

If vT z∗ < w∗, then ẑ = w∗

vT z z∗ is also a feasible solution, but uT ẑ = w∗

vT z uT z∗ > uT z∗, a
contradiction. Thus, we must have vT z∗ = w∗. Now we claim that z′ = w′

w∗ z∗ is one optimal
solution to

max
z∈RK

uT z

s.t. vT z ≤ w′,z ≥ 0
(C.2)

Suppose not. Then there exists another optimal solution z′′. Since z′ is not optimal, we
must have uT z′′ > uT z′ = w′

w∗uT z∗. Now let z′′′ = w∗

w′ z
′′. Then by definition, we must have

z′′′ is a solution to problem C.1, since z′′′ ≥ 0 and vT z′′′ = vT w
∗

w′ z
′′ ≤ w∗

w′ v
T z′′ ≤ w∗

w′ w
′ = w∗.

However, uT z′′′ = uT w
∗

w′ z
′′ = w∗

w′ u
T z′′ > w∗

w′ u
T z′ = w∗

w′
w′

w∗uT z∗ = uT z∗. That is to say, z′′′ is
a feasible solution to problem C.1 but also have a objective value that is strictly higher than
that of the optimal solution. A contradiction.

Thus we must have that z′ is one optimal solution to problem C.2.

Now we consider 0 ≤ w′ ≤ w∗ and w′ ≥ w∗ separately.

case (i): Suppose 0 ≤ w′ ≤ w∗. Note that vT z∗ ≤ w∗ since z∗ is a feasible solution to problem
C.1 and by assumption Cz∗ < d. Hence, we must have Cz′ = w′

w∗Cz′ < d. That is to say,
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adding a constraint Cz ≤ d to problem C.2 does not change the optimal solution. Thus, z′ is
also an optimal solution to

max
z∈RK

uT z

s.t. vT z ≤ w∗,z ≥ 0,Cz ≤ d

Hence, we have F (w′) = uT z′ = uT w′

w∗ z∗ = w′

w∗F (w∗). That is to say, if w′ ≤ w, then F (w′) is
a linear function of w′ and thus must be Lipschitz continuous.

case (ii): Suppose w′ ≥ w∗. Note that we have just shown that z′ is one optimal solution to
problem C.2. Adding a constraint to problem problem C.2 only leads to smaller objective
value. That is to say, uT z′ ≥ F (w′), which is the optimal value to

max
z∈RK

uT z

s.t. vT z ≤ w∗,z ≥ 0,Cz ≤ d

On the other hand, by definition, we have uT z′ = uT w′

w∗ z∗ = w′

w∗F (w∗), and thus we have

w′

w∗
F (w∗) ≥ F (w′) (C.3)

Now let us consider w1 ≥ w1 ≥ w∗. Let z1,z2 be their corresponding solutions. Since
w2 ≥ w1, we have F (w2) ≥ F (w1). Let z3 = w1

w2 z2. Then vT z3 = vT w
1

w2 z2 ≤ w1

w2w
2 = w1 and

Cz3 = Cw1

w2 z2 ≤ w1

w2 d ≤ d. That is to say, z3 is also a solution to

max
z∈RK

uT z

s.t. vT z ≤ w1,z ≥ 0,Cz ≤ d

Thus, the objective value must be smaller than the optimal one, i.e., uT z3 ≤ F (w1). Noting
that uT z3 = uT w

1

w2 z2 = w1

w2
F (w2), we have w1

w2
F (w2) ≤ F (w1). which is F (w2)− F (w1) ≤

w2−w1

w1
F (w1). Note that we have proved w′

w∗F (w∗)≥ F (w′) in C.3, i.e., F (w′)
w′ ≤

F (w∗)
w∗ , for any

w′ ≥ w∗. Thus, we have F (w1)/w1 ≤ F (w∗)
w∗ . That implies F (w2)− F (w1) ≤ w2−w1

w1
F (w1) ≤

(w2−w1)F (w∗)
w∗ . We also have F (w1)≤ F (w2). That is to say, for any w2 ≥ w1 ≥ w∗, we have

−(w2 − w1)F (w∗)
w∗ ≤ 0 ≤ F (w2)− F (w1) ≤ (w2 − w1)F (w∗)

w∗ and thus we have just proved
that f(w′) is Lipschitz continuous for w′ ≥ w∗.
Now let us consider all w. We have shown that F (w) is Lipschitz continuous when w ≤ w∗
and when w ≥ w∗. Let γ1 and γ2 denote the Lipschitz constant for both case. Now we can
prove that F (w) is Lipschitz continuous with constant γ1 + γ2 for any w ≥ 0.

Let us consider any two w1,w2. If they are both smaller than w∗ or larger than w∗, then
clearly we must have |F (w1)−F (w2)| ≤ (γ1 + γ2)|w1−w2|. We only need to consider when
w1 ≤ w∗ and w2 ≥ w∗. As F (w) is Lipschitz continuous on each side, we have

|F (w1)− F (w2)| = |F (w1)− F (w∗) + F (w∗)− F (w2)|
≤ |F (w1)− F (w∗)|+ |F (w∗)− F (w2)|
≤ γ1|w1 −w∗|+ γ2|w2 −w∗|
≤ γ1|w1 −w2|+ γ|w2 −w1| = (γ1 + γ2)|w1 −w2|

where the first inequality is by triangle inequality, the second ineuqaltiy is by the Lipschitz
continuity of F (w) on each side, and the last inequality is due to the assumption that
w1 ≤ w∗ and w2 ≥ w∗. Thus, we can conclude that F (w) must be Lipschitz continuous on
for any w ≥ 0.
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Lemma 6. Suppose function f(x) is a Lipschitz continuous with constant ∆1 on the interval [a, b].
Let xi = i

M (b−a), i= 0,1, · · · ,M . Assume for all i, |f̂(xi)− f(xi)| ≤∆2. Let f̂LI(x) be the linear

interpolation using f̂(xi), i.e., f̂LI(x) , f̂(xi)−f̂(xi−1)
xi−xi−1

(x− xi) + f̂(xi), xi−1 ≤ x ≤ xi,∀i ∈ [M ].

Then we have |f(x)− f̂LI(x)| ≤ 3∆2 + 2∆1(b−a)
M

Proof. For simplicity, let µ = b−a
M . Suppose xi−1 ≤ x ≤ xi. By construction of f̂LI(x), we

must have

|f̂LI(xi)− f̂LI(x)| ≤|f̂LI(xi)− f̂LI(xi−1)| = |f̂(xi)− f̂(xi−1)|
=|f̂(xi)− f(xi) + f(xi)− f(xi−1) + f(xi−1)− f̂(xi−1)|
≤|f̂(xi)− f(xi)|+ |f(xi)− f(xi−1)|+ |f(xi−1)− f̂(xi−1)|
≤∆2 + ∆1|xi − xi−1|+ ∆2 = 2∆2 + ∆1µ

where the last inequality is due to the Lipschitz continuity and assumption |f̂(xi)− f(xi)| ≤
∆2. Since function f(x) is Lipschitz continuous with constant ∆1, we have

|f(x)− f(xi)| ≤∆1|x− xi| ≤∆1|xi − xi−1| = ∆1µ

By assumption, we have |f̂(xi)− f(xi)| ≤∆2.

Combining the above, we have

|f(x)− f̂LI(x)| = |f(x)− f(xi) + f(xi)− f̂LI(xi) + f̂LI(xi)− f̂LI(x)|
≤ |f(x)− f(xi)|+ |f(xi)− f̂LI(xi)|+ |f̂LI(xi)− f̂LI(x)|
= |f(x)− f(xi)|+ |f(xi)− f̂(xi)|+ |f̂LI(xi)− f̂LI(x)|

≤∆1µ+ ∆2 + 2∆2 + ∆1µ = 3∆2 + 2∆1µ = 3∆2 +
2∆1(b− a)

M

where the first inequality is due to triangle inequality, and the second inequality is simply
applying what we have just shown. Note that this holds regardless of the value of i. Thus,
this holds for any x, which completes the proof.

Lemma 7. Let f, f ′, g, g′ be functions defined on Ωz, such that maxz∈Ωz |(fz)− f ′(z)| ≤ ∆1 and
maxz∈Ωz |g(z)− g′(z)| ≤ ∆2. If

z∗ = arg max
z∈Ωz

f(z)

s.t.g(z) ≤ 0

and
z′ = arg max

z∈Ωz
f ′(z)

s.t.g′(z) ≤∆2,

then we must have
f(z′) ≥ f(z∗)− 2∆1

g(z′) ≤ 2∆2.

Proof. Note that maxz∈Ωz |(fz)− f ′(z)| ≤∆1 implies f(z)≥ f ′(z)−∆1 for any z ∈Ωz. Specif-
ically,

f(z′) ≥ f ′(z′)−∆1

Noting maxz∈Ωz |g(z)− g′(z)| ≤ ∆2, we have g′(z∗) ≤ g(z∗) + ∆2 ≤ ∆2, where the last in-
equality is due to g(z∗) ≤ 0 by definition. Since, z∗ is a feasible solution to the second
optimization problem, and the optimal value must be no smaller than the value at z∗. That
is to say,

f ′(z′) ≥ f ′(z∗)
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Hence we have
f(z′) ≥ f ′(z′)−∆1 ≥ f ′(z∗)−∆1

In addition, maxz∈Ωz |(fz)− f ′(z)| ≤∆1 implies f ′(z) ≥ f(z)−∆1 for any z ∈ Ωz. Thus, we
have f ′(z∗) ≥ f(z)∗ −∆1 and thus

f(z′) ≥ f ′(z∗)−∆1 ≥ f(z∗)− 2∆1

By maxz∈Ωz |g(z)− g′(z)| ≤∆2, we have g(z′)≤ g′(z′) + ∆2 ≤ 2∆2, where the last inequality
is by definition of z′.

C.2 Proof of Lemma 1

Proof. Given the expected accuracy and cost provided by Lemma 2, the problem 3.1 becomes
a linear programming over Pr[A

[1]
s = i] = p[1]

i , where the constraints are p[1] ≥ 0,1Tp[1] = 1

and another linear constraint on p[1]. Note that all items in the optimization are positive,
and thus changing the constraint to p[1] = 1 to p[1] ≤ 1 does not change the optimal solution.
Now, given the constraint p[1] ≥ 0,1Tp[1] ≤ 1 and one more constraint on p[2] for the linear
programing problem over p[1], we can apply Lemma 4, and conclude that there exists an
optimal solution where ‖p[1]∗‖ ≤ 2.

C.3 Proof of Lemma 2

Proof. Let us first consider the expected accuracy. By law of total expectation, we have

E[rs(x)] =

K∑
i=1

Pr[A[1]
s = i]E[rs(x)|A[1]

s = i]

And we can further expand the conditional expectation by

E[rs(x)|A[1]
s = i]

= Pr[Ds = 0|A[1]
s = i, ]E[rs(x)|A[1]

s = i,Ds = 0] + Pr[Ds = 1|A[1]
s = i, ]E[rs(x)|A[1]

s = i,Ds = 1]

= Pr[Ds = 0|A[1]
s = i, ]E[ri(x)|A[1]

s = i,Ds = 0] + Pr[Ds = 1|A[1]
s = i, ]E[rs(x)|A[1]

s = i,Ds = 1]

where the last equality is because when Ds = 0, i.e., no add-on service is called, the strategy
always uses the base service’s prediction and thus rs(x) = ri(x). For the second term, we
can bring in A[2]

s and apply law of total expectation, to obtain

E[rs(x)|A[1]
s = i,Ds = 1] =

K∑
j=1

Pr[A[2]
s = j|A[1]

s = i,Ds = 1]E[rs(x)|A[1]
s = i,Ds = 1,A[2]

s = j]

=

K∑
j=1

Pr[A[2]
s = j|A[1]

s = i,Ds = 1]E[rj(x)|A[1]
s = i,Ds = 1,A[2]

s = j]

where the last equality is by observing that given the second add-on service is j, the reward
simply becomes rj(x). Combining the above, we have E[rs(x)] =

∑K
i=1 Pr[A

[1]
s = i] Pr[Ds =

0|A[1]
s = i]E[ri(x)|Ds = 0,A

[1]
s = i] +

∑K
i,j=1 Pr[A

[1]
s = i] Pr[Ds = 1|A[1]

s = i] Pr[A
[2]
s = j|Ds =

1,A
[1]
s = i]E[rj(x)|Ds = 1,A

[1]
s = i)], which is the desired property.

Similarly, we can expand the expected cost by law of total expectation

E[ηs(x)] =

K∑
i=1

Pr[A[1]
s = i]E[ηs(x)|A[1]

s = i]

And we can further expand the conditional expectation by

E[ηs(x)|A[1]
s = i]

= Pr[Ds = 0|A[1]
s = i, ]E[ηi(x)|A[1]

s = i,Ds = 0] + Pr[Ds = 1|A[1]
s = i, ]E[ηs(x)|A[1]

s = i,Ds = 1]

= Pr[Ds = 0|A[1]
s = i, ]ci + Pr[Ds = 1|A[1]

s = i, ]E[ηs(x)|A[1]
s = i,Ds = 1]
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where the last equality is because when Ds = 0, i.e., no add-on service is called, the strategy
always uses the base service’s prediction and incurs the base service’s cost ηs(x) = ci. For
the second term, we can bring in A[2]

s and apply law of total expectation, to obtain

E[ηs(x)|A[1]
s = i,Ds = 1] =

K∑
j=1

Pr[A[2]
s = j|A[1]

s = i,Ds = 1]E[ηs(x)|A[1]
s = i,Ds = 1,A[2]

s = j]

=

K∑
j=1

Pr[A[2]
s = j|A[1]

s = i,Ds = 1](ci + cj)

where the last equality is because given the base service is i and add-on service is j, the
cost is simply the sum of their cost ci + cj . Combining all the above equations, we have the
expected cost E[ηs(x)] =

∑K
i=1 Pr[A

[1]
s = i] Pr[Ds = 0|A[1]

s = i]ci+
∑K
i,j=1 Pr[A

[1]
s = i] Pr[Ds =

1|A[1]
s = i] Pr[A

[2]
s = j|Ds = 1,A

[1]
s = i] (ci + cj), which is the desired term. Thus, we have

shown a form of expected accuracy and cost which is exactly the same as in Lemma 2, which
completes the proof.

C.4 Proof of Theorem 3

Proof. To prove Theorem 3, we need a few new definitions and lemmas, which are stated
below.

Definition 2. Let Ê[rs(x)] and Ê[η[s](x, c)] denote the empirically estimated accuracy and
cost for the strategy s. More precisely, let the empirically estimated accuracy be Ê[rs(x)] ,∑K
i=1 Pr[A

[1]
s = i]P̂r[Ds = 0|A[1]

s = i]Ê[ri(x)|Ds = 0,A
[1]
s = i] +

∑K
i,j=1 Pr[A

[1]
s = i]P̂r[Ds =

0|A[1]
s = i] Pr[A

[2]
s = j|Ds = 1,A

[1]
s = i]Ê[rj(x)|Ds = 1,A

[1]
s = i)], and the empirically estimated

cost be Ê[ηs(x)] =
∑K
i=1 Pr[A

[1]
s = i]P̂r[Ds = 0|A[1]

s = i]ci+
∑K
i,j=1 Pr[A

[1]
s = i]P̂r[Ds = 0|A[1]

s =

i] Pr[A
[2]
s = j|Ds = 1,A

[1]
s = i] (ci + cj).

Definition 3. Let s′ = (p[1]′ ,Q′,P[2]′) be the optimal solution to

max
s∈S

Ê[rs(x)]s.t.Ê[η[s](x, c)] ≤ b

Note that s∗ is the optimal strategy, and s′ is the optimal strategy when the data distribution
is unknown and estimated from N samples, and ŝ is the strategy we actually generate with
finite computational complexity by Algorithm 1.

The following lemma shows the computational complexity of Algorithm 1.

Lemma 8. The complexity of Algorithm 1 is O
(
NMK2 +K3M3L+MLK2

)
.

Proof. Estimating A requires a pass of all the training data, which gives a O(NK) cost. For
each k1, k2, αm, we need a pass over training data for the k1th and k2th services to estimate
ψk1,k2,`(αM ). There are in total K services, and thus this takes O(NMK2) computational
cost.

Algorithm 2 has a complexity of O(K2). Solving Problem 3.3 invokes Algorithm 2 for each
` ∈ L and m ∈ [M ], and thus takes O(K2ML). Computing t∗i takes

(
M
L

)
, which is O(ML−1).

That is to say, solving the subproblem 3.3 once requires O(K2ML+ML−1) computational
cost. Solving the master problem 3.2 requires invoking the subproblem MK times, where
K times stands for each service, and M stands for the linear interpolation. Thus, the total
computational cost for optimization process takes O(K3M3LMLK2). Combining this with
the estimation cost O(NMK2) completes the proof.

Next we evaluate how far the estimated accuracy and cost can be from the true expected
accuracy and cost for each strategy, which is stated in Lemma 9.
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Lemma 9. With probability 1− ε, we have for all s ∈ S,∣∣∣Ê[rs(x)]−E[rs(x)]
∣∣∣ ≤ O(√ log ε+ logM + logK + logL

N
+

γ

M

)
∣∣∣Ê][η[s](x, c)]−E[η[s](x, c)]

∣∣∣ ≤ O(√ log ε+ logK + logL

N

) (C.4)

and also ∣∣∣E[rs
′
(x)]−E[rs

∗
(x)]

∣∣∣ ≤ O(√ log ε+ logM + logK + logL

N
+

γ

M

)
∣∣∣E[η[s′](x, c)]−E[η[s∗](x, c)]

∣∣∣ ≤ O(√ log ε+ logK + logL

N

) (C.5)

Proof. For each element in A, we simply use a sample mean estimator. Thus, by Chernoff

bound, we have |Âi,` −Ai,`| ≥ O(
√

log ε
N ) w.p. at most ε. For each ψk1,k2,`(αm), we again

use a sample mean estimator for the true conditional expected accuracy. We again apply
the Chernoff bound, and obtain that for each of k1, k2, `,αm, |ψk1,k2,`(αm)− ψ̂k1,k2,`(αm)| ≥
O(
√

log ε
N ) w.p. at most ε. Now applying the union bound, we have w.p. 1− ε, |Âi,`−Ai,`| ≤

O(
√

log ε+logK+logL
N ) and |ψk1,k2,`(αm)− ψ̂k1,k2,`(αm)| ≤ O(

√
log ε+logM+logK+logL

N ), for all
`, i, k1, k2,m.

Recall that the function φ̂k1,k2,`(·) is estimated by linear interpolation over α1, α2, · · · , αM .
By assumption, φk1,k2,`(·) is Lipschitz continuous, and α ∈ [0,1]. Now applying Lemma 6,
we have that the estimated function φ̂k1,k2,`(·) cannot be too far away from its true value,
i.e.,

|φ̂k1,k2,`(α)− φk1,k2,`(α)| ≤ O(

√
log ε+ logM + logK + logL

N
+

γ

M
)

Recall the definition r̂ak1,K(`−1)+k2
(ρρρ) , ψk1,k2,`(ρρρk1,`), r̂bk,`(ρρρ) , ψ̂k,k,`(ρρρk,`), and r̂[−](ρρρ) ,

r̂a(ρρρ)− r̂b(ρρρ)⊗ 1TK . Then we know that for each element in those matrix function, its esti-

mated value can be at most O(
√

log ε+logM+logK+logL
N + γ

M ) away from its true value. Since
the true accuracy is the (weighted) average over those functions, its estimated difference

is also O(
√

log ε+logM+logK+logL
N + γ

M ). The expected cost can be viewed as a (weighted)
average over elements in the matrix Ai,`, and thus the estimation difference is at most

O(
√

log ε+logK+logL
N ), which completes the proof.

Then we need to bound how much error is incurred due to our computational approximation.
In other words, the difference between s′ and ŝ, which is given in Lemma 10.

Lemma 10. ∣∣∣Ê[rŝ(x)]− Ê[rs
′
(x)]

∣∣∣ ≤ O( γ
M

)
Ê[η[ŝ](x, c)]− Ê[η[s′](x, c)] ≤ 0

(C.6)

Proof. This lemma requires a few steps. The first step is to show that the subroutine to solve
subproblem gives a good approximation. Then we can show that subroutine for solving the
master problem gives a good approximation. Finally combing those two, we can prove this
lemma.

Let us start by showing that the subroutine to solve subproblem gives a good approximation.
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Lemma 11. For any b′, The subroutine for solving problem 3.3 produces a strategy s(i, b′) ,

(ei, Q̂i(b
′), P̂[2]

i(b
′)) with the empirical accuracy ĝi(b

′) s.t. the empirical accuracy is within
O(γLM ) from the optimal, i.e., |ĝi(b′)− g′i(b′)| ≤ O( γM ), and the cost constraint is satisfied, i.e.,
Ê[γs(i,b

′)(x)] ≤ b′ .

Proof. This requires two lemmas.

Lemma 12. For any input, Algorithm 2 gives the exact optimal solution and optimal value to
problem B.1.

Proof. To prove this lemma, we simply note that the problem B.1 also has a sparse structure,
which is stated below.

Lemma 13. For any constant η, function φ(·) : R 7→RK , and Ω2 = {ρ,ΠΠΠ|0≤ ρ≤ 1,ΠΠΠT 1 = 1,ΠΠΠ <
0}. Suppose the following optimization problem

max
ρ,ΠΠΠ∈Ω2

η+ ρΠΠΠT · φ(ρ)

s.t. ρ(ΠΠΠ−ΠΠΠ� ek)T c ≤ β,

is feasible. Then there exists one optimal solution (ρ∗,ΠΠΠ∗), such that ΠΠΠ∗ is sparse and ‖ΠΠΠ∗‖0 ≤ 2.
More specifically, one of the following must hold:

• ΠΠΠ∗i = 1 for some i, and ΠΠΠ∗k′ = 0, for all k′ 6= i

• ΠΠΠ∗i = β
ρci

for some i, ΠΠΠ∗k = 1− β
ρci

and ΠΠΠ∗k′ = 0, for all k′ 6∈ {i, k}

• ΠΠΠ∗i =
β/ρ−cj
ci−cj

,ΠΠΠ∗j = ci−β/ρ
ci−cj

, for some distinct i, j, and ΠΠΠ∗k′ = 0, for all k′ 6= i, j

Proof. Let (p∗,ΠΠΠ′) be one solution. Our goal is to show that there exists a solution (p∗,ΠΠΠ∗)
which satistfies the above conditions.

(i) p∗ = 0: the optimal value does not depend on ΠΠΠ′, and thus any (p∗,ΠΠΠ) is a solution. In
particular, (p∗,ΠΠΠ∗) is a solution where ΠΠΠ∗ satisfies the first condition in the statement.

(ii) p∗ 6= 0: According to Lemma 4, the following linear optimization problem

max
ΠΠΠ∈RK

K∑
i=1

ΠΠΠir̄i,p∗

s.t.
K∑
i=1

ciΠΠΠi ≤
B

p∗
,

K∑
i=1

ΠΠΠi ≤ 1,ΠΠΠi ≥ 0

(C.7)

has a solution ΠΠΠ∗ such that ‖ΠΠΠ∗‖0 ≤ 2.

We first show that (p∗,ΠΠΠ∗) is one optimal solution to the confidence score approach. By
definition, it is clear that (p∗,ΠΠΠ∗) is a feasible solution. All that is needed is to show the
solution is optimal. Suppose not. We must have

r̄0 + p∗

[
K∑
i=1

ΠΠΠ′ir̄i,p − r̄0,p

]
> r̄0 + p∗

[
K∑
i=1

ΠΠΠ∗i r̄i,p − r̄0,p

]
K∑
i=1

ΠΠΠ′ir̄i,p >

K∑
i=1

ΠΠΠ∗i r̄i,p

But noting that ΠΠΠ′ by definition is also a feasible solution to the problem C.7, this inequality
implies that the objective function achieved by ΠΠΠ′ is strictly larger than that achieved by one
optimal solution to C.7. A contradiction. Hence, (p∗,ΠΠΠ∗) is one optimal solution.

Next we show that ΠΠΠ∗ must follow the presented form. Since ‖ΠΠΠ∗‖0 ≤ 2, we can consider
the cases separately.
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(i) ‖ΠΠΠ∗‖0 = 1: Assume ΠΠΠ∗i 6= 0. Then problem C.7 becomes

max
ΠΠΠi∈R+

ΠΠΠir̄i,p∗

s.t. ciΠΠΠi ≤
B

p∗
,ΠΠΠi ≤ 1

Since the objective function is monotonely increasing w.r.t. ΠΠΠi, we must have ΠΠΠ∗i =

min{ Bp∗c ,1}

(ii) ‖ΠΠΠ∗‖0 = 2: Assume ΠΠΠ∗i 6= 0,ΠΠΠ∗j 6= 0. Then problem C.7 becomes

max
ΠΠΠi∈R+,ΠΠΠj∈R+

ΠΠΠir̄i,p∗ + ΠΠΠj r̄j,p∗

s.t. ciΠΠΠi + cjΠΠΠj ≤
B

p∗
,ΠΠΠi + ΠΠΠj ≤ 1

As a linear programming, if it has a solution, then there must exist one solution on the
corner point. Since ΠΠΠ∗i 6= 0,ΠΠΠ∗j 6= 0, the two constraints must be satisfied to achieve a
corner point. The two constraints form a system of linear equations, and solving it gives
ΠΠΠ∗i =

B/p−cj
ci−cj

,ΠΠΠ∗j = ci−B/p
ci−cj

, which completes the proof.

Now we are ready to prove Lemma 12. Recall that in Algorithm 2, we compute (µ1, i1) =
arg maxµ∈[0,1],i∈[K] φi(µ) and (µ2, i2, j2) = arg maxµ∈[ βci

,min{ βcj ,1}],i,j∈[K],ci>cj φi,j(µ). If

φi1(µ1) ≥ φi2,j2(µ2), let ρ = µ1 and ΠΠΠ =

[
1µ1<

β
ci1

+ β
ci
1µ1≥ β

ci1

]
ei1 . Otherwise, let ρ = µ2

and ΠΠΠ =
β/µ2−cj2

cj2−cj2
ei2 +

ci2−β/µ2

ci2−ci2
ej2 . Recall that φi(µ) , r̄k,`(1K×L) + min{ βci , µ}r̃

k,`
i (µ) and

φi,j(µ) , r̄k,`(1K×L) +
β−µcj
ci−cj

r̃k,`i (µ) + µci−β
ci−cj

r̃k,`j (µ).

Let us consider the two cases separately.

(i): φi1(µ1) ≥ φi2,j2(µ2), and thus ρ = µ1 and ΠΠΠ =

[
1µ1<

β
ci1

+ β
ci
1µ1≥ β

ci1

]
ei1 .

According to Lemma 13, there exists a solution ρ̌∗,Π̌ΠΠ∗ to the above problem, such that

• Π̌ΠΠ∗i = 1 for some i, and Π̌ΠΠ∗k = 0, for all k 6= i

• Π̌ΠΠ∗i = β
ρci

for some i, and Π̌ΠΠ∗k = 0, for all k 6= i

• Π̌ΠΠ∗i =
β/ρ−cj
ci−cj

,Π̌ΠΠ∗j = ci−β/ρ
ci−cj

, for some distinct i, j, and Π̌ΠΠ∗k = 0, for all k 6= i, j

If the first or second condition happens, the objective then becomes φi(ρ̌∗). If the third
condition happens, then the objective becomes φi,j,(ρ̌∗). Since φi1(µ1) ≥ φi2,j2(µ2), we must
have φi(ρ̌∗) ≥ φi,j,(ρ̌∗) and thus it must be either first or second condition. By construction
of µ1, we must have µ1 = ρ̂∗. If ρ̌∗ = µ1 <

β
ci1

, i.e., β
ci1 ρ̌

∗ > 1, and thus second case cannot

happen, and it has to be the first case and thus Π̌ΠΠ∗i1 = 1. By definition, we also have ΠΠΠ = ei1 .
And thus, we have Π̌ΠΠ∗ = ΠΠΠ. If ρ̌∗ = µ1 ≥ β

ci1
, i.e., β

ci1 ρ̌
∗ ≤ 1, then the second case must happen.

Thus, we must have Π̌ΠΠ∗i1 = β
ρc . Meanwhile, by definition, we have ΠΠΠ = β

ciρ
ei1 = Π̌ΠΠ∗.

(ii): φi1(µ1) ≥ φi2,j2(µ2), and thus ρ = µ2 and ΠΠΠ =
β/µ2−cj2

cj2−cj2
ei2 +

ci2−β/µ2

ci2−ci2
ej2 . We can use a

similar argument to show that ΠΠΠ = Π̌ΠΠ∗.

That is to say, no matter which case we are in, the optimal solution is always returned.

Lemma 14. The function ĥk,`(β) is Lipschitz continuous with constant O(γ) for β ≥ 0.
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Proof. Let us use φk,`() to denote ĥk,`() for notation simplification. Consider β and β + ∆,
and our goal is to bound φk,`(β + ∆) − φk,`(β). Let ρβ+∆,ΠΠΠβ+∆ be the corresponding
solution to β + ∆, i.e., the solution to

max
ρ,ΠΠΠ∈Ω2

r̄k,`(1K×L) + ρΠΠΠT · r̃k,`(ρ)

s.t. ρ(ΠΠΠ−ΠΠΠ� ek)T c ≤ β + ∆.

Let ρ′ = β
β+∆ρ

β+∆. It is clear that ρ′,ΠΠΠβ+∆ is one solution to

max
ρ,ΠΠΠ∈Ω2

r̄k,`(1K×L) + ρΠΠΠT · r̃k,`(ρ)

s.t. ρ(ΠΠΠ−ΠΠΠ� ek)T c ≤ β.
Thus, r̄k,`(1K×L) + ρ′ΠΠΠ(β+∆)T · r̃k,`(ρ′) must be smaller or equal to φk,`(β), which is the
optimal solution. Thus we must have

φk,`(β + ∆)− φk,`(β) ≤ φk,`(β + ∆)− r̄k,`(1K×L)− ρ′ΠΠΠ(β+∆)T · r̃k,`(ρ′)
Note that by definition,

φk,`(β + ∆) = r̄k,`(1K×L) + ρβ+∆ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆)

The above inequality becomes

φk,`(β + ∆)− φk,`(β) ≤ ρβ+∆ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆)− ρ′ΠΠΠ(β+∆)T · r̃k,`(ρ′)
= ρβ+∆ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆)− ρ′ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆)

+ ρ′ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆)− ρ′ΠΠΠ(β+∆)T · r̃k,`(ρ′)

= ρβ+∆ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆)− β

β + ∆
ρβ+∆ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆)

+ ρ′ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆)− ρ′ΠΠΠ(β+∆)T · r̃k,`(ρ′)

=
∆

β + ∆
ρβ+∆ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆)

+ ρ′ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆)− ρ′ΠΠΠ(β+∆)T · r̃k,`(ρ′)
where the first equality is by adding and subtracting ρ′ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆), and the second
equality is simply plugging in the value of ρ′. According to Lemma 13, ΠΠΠβ+∆ must be
sparse.

(i) If ΠΠΠβ+∆
k = 1, then only the base service (kth service) is used when budget is β + ∆ When

the budget becomes smaller, i.e., becomes β, it is always possible to always use the base
service. Hence, we must have φk,`(β + ∆)− φk,`(β) = 0.

(ii) Otherwise, since ‖ΠΠΠβ+∆‖ ≤ 2, there are at most two elements in ΠΠΠβ+∆ that are not zeros.
Let k1, k2 6= k denote the indexes. Then the constraint gives

ρβ+∆ΠΠΠβ+∆
k1

ck1 + ρβ+∆ΠΠΠβ+∆
k2

ck2 ≤ β + ∆

(ρβ+∆ΠΠΠβ+∆
k1

+ ρβ+∆ΠΠΠβ+∆
k2

) min
j 6=k

cj ≤ ρβ+∆ΠΠΠβ+∆
k1

ck1 + ρβ+∆ΠΠΠβ+∆
k2

ck2 ≤ β + ∆

That is to say,
ρβ+∆(ΠΠΠβ+∆

k1
+ ΠΠΠβ+∆

k2
) ≤ (β + ∆)/(min

j 6=k
cj)

Thus we have
∆

β + ∆
ρβ+∆ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆) =

∆

β + ∆
ρβ+∆(ΠΠΠ

(β+∆)T
k1

· r̃k,`k1
(ρβ+∆) + ΠΠΠ

(β+∆)T
k1

· r̃k,`k1
(ρβ+∆))

≤ ∆

β + ∆
ρβ+∆(ΠΠΠ

(β+∆)T
k1

+ ΠΠΠ
(β+∆)T
k1

)

≤ ∆

β + ∆
(β + ∆)/(min

j 6=k
cj)

=
∆

minj 6=k cj
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In addition, note that by assumption, r̃k,`(ρ) is Lipschitz continuous with constant γ. Hence,
we must have

r̃k,`j (ρ′) ≥ r̃k,`j (ρβ+∆)− γ|(ρ′ − ρβ+∆|) = r̃k,`j (ρβ+∆)− γ ∆

β + ∆
ρβ+∆

And thus

ρ′ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆)− ρ′ΠΠΠ(β+∆)T · r̃k,`(ρ′)

≤ρ′ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆)− ρ′ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆) + ρ′ΠΠΠ(β+∆)T · 1γ ∆

β + ∆
ρβ+∆

=ρ′(ΠΠΠ
(β+∆)T
k1

+ ΠΠΠ
(β+∆)T
k2

)γ
∆

β + ∆
ρβ+∆

=ρβ+∆ β

β + ∆
(ΠΠΠ

(β+∆)T
k1

+ ΠΠΠ
(β+∆)T
k2

)γ
∆

β + ∆
ρβ+∆

Now plugging in
ρβ+∆(ΠΠΠβ+∆

k1
+ ΠΠΠβ+∆

k2
) ≤ (β + ∆)/(min

j 6=k
cj)

We can further have

ρ′ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆)− ρ′ΠΠΠ(β+∆)T · r̃k,`(ρ′)

≤ρβ+∆ β

β + ∆
(ΠΠΠ

(β+∆)T
k1

+ ΠΠΠ
(β+∆)T
k2

)γ
∆

β + ∆
ρβ+∆

≤ β

β + ∆
(β + ∆)/(min

j 6=k
cj)γ

∆

β + ∆
ρβ+∆

≤∆γ/(min
j 6=k

cj)

Combining it with

∆

β + ∆
ρβ+∆ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆) ≤ ∆

minj 6=k cj

we have

φk,`(β + ∆)− φk,`(β) ≤ ∆

β + ∆
ρβ+∆ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆)

+ ρ′ΠΠΠ(β+∆)T · r̃k,`(ρβ+∆)− ρ′ΠΠΠ(β+∆)T · r̃k,`(ρ′)
≤ ∆/(min

j 6=k
cj) + ∆γ/(min

j 6=k
cj)

=
∆(1 + γ)

minj 6=k cj

Thus, no matter which case, we always have

φk,`(β + ∆)− φk,`(β) ≤ 1 + γ

minj 6=k cj
·∆

In addition, since φk,`(β) must be monotone, we have

φk,`(β + ∆)− φk,`(β) ≥ 0 ≥ − 1 + γ

minj 6=k cj
·∆

That is to say, φk,`(β) is Lipschitz continuous with constant 1+γ
minj 6=k cj

, which finishes the
proof.

Now we are ready to prove Lemma 11. By definition, there must exist a λλλ′, such that
g′i(b

′) =
∑L
`=1 Âi,`ĥk,`(λλλ

′
`(b
′ − ci)). Let ΛM = {λλλ ∈ RL|λλλ ≥ 0,1Tλλλ = 1,λλλ`M ∈ [M ] ∪ {0}}.

Then there must exists a λ̂λλ ∈ΛM such that |λλλ′`− λ̂λλ`| ≤ 1
M . By Lemma 14, we have |ĥk,`(λλλ′`(b′−
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ci)))− ĥk,`(λ̂λλ`(b′ − ci))| ≤ O( γM ). Note that Â is empirical probability matrix, by construc-
tion,

∑L
` Âi,` = 1 and each Ai,` is non-negative. Thus, we must have |

∑L
`=1 Âi,`ĥk,`(λ̂λλ`(b

′ −
ci)) − g′i(b′)| = |

∑L
`=1 Âi,`ĥk,`(λ̂λλ`(b

′ − ci)) −
∑L
`=1 Âi,`ĥk,`(λλλ

′
`(b
′ − ci))| ≤ O( γM ). On the

other hand, by construction, ĝi(b′) produced by the subroutine to solve problem 3.3 is∑L
`=1 Âi,`ĥk,`(βt∗` ) = maxt1,t2,··· ,tL

∑L
`=1 Âi,`ĥk,`(βt`) = maxt1,t2,··· ,tL

∑L
`=1 Ai,`ĥk,`(

t∗`
M (b′ −

ci)) ≥
∑L
`=1 Ai,`ĥk,`(λ̂λλ`(b

′ − ci)). Combing this with
∑L
`=1 Âi,`ĥk,`(λ̂λλ`(b

′ − ci))− g′i(b′) ≥
−O( γM ), we immediately obtain ĝi(b′)− g′i(b′) ≥ −O( γM ). Since by definition g′i(b

′) must be
the optimal solution and thus we have ĝi(b′)− g′i(b′) ≤ 0. Thus, we have |ĝi(b′)− g′i(b′)| ≤
O( γM ). By Lemma 12, the produced solution to problem B.1 is exactly the optimal solution.
That is to say, for the generated solution ρ̂i,`(βt∗` ),Π̂ΠΠi,`(βt∗` ), at most βt∗` budget might be
used. Since the total budget is

∑L
`=1 βt∗` = b′ − ci, at most b′ − ci budget might be used.

Calling the base service requires ci cost, and thus the total cost is at most b′. As a result, we
must have Ê[γs(i,b

′)(x)] ≤ b′, which completes the proof.

Lemma 15. |ĝLIi (b′)− g′i(b′)| ≤ O(γLM ) for all b′ and i.

Proof. Let us consider three cases separately.

Case 1: b′ ≤ ci. By definition, g′i(b
′) = 0. By construction, ĝLIi (b′) = 0, and thus |ĝLIi (b′)−

g′i(b
′)| ≤ O( γM ).

Case 2: θm+1 ≥ b′ ≥ θm ≥ ci.

We first note that g′i(b
′) by definition, is

max
s=(e1),Q,P∈S

Ê[rs(x)|A[1]
s = i]

s.t. Ê[ηs(x)] ≤ b′

Abusing the notation a little bit, let us use E to denote Ê for simplicity (as well as Pr for P̂r).
We can expand the objective function by

E[rs(x)|A[1]
s = i]

=

L∑
`=1

Pr[yi(x) = `]E[rs(x)|A[1]
s = i, yi(x) = `]

=

L∑
`=1

Pr[Ds = 0|A[1]
s = i, yi(x) = `] Pr[yi(x) = `]E[rs(x)|A[1]

s = i, yi(x) = `,Ds = 0]+

L∑
`=1

Pr[Ds = 1|A[1]
s = i, yi(x) = `] Pr[yi(x) = `]E[rs(x)|A[1]

s = i, yi(x) = `,Ds = 1]

=

L∑
`=1

Pr[Ds = 0|A[1]
s = i, yi(x) = `] Pr[yi(x) = `]E[ri(x)|A[1]

s = i, yi(x) = `,Ds = 0]+

L∑
`=1

Pr[Ds = 1|A[1]
s = i, yi(x) = `] Pr[yi(x) = `] Pr[A[2]

s = j|A[1]
s = i, yi(x) = `,Ds = 1]·

E[rs(x)|A[1]
s = i, yi(x) = `,Ds = 1,A[2]

s = j]

=

L∑
`=1

Pr[Ds = 0|A[1]
s = i, yi(x) = `] Pr[yi(x) = `]E[ri(x)|A[1]

s = i, yi(x) = `,Ds = 0]+

L∑
`=1

Pr[Ds = 1|A[1]
s = i, yi(x) = `] Pr[yi(x) = `]Pi,`,j ·

E[rs(x)|A[1]
s = i, yi(x) = `,Ds = 1,A[2]

s = j]

26



where all qualities are simply by applying the conditional expectation formula. That is to
say, conditional on the quality score Q, the objective function is a linear function over P
where all coefficients are positive. Similarly, we can expand the budget constraint by

E[ηs(x)|A[1]
s = i]

=

L∑
`=1

Pr[yi(x) = `]E[ηs(x)|A[1]
s = i, yi(x) = `]

=

L∑
`=1

Pr[Ds = 0|A[1]
s = i, yi(x) = `] Pr[yi(x) = `]E[ηs(x)|A[1]

s = i, yi(x) = `,Ds = 0]+

L∑
`=1

Pr[Ds = 1|A[1]
s = i, yi(x) = `] Pr[yi(x) = `]E[ηs(x)|A[1]

s = i, yi(x) = `,Ds = 1]

=

L∑
`=1

Pr[Ds = 0|A[1]
s = i, yi(x) = `] Pr[yi(x) = `]E[ηi(x)|A[1]

s = i, yi(x) = `,Ds = 0]+

L∑
`=1

K∑
j=1

Pr[Ds = 1|A[1]
s = i, yi(x) = `] Pr[yi(x) = `] Pr[A[2]

s = j|A[1]
s = i, yi(x) = `,Ds = 1]·

E[ηs(x)|A[1]
s = i, yi(x) = `,Ds = 1,A[2]

s = j]

=

L∑
`=1

Pr[Ds = 0|A[1]
s = i, yi(x) = `] Pr[yi(x) = `]ci+

L∑
`=1

K∑
j=1

Pr[Ds = 1|A[1]
s = i, yi(x) = `] Pr[yi(x) = `]Pi,`,jcj

which is also linear in P conditional on Q. Let (ei,Q∗(b′),P∗(b′)) be the optimal solution
that leads to g′i(b

′). Now let us consider

max
s=(e1,Q∗(b′),P)∈S

Ê[rs(x)|A[1]
s = i]

s.t. Ê[ηs(x)] ≤ b′′

which is a linear programming over P which satisfies all conditions in Lemma 5. Let us
denote its optimal value by g

′b′

i (b′′). When b′′ = b′, its optimal value must be g′i(b
′), i,e.,

g′i(
′b′) = g

′b′

i (b′). By Lemma 5, we have gb
′

i (·) is Lipschitz continuous. In other words,
we have |g′b′i (b1) − g′b′i (b2)| ≤ O(b1 − b2) for any b1, b2, b

′. On the other hand, note that
the optimal solution corresponding to g

′b′

i (b′′) is also a feasible solution to the original
optimization without fixing Q = Q∗(b′). Hence, for any b′′, we must have g′i(b

′) ≥ g′b′′i (b′).
Thus, for any b1 ≤ b2, we have

g′i(b
2)− g′i(b1) = g′i(b

2)− gb
2

i (b2) + gb
2

i (b2)− gb
2

i (b1) + gb
2

i (b1)− g′i(b1)

= gb
2

i (b2)− gb
2

i (b1) + gb
2

i (b1)− g′i(b1)

≤ O(b1 − b2)

In addition,by definition g′i(b
2) − g′i(b1) ≥ 0. Hence, we have just shown that |g′i(b2) −

g′i(b
1)| ≤ O(b1 − b2), which implies g′(b′) is a Lipschitz continuous function. Lemma 11

implies that |ĝθm − g′(θm)| ≤ O( γM ) for every m. Now by Lemma 6, we obtain that

|ĝLI(b′)− g′(b′)| ≤ O(
γ

M
) +O(

1

M
)

Case 3: θm ≥ b′ ≥ ci ≥ θm−1. Exactly the same argument from case 2 can be applied, while
noting that we use ci as the interpolation point.
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Thus, we have just proved that on three separate intervals, we have |ĝLI(b′)− g′(b′)| ≤
O( γM ) +O( 1

M ). Therefore, for any b′, i, we must have |ĝLI(b′)− g′(b′)| ≤ O( γM ) +O( 1
M ),

which completes the proof.

Now we are ready to prove Lemma 10.

Note that by definition, s′ , (p[1]′ ,Q′,P[2]′) is the optimal solution to the empirical accuracy
and cost joint optimization problem. By Lemma 1, p[1]′ should also be 2-sparse. Let i′1 and i′2
be the corresponding indexes of the nonzero components, p′1, p′2 are the probability of using
them as the base service, and b′1, b′2 be the budget allocated to them in strategy s′. Then this
must be the optimal solution to the master problem

max
(i1,i2,p1,p2,b1,b2)∈C

p1g
′
i1(b1/p1) + p2g

′
i2(b2/p2) s.t.b1 + b2 ≤ b (C.8)

On the other hand, due to the linear interpolation, the subroutine to solve master problem
3.2 in Algorithm 1 is effectively solving

max
(i1,i2,p1,p2,b1,b2)∈C

p1g
LI
i1 (b1/p1) + p2g

LI
i2 (b2/p2) s.t.b1 + b2 ≤ b (C.9)

and returns its optimal solution î1, î2, p̂1, p̂2, b̂1, b̂2. By Lemma 15, we have |g′i(b′)− gLIi (b′)| ≤
O(γLM ) for all b′ and i, and thus for any i1, i2, b1, b2, p1, p2 ∈ C, we must have |p1g

′
i1

(b1/p1) +

p2g
′
i2

(b2/p2) − (p1g
LI
i1

(b1/p1) + p2g
LI
i2

(b2/p2))| ≤ O(γLM ), since p1 + p2 = 1. Note that the
constraints of the above two optimization are the same. Now we can apply Lemma 7, and
obtain

p̂1g
′
î1

(b̂1/p̂1) + p̂2g
′
î2

(b̂2/p̂2) ≥ p′1g′i′1(b′1/p
′
1) + p′2g

′
i′2

(b′2/p
′
2)−O(

γL

M
) (C.10)

By definition, we have E[rs
′
(x)] = p′1g

′
i′1

(b′1/p
′
1) + p′2g

′
i′2

(b′2/p
′
2), and thus the above simply

becomes

p̂1g
′
î1

(b̂1/p̂1) + p̂2g
′
î2

(b̂2/p̂2) ≥ E[rs
′
(x)]−O(

γL

M
) (C.11)

Next note that the final strategy is produced by calling subproblem 3.3 solver for b′ = b̂j/p̂j
and i = îj , where j = 1,2, and then aligning those two solutions. Thus, the empirical
accuracy is simply E[rŝ(x)] = p̂1ĝî1(b̂1/p̂1) + p̂2ĝî2(b̂2/p̂2). By Lemma 11, we have

|p̂1ĝî1(b̂1/p̂1)− p̂1g
′
î1

(b̂1/p̂1)| ≤ O(
γL

M
)

and

|p̂2ĝî2(b̂2/p̂2)− p̂2g
′
î2

(b̂1/p̂2)| ≤ O(
γL

M
)

Adding those two terms we have

p̂1ĝî1(b̂1/p̂1)− p̂1g
′
î1

(b̂1/p̂1) + p̂2ĝî2(b̂2/p̂2)− p̂2g
′
î2

(b̂1/p̂2) ≥ −O(
γL

M
)

That is to say,

E[rŝ(x)]− p̂1g
′
î1

(b̂1/p̂1)− p̂2g
′
î2

(b̂1/p̂2) ≥ −O(
γL

M
)

Adding the inequality C.11, we have

E[rŝ(x)]−E[rs
′
(x)] ≥ −O(

γL

M
)

which completes the proof.

Now let us prove Theorem 16, a slightly weaker version of Theorem 3.
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Theorem 16. Suppose E[ri(x)|Ds = 0,A
[1]
s = i] is Lipschitz continuous with constant γ w.r.t. each

element in Q. Given N i.i.d. samples {y(xi),{(yk(xi), qk(xi))}Kk=1}Ni=1, the computational cost of
Algorithm 1 is O

(
NMK2 +K3M3L+MLK2

)
. With probability 1− ε, the produced strategy

ŝ satisfies E[rŝ(x)]− E[rs
∗
(x)] ≥ −O

(√
log ε+logM+logK+logL

N + γL
M

)
, and E[γ[ŝ](x, c)] ≤ b+

O

(√
log ε+logM+logK+logL

N

)
.

Proof. There are three main parts: (i) the computational complexity, (ii) the accuracy drop,
and (iii) the excessive cost. Let us handle them sequentially.

(i) Computational Complexity: Lemma 8 directly gives the computational complexity
bound.

(ii) Accuracy Loss: By Lemma 9, with probability 1− ε, we have

E[1ŷŝ(x)=y(x)]− Ê[1ŷŝ(x)=y(x)] ≥ −O

(√
log ε+ logM + logK + logL

N
+

γ

M

)

Ê[1ŷs′ (x)=y(x)]−E[1ŷs′ (x)=y(x)] ≥ −O

(√
log ε+ logM + logK + logL

N

)
and also

E[1ŷs′ (x)=y(x)]−E[1ŷs∗ (x)=y(x)] ≥ −O

(√
log ε+ logM + logK + logL

N
+ +

γ

M

)
By Lemma 10, we have

Ê[1ŷŝ(x)=y(x)]− Ê[1ŷs′ (x)=y(x)] ≥ −O
( γ
M

)
Combining those four inequalities, we have

E[1ŷŝ(x)=y(x)]−E[1ŷs∗ (x)=y(x)]

=E[1ŷŝ(x)=y(x)]− Ê[1ŷŝ(x)=y(x)] + Ê[1ŷŝ(x)=y(x)]− Ê[1ŷs′ (x)=y(x)]

+Ê[1ŷs′ (x)=y(x)]−E[1ŷs′ (x)=y(x)] + E[1ŷs′ (x)=y(x)]−E[1ŷs∗ (x)=y(x)]

≥−O

(√
log ε+ logM + logK + logL

N

)
−O

(
γL

M

)

−O

(√
log ε+ logM + logK + logL

N

)
−O

(√
log ε+ logM + logK + logL

N

)

≥−O

(√
log ε+ logM + logK + logL

N
+
γL

M

)

(iii) Excessive Cost: Similar to (ii), by Lemma 9, with probability 1− ε, we have

E[τ [ŝ](x, c)]− Ê[τ [ŝ](x, c)] ≤ O

(√
log ε+ logK + logL

N

)

Ê[τ [s′](x, c)]−E[τ [s′](x, c)] ≤ O

(√
log ε+ logK + logL

N

)
and also

E[τ [s′](x, c)]−E[τ [s∗](x, c)] ≤ O

(√
log ε+ logK + logL

N

)
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By Lemma 10, we have

Ê[τ [ŝ](x, c)]− Ê[τ [s′](x, c)] ≤ 0

Combining those four inequalities, we have

E[τ [ŝ](x, c)]−E[τ [s∗](x, c)]

=E[τ [ŝ](x, c)]− Ê[τ [ŝ](x, c)] + Ê[τ [ŝ](x, c)]− Ê[τ [s′](x, c)]

+Ê[τ [s′](x, c)]−E[τ [s′](x, c)] + E[τ [s′](x, c)]−E[τ [s∗](x, c)]

≤O

(√
log ε+ logK + logL

N

)
+ 0

+O

(√
log ε+ logK + logL

N

)
+O

(√
log ε+ logK + logL

N

)

≤O

(√
log ε+ logK + logL

N

)
which completes the proof.

Lemma 17. Let s∆b , arg maxs∈S E[rs(x)] s.t. E[γ[s](x)] ≤ b − ∆b. If b − ∆b ≥ 0, then
E[rs

∆b

(x)]−E[rs
∗
(x)] ≥ −O(∆b).

Proof. We simply need to show that E[rs
∆b

(x)] is Lipschitz continuous in ∆b. To see this, let
us expand s∆b = (p∆b,Q∆b,P∆b) and consider the following optimization problem

max
s=(p0,Q∆b,P)∈S

E[rs(x)] s.t. E[γ[s](x)] ≤ a. (C.12)

By law of total expectation, we have

E[rs(x)] =

K∑
i=1

Pr[A[1]
s = i]E[rs(x)|A[1]

s = i]

And we can further expand the conditional expectation by

E[rs(x)|A[1]
s = i]

=

L∑
`=1

Pr[yi(x) = `]E[rs(x)|A[1]
s = i, yi(x) = `]

=

L∑
`=1

Pr[Ds = 0|A[1]
s = i, yi(x) = `] Pr[yi(x) = `]E[rs(x)|A[1]

s = i, yi(x) = `,Ds = 0]+

L∑
`=1

Pr[Ds = 1|A[1]
s = i, yi(x) = `] Pr[yi(x) = `]E[rs(x)|A[1]

s = i, yi(x) = `,Ds = 1]

Note that

E[rs(x)|A[1]
s = i, yi(x) = `,Ds = 0] = E[ri(x)|A[1]

s = i, yi(x) = `,Ds = 0]

and

E[rs(x)|A[1]
s = i, yi(x) = `,Ds = 1]

=

K∑
j=1

Pr[A[2]
s = j|A[1]

s = i, yi(x) = `,Ds = 1]E[rs(x)|A[1]
s = i, yi(x) = `,Ds = 1,A[2]

s = j]

=

K∑
j=1

Qi,`,jE[rs(x)|A[1]
s = i, yi(x) = `,Ds = 1,A[2]

s = j]
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where all qualities are simply by applying the conditional expectation formula. That is to
say, conditional on the quality score Q, the objective function is a linear function over P
where all coefficients are positive. Similarly, we can expand the budget constraint, which
turns out to be also linear in P conditional on Q.

Thus, problem C.12 is a linear programming in P. Therefore, its optimal value, denoted by
F (a|∆b), must also be Lipschitz continuous in a, according to Lemma 5. In other words, we
have |F (a2|∆b)− F (a1|∆b)| ≤ O(|a1 − a2|) for any a1, a2,∆b. When a = b−∆b, its optimal
value must be E[rs

∆b

(x)], i,e., E[rs
∆b

(x)] = F (b−∆b|∆b). On the other hand, note that the
optimal solution corresponding to F (b−∆b|0) is also a feasible solution to the original
optimization without fixing p=p0,Q = Q0. Hence, we must have E[rs

∆b

(x)] ≥ F (b−∆b|0)
since the former is the optimal solution and the latter is only a feasible solution. Thus, we
have

E[rs
0

(x)]−E[rs
∆b

(x)]

=E[rs
0

(x)]− F (b|0) + F (b|0)− F (b−∆b|0) + F (b−∆b|0)−E[rs
∆b

(x)]

=F (b|0)− F (b−∆b|0) + F (b−∆b|0)−E[rs
∆b

(x)]

≤O(b− (b−∆b)) = O(∆b)

Note that E[rs
0

(x)] = E[rs
∗
(x)], we have proved the statement.

Now we can relax Theorem 16 to Theorem 3 by slightly modifying the subroutines in
Algorithm 1. First, we can compute the excessive part in the cost given in Lemma 9,
denoted by be. Next, for all the subroutines in Algorithm 1, replace b by b− be whenever
applicable. Thus, the produced solution with high probability has E[γ[s](x)] ≤ b, since
we already remove the be term. However, noting that by subtracting this be, we effective
change the optimization problem by allowing a smaller budget, which is a conservative
approach. Now by Lemma 17, this incurs at most O(be) accuracy drop. By Lemma 9,
be = O(

√
(log ε+ logK + logL)/N), which is subsumed by the accuracy drop in Theorem

16, which finishes the proof. 17

D Experimental Details

We provide missing experimental details here.

Experimental Setup. All experiments were run on a machine with 20 Intel Xeon E5-2660
2.6 GHz cores, 160 GB RAM, and 200GB disk with Ubuntu 16.04 LTS as the OS. Our code is
implemented in python 3.7.

ML tasks and services. Recall that We focus on three main ML tasks, namely, facial
emotion recognition (FER), sentiment analysis (SA), and speech to text (STT).

FER is a computer vision task, where give a face image, the goal is to give its emotion (such
as happy or sad). For FER, we use 3 different ML cloud services, Google Vision [9], Microsoft
Face (MS Face) [11], and Face++[6]. We also use a pretrained convolutional neural network
(CNN) freely available from github [13]. Both Microsoft Face and Face++ APIs provide a
numeric value in [0,1] as the quality score for their predictions, while Google API gives a
value in five categories, namely, “very unlikely”, “unlikely”, “possible”, “likely”, and “very
likely”. We transform this categorical value into numerical value by linear interpolation, i.e.,
the five values correspond to 0.2, 0.4, 0.6, 0.8, 1, respectively.

SA is a natural language processing (NLP) task, where the goal is to predict if the attitude
of a given text is positive or negative. For SA, the ML services used in the experiments
are Google Natural Language (Google NLP) [7], Amazon Comprehend (AMZN Comp) [2],
and Baidu Natural Language Processing (Baidu NLP) [3]. For English datasets, we use
Vader [33], a rule-based sentiment analysis engine. For Chinese datasets, we use another
rule-based sentiment analysis tool Bixin [4].
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(c) Task: STT.

Figure 7: Cost per 10,000 queries of different ML APIs. GitHub refers to the CNN Model
[13] in FER, Vader [16] and Bixin [4] in SA , and DeepSpeech [14] in STT.

STT is a speech recognition task where the goal is to transform an utterance into its corre-
sponding text. for STT, we use three common APIs: Google Speech [8], Microsoft Speech
(MS Speech) [12], and IBM speech [10]. a deepspeech model[14, 19] from github is also used.
Given the returned text from a API, we determine the API’s predicted label as the label with
smallest edit distance to the returned text. For example, if IBM API produces “for” for a
sample in AUDIOMNIST, then its label becomes “four”, since all other numbers have larger
distance from the predicted text “for”.

Datasets. The experiments were conducted on 12 datasets. The first four datasets,
FER+[20], RAFDB[39], EXPW[59], and AFFECTNET[42] are FER datasets. The images
in FER+ was originally from the FER dataset for the ICML 2013 Workshop on Challenges
in Representation, and the label was recreated by crowdsourcing. We only use the testing
portion of FER+, since the CNN model from github was pretrained on its training set. For
RAFDB and AFFECTNET, we only use the images for basic emotions since commercial APIs
cannot work for compound emotions. For EXPW, we use the true bounding box associated
with the dataset to create aligned faces first, and only pick the images that are faces with
confidence larger than 0.6.

For SA, we use four datasets, YELP [18], IMDB [41], SHOP [15], and WAIMAI [17]. YELP
and IMDB are both English text datasets. YELP is from the YELP review challenge. Each
review is associated with a rating from 1,2,3,4,5. We transform rating 1 and 2 into negative,
and rating 4 and 5 into positive. Then we randomly select 10,000 positive and negative
reviews, respectively. IMDB is already polarized and partitioned into training and testing
parts; we use its testing part which has 25,000 images. SHOP and WAIMAI are two Chinese
text datasets. SHOP contains polarized labels for reviews for various purchases (such as
fruits, hotels, computers). WAIMAI is a dataset for polarized delivery reviews. We use all
samples from SHOP and WAIMAI.

Finally, we use the other four datasets for STT, namely, DIGIT [5], AUDIOMNIST[21],
COMMAND [52] and FLUENT [40]. Each utterance in DIGIT and AUDIOMNIST is a
spoken digit (i.e., 0-9). The sampling rate is 8 kHz for DIGIT and 48 kHz for AUDIOMNIST.
Each sample in COMMAND is a spoken command such as “go”, “left”, “right”, “up”, and
“down”, with a sampling rate of 16 kHz. In total, there are 30 commands and a few white
noise utterances. FLUENT is another dataset for speech command. The commands in
FLUENT are typically a phrase (e.g., “turn on the light” or “turn down the music”). There
are in total 248 phrases, mapped to 31 unique labels. The sampling rate is also 16 kHz.

GitHub Model Cost. We evaluate the inference time of all GitHub models on an Amazon
EC2 t2.micro instance, which is $0.0116 per hour. The CNN model needs at most 0.016
seconds per 480 x 480 grey image, Bixin and Vader require at most 0.005 seconds for each
text with less than 300 words, and DeepSpeech takes at most 0.5 seconds for each less than
15 seconds utterance. Hence, their equivalent price is $0.0005, $0.00016, and $0.016 per
10,000 data points. As shown in Figure 7, the services from GitHub are much less expensive
than the commercial ML services.

Case Study Details. For comparison purposes, we also evaluate the performance of a
mixture of experts, a simple majority vote, and a simple cascade approach on FER+ dataset.
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Figure 8: Confusion matrix annotated with overall accuracy and cost on FER+ testing. The
y-axis corresponds to the true label and x-axis represents the predicted label. Each entry in
a confusion matrix is the likelihood that its corresponding label in x-axis is predicted given
the corresponding true label in y-axis. For example, the 0.87 in (i) means that for all surprise
images, FrugalML correctly predicts 87% of them as surprise,

For the mixture of experts, we use softmax for the gating network, and linear model on
the domain space for the feature generation. This results in a strategy that ends up with
always calling the best expert Microsoft. For the simple majority vote, we first transforms
each API’s confidence score q and predicted label ` into its probability vector v ∈ RL, by
v` = q,vj = (1− q)/(L− 1), j 6= `. This can be viewed as that the API gives a distribution
of all labels for the input data point. Assuming independence, we simply sum all APIs’
distributions and then produce the label with highest estimated probability. We also use a
simple majority vote, where we simply return the label on which most API agrees on. For
example, if GitHub (CNN), Google, and Face++ all give a label “surprise”, the no matter
what Microsoft produces, we choose “surprise ” as the label. We break ties randomly.

Figure 8 shows the confusion matrix of FrugalML, along with all ML services and the
other approaches (namely, mixture of experts, simple cascade, (simple majority vote), and
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Figure 9: Label distribution on dataset FER+. Most of the facial images are neutral and
happy faces, and only a few are fear and disgust.

majority vote). Among all the four services, we first note that there is an accuracy disparity
for different facial emotions. In fact, GitHub (CNN) gives the highest accuracy on anger
images (0.73%), fear (0.81%), happy (0.90%) and sad (0.60%), Face++ is best at disgust
emotion (0.60%) and surprise (0.85%), while Microsoft is best at neutral (90%). Meanwhile,
GitHub (CNN) gives a poor performance for neutral images, Face++ can hardly tell the
differences between fear and surprise, and Google has a hard time distinguishing between
anger and disgust images. This implies bias (and thus strength and weakness) from each
ML API, leading to opportunities for optimization. We would also like to note that such
biases may be of independent interest and explored for fairness study in the future.

We notice that the mixture of expert approach has the same confusion matrix as the Microsoft
API. This is because the simple mixture of experts simply learns to always use the Microsoft
API. Noting that we use a simple linear gating on the raw image space, this probably
implies that Microsoft API has the best performance on any subspace in the raw image
space produced by any hyperplane. More complicated mixture of experts approaches may
lead to better performance, but requires more training complexity. Again, unlike FrugalML,
mixture of experts does not allow users to specify their own budget/accuracy constraints.

Simple cascade approach allows accuracy cost trade-offs. As shown in Figure 7(f), while
reaching the same accuracy as the best commercial API (Microsoft), it only asks for half
of the cost. In fact, simple cascade uses GitHub (CNN) and Microsoft as the base service
and add-on service with a fixed threshold for all labels. As a result, compared to Microsoft
API, the prediction accuracy of neutral images drops significantly, while the accuracy on
all the other labels increases, and thus resulting in the same accuracy. FrugalML, also with
half of the cost of Microsoft API, actually gives an accuracy (84%) even higher than that of
Microsoft API (81%). In fact, FrugalML identifies that only a vert small portion of images are
disgust, and thus slightly sacrifices the accuracy on disgust images to improve the accuracy
on all the other images. Compared to the simple cascade approach in Figure 7 (f), FrugalML,
as shown in Figure 7 (i), produces higher accuracy on all classes of images except disgust
images. Compared to Microsoft API (Figure 7), FrugalML slightly hurts the accuracy on
fear, sad, and neutral images, but significantly improve the accuracy on happy and other
images. Note that the strategy learned by FrugalML depends on the data distribution. As
shown in Figure 9, most images are neutral and happy, and thus a slight drop on neutral
images is worthy in exchange of a large improvement on happy images. Depending on the
training data distribution, FrugalML may have learned different strategies as well.

Finally we note that while (simple) majority vote gives a poor accuracy (80% in Figure 8
(g)), the majority vote approach does lead to an accuracy (82%) higher than Microsoft API,
although it is still lower than FrugalML’s accuracy (84%). In addition, ensemble methods
like majority vote need access to all ML APIs, and thus requires a cost of 30$, which is 5
times as large as the cost of FrugalML. Hence, they may not help reduce the cost effectively.

Commercial API Only Study. Furthermore, We evaluate FrugalML’s performance using
only MLaaS APIs excluding GH. To match the best API (Microsoft)’s performance, the
learned FrugalML strategy always uses Face++ as the base service and occasionally calls
Microsoft API (10$), leading to overall cost reduction of 17%. Alternatively, using the same
cost target as the best API (10$), FrugalML achieves a 2% accuracy improvement.

34




