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Abstract

Spatial Description Resolution, as a language-guided localization task, is pro-
posed for target location in a panoramic street view, given corresponding language
descriptions. Explicitly characterizing an object-level relationship while distill-
ing spatial relationships are currently absent but crucial to this task. Mimicking
humans, who sequentially traverse spatial relationship words and objects with a
first-person view to locate their target, we propose a novel spatial relationship
induced (SIRI) network. Specifically, visual features are firstly correlated at an
implicit object-level in a projected latent space; then they are distilled by each
spatial relationship word, resulting in each differently activated feature representing
each spatial relationship. Further, we introduce global position priors to fix the
absence of positional information, which may result in global positional reasoning
ambiguities. Both the linguistic and visual features are concatenated to finalize the
target localization. Experimental results on the Touchdown show that our method is
around 24% better than the state-of-the-art method in terms of accuracy, measured
by an 80-pixel radius. Our method also generalizes well on our proposed extended
dataset collected using the same settings as Touchdown. The code for this project is
publicly available at https://github.com/wong-puiyiu/siri-sdr.1

1 Introduction

Visual localization tasks aim to locate target positions according to language descriptions, where
many downstream applications have been developed such as visual question answering (1; 22; 23),
visual grounding (20; 18; 28; 6) and spatial description resolution (SDR) (3), etc. These language-
guided location tasks can be categorized in terms of input formats, e.g. perspective images in visual
grounding or panoramic images in the recently introduced SDR.

The Challenge of SDR: Both of visual grounding and spatial description resolution tasks need to
explore the correlation between vision and language to locate the target locations. Unlike traditional
visual grounding, the recently proposed spatial description resolution of panoramic images, however,
presents its own difficulties due to the following aspects. (1) As shown in Figure 1, the complicated
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entities, such as buildings in an image, present some challenges for the advanced object detection (9).
For example, existing methods may fail to instantiate multiple adjacent buildings. (2) The short
language descriptions in visual grounding are more about well-described instances with multiple
attributes, while the long descriptions in spatial description resolution describe multiple spatial
relationship words, such as ‘your right/left’, ‘on the left/right’ and ‘in the front’, from a distant
starting point to the target. It is worth noting that such crucial issues have not been well addressed
in previous work. (3) Panoramic images in visual grounding with a first-person view cover more
complex visual details on a street compared to the perspective images with a third-person view in
visual grounding.

Guy in yellow dirbbling ball

Yellow shirt and black shorts

(a) Visual Grounding

There is a building whose outer wall is red on your left. On the ground floor of it, there is a restaurant with orange 

sign and white letters and a small bookstore is next to the restaurant. Touchdown is at the center of the sign.

(b) Spatial Description Resolution

Figure 1: Examples of the datasets for the recently proposed spatial description resolution and
conventional visual grounding. For the visual grounding illustrated on the left, there are simple
entities in the image with a third-person view and the language descriptions are also simple and short.
Regarding SDR on the right, real-world environments with a first-person view contain comprehensive
entities. The corresponding languages have multiple entities and spatial relationships. The yellow
star in the panorama on the right illustrates the target location according to the language descriptions.

Our Solution: To efficiently tackle SDR, humans start at their own position with a first-person
perspective and sequentially traverse the objects with spatial relationship words, finally locating their
target. To mimic the human behavior on SDR, we propose a spatial relationship induced (SIRI)
network to explicitly tackle the SDR task in a real-world environment. As shown in Figure 2, we
firstly leverage a graph-based global reasoning network (5) (GloRe) to model the correlations of
all the object-object pairs in the extracted visual feature, where the visual feature is projected to a
latent space to implicitly represent object instances in an unsupervised manner. Implicitly learning
object concepts and their visual correlations free us from explicitly designing an object detector for a
street view. Meanwhile it enables each object in the image to accumulate its contextual information,
which is extremely important for scene understanding as well as for spatial description resolution.
Next, a local spatial relationship guided distillation module is appended to distill the visual features
to different discriminative features, where each corresponds to a spatial relationship word. We
argue that distilling visual features with local spatial relationships concentrates on specific features
corresponding to these crucial language hints, consequently facilitating final target localization. After
averaging all the distilled features, we introduce two global coordinate maps, of which the origin
is at the agent’s position, i,e., the bottom center of the image. Such a position prior alleviates the
ambiguities of global positional reasoning in an efficient way. All encoded linguistic features, distilled
visual features and position priors are fed into LingUnet(3) to finalize target localization. It is worth
noting that our solution tackles the task of SDR in a highly efficient way and performs significantly
better than other existing methods.

Our contributions: (1) A novel framework is proposed to explicitly tackle the SDR task in terms
of object-level visual correlation, local spatial relationship distillation and global spatial positional
embedding. (2) Extensive experiments on the Touchdown dataset show that our method outperforms
LingUnet (3) by 24% in terms of accuracy, measured by an 80-pixel radius. (3) We propose an
extended dataset collected using the same settings as Touchdown, and our proposed method also
generalizes well.
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2 Related Work

Language Guided Localization Task.Visual grounding (20; 18; 28; 6) and referring expression
comprehension (16; 27; 25) aim to locate target objects or regions according to given languages.
The images in these tasks are perspective images that contain a limited number of entities, and the
expression languages are also short. Object detection, which is one of the tasks in these datasets,
is commonly used to provide a prior that functions as a correspondence between objects in images
and language-based entity nouns. Methods under the object detection framework can be categorized
in two ways. The �rst category (19; 24; 27; 18) has two stages, in which object detection is carried
out at the beginning and object proposals are ranked according to the language query. Two-stage
approaches, however, are time-consuming. Thus, one-stage approaches (26; 21; 29; 4) have been
proposed to achieve greater ef�ciency. Nevertheless, the object detectors can fail when it comes
to real-world environments in spatial resolution description (3), where more objects and complex
backgrounds are included with large �elds of view, as shown in Figure 1. In addition to this, the
given language descriptions in SDR are longer and describe more object pair spatial relationships.
Undoubtedly, existing one-stage methods with weak contextual information on objects for grounding
do not specialize when processing spatial positioning words. Recently, LingUnet (3) was proposed,
and it treats linguistic features as dynamic �lters to convolve visual features, taking all regions into
consideration. But it does not yet fully explore the visual and spatial relationships in such complex
environments. In this paper, we intend to fully investigate these spatial relationships between objects.

Spatial Positional Embedding. As has been studied, convolutional layers cannot easily extract
position information (14). Thus, spatial positional embedding has been commonly used in localization
tasks. For instance, Liu (14) proposed CoordConv to concatenate coordinate maps into channels of
features, enabling convolutions to access their own input coordinates, which was of ultimate bene�t to
multiple downstream tasks. In addition, coordinate maps have been embedded in object detection (8).
An 8-D spatial coordinate feature is provided at each spatial position for image segmentation (7). (15)
included 2D coordinates maps with the corresponding regions to predict more precise depth maps.
(2) concatenated positional channels to an activation map to introduce explicit spatial information for
recognition tasks. In SDR, it is particularly important to accurately describe the positional information
of each object since the corresponding language descriptions sequentially depict bearings between
objects. All these operations in the recently proposed LingUnet are, however, convolutional layers,
leading to an absence of positional information for each pixel. Undoubtedly, ambiguities emerge
when duplicated target objects are present in the same image. Unfortunately, spatial positional
embedding has not been properly studied in SDR. Thus, we introduce a global spatial positional
information to SDR to handle this problem.

3 Method

3.1 Overview

We illustrate our proposed SIRI network in Figure 2. It consists of a visual correlation, a local spatial
relationship guided distillation and a global spatial positional embedding. For privacy preserving,
only the features extracted from a pretrained RESNET18 (10) are provided in the TouchDown dataset.
Thus, given the object-level visual feature of an imageI with a shape ofh(height) � w(width)
and a natural language description, the output of our proposed SIRI network is a heatmap with the
same resolution of the input image, and its peak is the �nal target localization result. All spatial
relationships represented by orientation words in the entire dataset form the setW = f right, left, ...g.
Further, we denote the orientation words in the descriptions corresponding to the image asWI .

Language representation.Different images have different language description lengths. We adapt a
Bidirectional LSTM (BiLSTM) to extract the linguistic features at all time steps for all words in a
given language description. Then an averaging operation is conducted on these linguistic features,
resulting in a �xed-length feature vectorL I . It then functions as a dynamic �lter in LingUnet, where
it will be separated into two equally sized slices, after which each slice will be projected and reshaped
into a �lter by a fully-connected layer. Also, it will be projected and reshaped into the linguistic
features used in feature concatenation via another full-connected layer.
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Figure 2: The entire framework of our proposed SIRI for SDR. The orientation words in the
descriptions function as switches, i.e. if a certain orientation word is included in the descriptions,
then the correspondingConvk branch in Stage II is activated once regardless of the number of
appearances. Otherwise, the corresponding branch is hibernated. This �gure is best viewed in color.

3.2 Object-level Visual Feature Correlation

Since the goal of SDR is to localize a speci�c position on an object, an advanced object detector such
as Mask RCNN (9) can be used to instantiate each object in the given street-view image. Cohesive
buildings cannot be differentiated by such detectors, however, leading to a single detection box on
them. Therefore we instantiate each object in a latent space using GloRe (5). Speci�cally, we cast the
input space into an interaction space by multiplying a projection matrix, where a graph convolutional
network (13) is then utilized to conduct visual relationship learning. Another projection matrix is
then used to cast the visual relationship features back to the original space. Such an embedding space
enables us to conduct an object-level visual feature correlation in an unsupervised manner. Thus, we
stack the GloRe multiple times to fully explore the visual relationships of the input visual features.

3.3 Local Spatial Relation Guided Distillation

The correlated visual featuresX are overly dense, and they contain a maximum of visual features of
objects and local spatial relationships. This makes it more dif�cult to �nd the target position. On the
other hand, the spatial relationship words in the corresponding language descriptions are limited and
are related to some speci�c objects. Thus, distilling the speci�c spatial relationships corresponding
to these language descriptions is helpful in locating the language-guided regions in panoramas. In
this paper, we employ spatial relationship guided distillation to distill the correlated visual features
based on each spatial relationship (orientation) word in the language descriptions. Speci�cally, we
introduceK branches of convolutional blocks that correspond toK orientation words. For each
branch corresponding to a speci�c orientation word, a different5� 5 trainable �lter is used to activate
the features corresponding to a speci�c word. Ideally,K would be equal to the size ofW. This
is, however, impractical for handling the huge sets of orientation words in the entire dataset. Thus,
we select the topk high-frequency words amongW, which forms the setW H . Then, the output of
thesek branches will be averaged. We also use a skip-connection to add the input featuresX to this
output in case none of the high-frequency orientation words are present in the language descriptions.
Mathematically, the output of the spatial relationship distillationG can be formulated as follows:

G(X ) =
KX

k=1

1f W k
I 2 W H g � Convk (X ) + X (1)

.
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As shown in Figure 2, The orientation words in the descriptions function as switches, which means
if a certain orientation word is present in the descriptions, then the corresponding convolutional
branch is activated regardless of the number of appearances. Finally, the features corresponding to
the high-frequency orientation words in the descriptions will be distilled in an end-to-end training
manner.

3.4 Global Spatial Positional Embedding

The previous procedure, however, misses the global positional information, which makes the �nal
target localization dif�cult due to the global positional words such as `on your left' in the language
descriptions. To introduce this absent but extremely important information, we introduce a spatial
positional embedding with global coordinate maps to �x this. By concatenating the distilled features
with two auxiliary features, the ambiguities due to the absence of global positional information are
alleviated.

Global Coordinate Maps. Since the language descriptions are based on the egocentric viewpoint
of an agent that is always located at the bottom center and that is moving forward, most reasoning
routes start from the position of the agent and turns to either the upper left side or the upper right
side of the panorama. Thus, such orientations provide a strong orientation prior for reasoning routes.
More speci�cally, we build a coordinate whose origin is the same with the location of the agent (the
bottom center of the image), where the x-axis runs along the horizontal direction and the y-axis is the
vertical direction. We then arrive at two coordinate maps whose values correspond to the coordinates
in the x-axis direction and the y-axis direction, respectively, as shown in Figure 2. These coordinate
maps are denoted asM C 2 RhF � w F � 2. In addition, we normalize them onto the range [0, 1].

Considering the following fusion of different feature maps, we �rstly transform the language repre-
sentationL I to a vector with a fully-connected (FC) layer and we then reshape it to a feature map
with the same resolution of the image. Then, we concatenate these linguistic features with coordinate
maps, as well as with the distilled visual features. This is followed by a convolution operation with
a kernel size of3 � 3 to fuse all of this information. Formally, we denote the outputR of these
operations as follows:

R(M C ; L I ; I F ) = Conv([M C ; Reshape(FC(L I )); G(I F )]) : (2)

3.5 Destination Estimation

As this point, we can directly predict the target position map, which is regularized by the corresponding
ground-truth. Motivated by the success of LingUnet for SDR, we append a LingUnet for destination
estimation. Formally, we denote the predicted heatmapM̂ as follows:

M̂ = LingUnet(R(M C ; L I ; I F ); L I ): (3)

It is worth noting that our proposed method can achieve signi�cantly better results compared to
LingUnet, even without appending LingUnet.

3.6 Objective Function

Given the input image featureI and the corresponding language description, we apply the Equation 3
to generate the predicted heatmapM̂ . For the ground-truth heatmap, we apply a gaussian �lter
over the target position and denote it asM . We then leverage a KL divergence loss between the
ground-truth heatmap with anh � w down-sampling, after which the predicted heatmapM̂ over each
pixel is as follows:

L KL (M̂ ; M ) =
hwX

i =1

M i logM̂ i : (4)

4 Experiments

Touchdown and Extended Touchdown datasets.We conducted all experiments on the TouchDown
dataset (3), which is designed for navigation and spatial description reasoning in a real-life environ-
ment. In this paper, we focus on the analysis of the spatial description resolution task of locating on
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Method A@40px(%)" A@80px(%)" A@120px(%)" Dist#
Validation Set / Testing Set

Random (3) 0.18 / 0.21 0.59 / 0.78 1.28 / 1.89 1185 / 1179
Center (3) 0.55 / 0.31 1.62 / 1.61 3.26 / 3.39 777 / 759

Average (3) 1.88 / 2.43 4.22 / 5.21 7.14 / 7,96 762 / 744
Text2Conv (3) 24.03 / 24.82 29.36 / 30.40 32.60 / 34.13 195 / 182
LingUnet (3) 24.81 / 26.11 32.83 / 34.59 36.44 / 37.81 178 / 166
SIRI-Conv 43.47 / 44.51 53.62 / 55.73 64.16 / 65.26 114 / 107

SIRI 44.86 / 46.93 55.83 / 58.33 65.69 / 67.66 105 / 100

Table 1: Comparison with different methods on TouchDown's validation set and testing set.

Figure 3: Visualization of the predictions of SIRI and LingUnet, as well as the ground-truth. SIRI's
predictions are closer than LingUnet's predictions to the ground-truth. This �gure is best viewed in
color.

Touchdown given panoramic images and corresponding language descriptions. Touchdown location
strings of text are given as natural languages, and the locations are presented as heatmaps. In total,
this dataset contains27; 575samples for SDR, including17; 878training samples,3; 836validation
samples and3; 859testing samples. To see how well our proposed method generalizes in the wild,
we built a new, extended dataset of Touchdown, using data collected under the same settings as
the original Touchdown. The details and an analysis of our proposed dataset can be found in the
supplementary materials.

Implementation Details. It should be noted that we do not conduct any down-sampling operations
in any of the modules, which means that the resolutions of all the feature maps are100� 464. In
the spatial relationship guided distillation procedure, we choose the top six of the high-frequency
orientation words, because of the large number of orientation words in the entire dataset and their
long-tail distribution. In all experiments, we use the Adam optimizer(12) to train the network. In
addition, the number of training mini-batches and the learning rate are 10 and 0.0001 respectively.
The code is implemented in Pytorch.

Evaluation Metric . Following the previous work (3), we adapt the same evaluation metric in terms
of accuracy and distance. We denote the peaks of the predicted heatmap and the ground-truth heatmap
asm̂ andm, respectively. Formally, the distance is de�ned as follows:

Dist (m; m̂) = km � m̂k2 (5)

Similarly, the accuracy is de�ned over the whole dataset withN samples, based on radiir of 40, 80
and 120 pixels, denoted as A@40px, A@80px and A@120px, respectively.

A@r px =
1
N

NX

i

1f Dist (m i ;m̂ i ) � r g � 100% (6)

4.1 Comparison with the State-Of-The-Art

Following the previous work (3), we compare our method with three non-learning-based methods, i.e.
Random, Center and Average, as well as two learning-based baselines, i.e. Text2Conv and LingUnet,
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