
We sincerely thank all the reviewers for their thoughtful comments, efforts, and time. We are delighted that every1

reviewers has left a positive impression on our research, particularly appreciating the simplicity and effectiveness of our2

method, with thorough and strong experimental results. We respond to each comment one-by-one in what follows.3

(R1) Novelty. We use the framework in [4] since it is a natural way to extend the previous natural-robust error4

decomposition [5] for smoothed classifiers. We believe the novelty of our method is in its simplicity, and in how to5

come up with this simplest form from the common principle of accuracy-robustness trade-off under the framework.6

ACR (MNIST) σ = 0.25 σ = 0.50 σ = 1.00

Gaussian [1] 0.9108±0.0003 1.5581±0.0016 1.6184±0.0021

+ Consistency 0.9300±0.0004 1.6653±0.0007 1.7486±0.0025

SmoothAdv [3] 0.9315±0.0001 1.6830±0.0006 1.7706±0.0019

+ Consistency 0.9323±0.0004 1.6905±0.0002 1.8087±0.0022

Stability [2] 0.9152±0.0007 1.5719±0.0028 1.6341±0.0018

MACER [4] 0.9201±0.0006 1.5899±0.0069 1.5950±0.0051

(R2) Variance over multiple runs. We observe ACR of a7

training method is fairly robust to network initialization, e.g.,8

as given in the right table: each value reports the mean and9

standard deviation across 5 seeds. As another support, we10

point out all the baselines considered in this paper [1, 3, 2, 4]11

also report single-run results in their papers, possibly based12

on observations similar to ours. Finally, we plan to publicly13

release our code and models for better reproducibility.14

(R2) Clean accuracy is often worse than [4]. Our method can effectively explore the accuracy-robustness trade-off15

[5] with λ. We expect the demands for higher clean accuracy could be compensated by using lower λ, e.g., our method16

achieves better clean accuracy than MACER in Table 1 when λ = 10 on σ = 0.50, even with better ACR. Nevertheless,17

it is remarkable that MACER sometimes achieve higher clean accuracy even than Gaussian, e.g., at σ = 0.25 of Table 1,18

and we agree with R2 that improving clean accuracy of smoothed classifier is also an important future direction.19

(R2) Logit margin vs. input margin. Regarding Figure 1, it is important to notice that our focus is NOT the robustness20

of the base classifiers f tested, but the robustness of its smoothed counterparts f̂ . A key benefit of smoothed classifier is21

that it elegantly transforms a matter of input margin on f into that of output margin on f̂ : the robustness guarantee of22

Cohen et al. [1] in Eq. 3 implies that one is enough to minimize Pδ(f(x+ δ) 6= y) to improve the robustness of f̂ at x,23

which corresponds to the shaded areas in Figure 1. This can be also viewed in terms of the Lipschitzness: Salman et al.24

[3] have shown that any Gaussian-smoothed classifier f̂ has an explicit Lipschitz constant, leading to a simpler proof of25

Eq. 3 [1]. We will incorporate the respective discussion in the final draft.26

(R2) “Sufficient condition”? The last E in Eq. 6? Why m > 1? (i) The condition we refer is at L107: “F (x + δ)27

returns a constant output over δ”. This directly implies “Eq. 6→ 0”, and consequently “the robust error of Eq. 5→ 0”,28

which is why we refer this as sufficient condition. (ii) Regarding Eq. 6, we remark the outer E is not over δ, but over29

(x, y) ∼ D (as given in Eq. 5), thereby the last E of Eq. 6 cannot be discarded. (iii) Finally, our regularization requires30

m > 1 to work, as the term would vanish if m = 1: with only a single sample, say δ1, F (x+ δ1) would be the best31

estimation of F̂ (x) in Eq. 7, and Lcon = 0 in this case. We will make all these points more clearer in the final draft.32

(R3) Eq. 6 → Eq. 7? For a fixed x, the cross-entropy loss in Eq. 7 is a natural surrogate loss of the 0-1 risk33

Eδ[1f(x+δ)6=f̂(x)] = Pδ(f(x+ δ) 6= f̂(x)), and this 0-1 risk minimizes the last upper bound in Eq. 6 when minimized34

across (x, y) ∼ D. We also remark that this surrogate loss is calibrated [6, 5], i.e., minimizers of Eq. 7 are also35

minimizers of the 0-1 risk (as mentioned in L104-110). We will clarify this point in the final draft.36

(R3) Suggestions for better clarity. (i) We use 1A to denote the indicator random variable, formally defined by37

1A(ω) = 1 if ω ∈ A, and 0 otherwise. We will specify this in the final draft. (ii) As suggested by R3, we will update38

the legends in Figure 1 to better indicate our method. (iii) Also, we thank R3 for a detailed assessment of the Broader39

Impact statements. The final draft will include more discussions regarding the points made by R3.40

(R3) SmoothAdv + Consistency on ImageNet? We conduct ImageNet experiments primarily on Gaussian training,41

and report SmoothAdv results for a comparison. Conducting the suggested experiments with SmoothAdv would be42

interesting, but currently we found it incurs too much costs to execute during the rebuttal period, e.g., ∼600 GPU hours43

per single run. Nevertheless, we are willing to incorporate them in the final draft for thoroughness of our experiments.44

(R4) Other architectures. In our experiments, all the architectures per dataset is exactly from the prior works [1, 3, 4]45

for a fair comparison. Nevertheless, we agree with R4 that the effect of architectures on smoothed classifiers is an46

important question to explore, and we will include more results on other architectures, e.g., DenseNet, in the final draft.47
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