
Appendix1

A More experiment details2

A.1 Synthetic experiments3

Baseline configuration We adapt two most recent techniques for learning EBMs into discrete case,4

namely Du and Mordatch [1] and Dai et al. [2]. Specifically:5

• PCD based: Du and Mordatch [1] extends the PCD method with replay buffer and random6

restart. We adapt these tricks in learning discrete EBMs. Specifically, we use Gibbs sampling for7

K × 32-steps as the MCMC sampler, where K is set to 10. Instead of always inheriting from8

previous MCMC samples, we tune the restart rate in {0.05, 0.1, 1}.9

• ADE based: ADE solves the same minimax problem in Eq (4), but instead directly minimizes the10

objective L(q) := −Ex∼q [f(x)]−H(q). To make ADE work in discrete case, optimizing L(q)11

requires the policy gradient technique with variance reduction [3–6], where the gradient estimator12

becomes ∇qL(q) = Ex∼q∇ log q(x)(−f(x)− log q(x)− 1). This also resembles the learning of13

GAN [7] on sequences [8] or graphs [9], except the additional entropy regularization term and14

constant. We use A2C [3] to learn ADE for discrete EBMs. As ADE uses alternating minimization15

for minimax problem, we tune the learning rate ratio and synchronization frequency between16

energy function and sampler learning in {0.2, 0.5, 1} and {1 : 1, 1 : 3, 1 : 5}, respectively.17

4 2 0 2 4
4

3

2

1

0

1

2

3

4

4 2 0 2 4
4

3

2

1

0

1

2

3

4

4 2 0 2 4
4

3

2

1

0

1

2

3

4

4 2 0 2 4
4

3

2

1

0

1

2

3

4

4 3 2 1 0 1 2 3 4
3

2

1

0

1

2

3

4 2 0 2 4
4

3

2

1

0

1

2

3

4

4 2 0 2 4
4

3

2

1

0

1

2

3

4

2spirals 8gaussians checkerboard circles moons pinwheel swissroll

Figure A.1: 2D visualization of samples from the ground truth distribution.

PCD*

ADE*

ALOE

2spirals 8gaussians checkerboard circles moons pinwheel swissroll

Figure A.2: visualization of learned discrete EBMs using different methods.

More visualizations In Figure A.1 we also visualize the samples obtained from the ground18

truth distribution and visualize them in 2D space. Compared to Figure 2 we can see our19

learned sampler can almost perfectly recover the true distribution. The checkerboard seems20

to be the most difficult one among these datasets, as for both PCD and ADE baselines the21

learned model is much worse than the one learned by ALOE. We find that in this case22

1

the distribution is not smooth as it has sharp boundaries for each “square” in the distribu-23

tion. Thus below we study how the learned sampler behaves for ADE algorithm in this case.24

4 2 0 2 4
4

3

2

1

0

1

2

3

4

4 3 2 1 0 1 2 3 4

2

1

0

1

2

q0 =MLP q0 =RNN

Figure A.3: ADE with different samplers.

In Figure 3 in main paper we have studied ALOE with25

different design choices of q0, where a weak q0 like26

fully factored distribution can still get reasonable re-27

sults. Instead in Figure A.3 we can see that, for ADE,28

different parameterizations of the sampler will make29

quite different behaviors. The MLP sampler is an au-30

toregressive one with non-sharing parameters, while31

the RNN sampler has the shared parameters across32

different steps. This clearly shows the limitation of33

autoregressive model with parameter sharing, and also34

the necessity of learning sampler with local search to improve the weak initial sampler q0.35

Implementation details Here we provide more details on the instantiation of ALOE on the syn-36

thetic tasks. Below we first cover the parameterization details.37

The energy function is an MLP with dimensions of [32, 256, 256, 256, 1], where 32 is the input size,38

and 256 is the hidden layer size. We use ELU as the activation function.39

For ADE and ALOE, the q0 is parameterized with either autoregressive model or a factorized model.40

For the factorized model, we simply learn 32-dimensional vector that represents the logits of each41

dimension independently. For the autoregressive model, there can be two choices. The first one42

uses LSTM (which we denote as RnnSampler) to encode the bits, where LSTM has hidden size43

of 256 and 1 layer. All the dimensions share the same predictor that predicts the binary bit from44

the latent embedding obtained by LSTM. The predictor is an MLP with size [256, 512, 2] with ELU45

activation. Another alternative is to use MLP to encode the bits, as we know the maximum length is46

32 beforehand (which is not practical in general). This way we encode the history using 31 MLPs,47

where the i-th MLP has size [i, 512, 512, 256] that embeds the prefix of length i, and use the shared48

predictor to predict the bit at current position.49

ALOE has additional components, which are editor qA(·|·) and stop policy qstop. The editor only50

needs to predict the location for modification, as once the location is given one can simply flip that51

bit. It is parameterized into [32, 512, 512, 32] with ELU as activation function and softmax at the end.52

The stop policy is parameterized by an MLP with layers [32, 512, 512, 1] with ELU activation and53

sigmoid in the last output.54

We use the Inverse proposal where A′(·|·) is a uniform distribution that samples a random55

location for modification. To avoid sampling the same position twice, we first permute the locations56

and then pick the first k locations as the proposal trajectory, where k is the number of edits that is57

sampled from a geometric distribution, with the truncation at 16.58

A.2 Program synthesis experiments59

Grammar: We use the following grammar for RobustFill programs.60

61
〈program〉 → 〈ExprList〉62

63 〈ExprList〉 → 〈expr〉 | 〈expr〉 〈ExprList〉64

65 〈expr〉 → ‘ConstStr’ 〈ConstExpr〉 | ‘SubStr’ 〈SubstrExpr〉66

67 〈ConstExpr〉 → ‘]’ | ‘,’ | ‘-’ | ‘.’ | ‘@’ | ‘’’ | ‘"’ | ‘(’ | ‘)’ | ‘:’ | ‘%’68

69 〈SubstrExpr〉 → 〈Pos〉 〈Pos〉70

71 〈Pos〉 → 〈ConstPos〉 | 〈RegPos〉72

73 〈ConstPos〉 → -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 474

75 〈RegPos〉 → 〈ConstTok〉 | 〈RegexTok〉76

77 〈ConstTok〉 → 〈ConstExpr〉 〈p2〉 〈direct〉78

79 〈RegexTok〉 → 〈RegexStr〉 〈p2〉 〈direct〉80

81 〈p2〉 → 〈ConstPos〉82

83 〈direct〉 → ‘Start’ | ‘End’84

85

2

〈RegexStr〉 → ‘[A-Z]([a-z])+’ | ‘[A-Z]+’ | ‘[a-z]+’ | ‘\d+’ | ‘[a-zA-Z]+’ | ‘[a-zA-Z0-9]+’86

| ‘\s+’ | ‘^’ | ‘$’87

Data generator: We use following configurations for generating synthetic data for program synthesis:88

• The maximum number of types of tokens in input strings is set to 5.89

• The maximum length of input strings is 20.90

• The maximum length of output strings is 50.91

• The total number of input-output examples per synthesis task is 10.92

• The number of public input-output example pairs is 4.93

• The number of private input-output example pairs is 6.94

The learned synthesizer uses the 4 public IO pairs for synthesize the program, and evaluate against95

all 10 IO pairs. It is considered correct if it is consistent with these 10 IO pairs.96

Parameterization: We use a 3-layer LSTM with hidden size of 256 to encode each input and output97

sequences, respectively. Then each IO pair is represented by concatenating the sequence embeddings98

of input and output strings. The set of inputs is obtained by max-pooling over the IO-pair embeddings,99

which will be served as the context for program synthesis.100

For q0 we use a 3-layer LSTM with hidden size of 256 for predicting program tokens. For ALOE we101

parameterize the qA with two components: the position predictor qpos and the modified expression102

qexpr. qpos embeds the current program using 3-layer bidirectional LSTM, and predict the position103

using pointer mechanism [10]. Note that the selected position must be the start or end of an existing104

< expr > in above grammar, which indicates whether we want to modify or insert a new < expr >105

in this position. qexpr predicts the new expression using another 3-layer LSTM, and is allowed to106

make empty prediction (which corresponds to delete an expression in current program). As the107

program heavily relies on the context free grammar to make it valid, we utilize the technique in108

grammarVAE [11] to mask out invalid production rules during program generation.109

A.3 Fuzzing experiment110

Software # seed files file size (bytes) # training samples for ALOE
libpng 170 104 - 12,901 146,507

openjpeg 36 233 - 7,885,684 27,572,688
libmpeg2 131 10,581 - 50,000 6,119,237

Table A.1: Data statistics for generative fuzzing experiments. We use window size 64 for ALOE to
obtain chunks of data from the raw byte streams.

Data statistics: We test different approaches against three target softwares. The OSS-Fuzz project111

comes with different set of seed inputs for different target softwares. These inputs are served as112

training samples for both ALOE and Godefroid et al. [12], and will be used as seed inputs for113

libFuzzer as well. Table A.1 displays the data statistics. Note that ALOE trains a conditional EBM114

with chunked data from the original raw byte streams, in order to handle huge files. We use chunk115

size 64 by default. Thus for a file with size L where L ≥ 64, there will be L − 64 + 1 training116

samples for ALOE.117

Parameterization: We use a three-layer MLP to parameterize the energy function, where for the118

input layer, we use embedding size equals to 4 for the byte string. For the negative sampler, we119

parameterize q0 with LSTM. qA consists of two parts, namely qpos which predicts which position to120

modify using an MLP, and qvalue which predicts a new value for that position using another MLP. We121

use Eq (13) for training such EBM.122

References123

[1] Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models.124

arXiv preprint arXiv:1903.08689, 2019.125

3

[2] Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, and Dale Schuurmans.126

Exponential family estimation via adversarial dynamics embedding. In Advances in Neural127

Information Processing Systems, pages 10977–10988, 2019.128

[3] Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks.129

arXiv preprint arXiv:1402.0030, 2014.130

[4] Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. Muprop: Unbiased backpropa-131

gation for stochastic neural networks. arXiv preprint arXiv:1511.05176, 2015.132

[5] George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein.133

Rebar: Low-variance, unbiased gradient estimates for discrete latent variable models. In134

Advances in Neural Information Processing Systems, pages 2627–2636, 2017.135

[6] Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder, and David Duvenaud. Backpropa-136

gation through the void: Optimizing control variates for black-box gradient estimation. arXiv137

preprint arXiv:1711.00123, 2017.138

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil139

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural140

information processing systems, pages 2672–2680, 2014.141

[8] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial142

nets with policy gradient. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.143

[9] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular144

graphs. arXiv preprint arXiv:1805.11973, 2018.145

[10] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in neural146

information processing systems, pages 2692–2700, 2015.147

[11] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational148

autoencoder. In Proceedings of the 34th International Conference on Machine Learning-Volume149

70, pages 1945–1954. JMLR. org, 2017.150

[12] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Machine learning for input151

fuzzing. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering152

(ASE), pages 50–59. IEEE.153

4

	More experiment details
	Synthetic experiments
	Program synthesis experiments
	Fuzzing experiment

