
Provably Efficient Neural GTD Algorithm for
Off-policy Learning

Hoi-To Wai
The Chinese University of Hong Kong

Shatin, Hong Kong
htwai@se.cuhk.edu.hk

Zhuoran Yang
Princeton University
Princeton, NJ, USA
zy6@princeton.edu

Zhaoran Wang
Northwestern University

Evanston, IL, USA
zhaoranwang@gmail.com

Mingyi Hong
University of Minnesota
Minneapolis, MN, USA

mhong@umn.edu

Abstract

This paper studies a gradient temporal difference (GTD) algorithm using neural
network (NN) function approximators to minimize the mean squared Bellman
error (MSBE). For off-policy learning, we show that the minimum MSBE problem
can be recast into a min-max optimization involving a pair of over-parameterized
primal-dual NNs. The resultant formulation can then be tackled using a neural
GTD algorithm. We analyze the convergence of the proposed algorithm with a
2-layer ReLU NN architecture using m neurons and prove that it computes an
approximate optimal solution to the minimum MSBE problem as m→∞.

1 Introduction
Policy evaluation is a key problem in reinforcement learning (RL) whose goal is to estimate the value
function of a given policy, i.e., the expected total reward of a discounted Markov decision process
(MDP) starting from a given state. Among others, the temporal difference (TD) learning algorithm
[Sutton, 1988] has been used to minimize the mean squared (projected) Bellman error (MSBE). For
off-policy learning where the behavior policy differs from the target policy, gradient-based TD (GTD)
learning algorithms [Sutton et al., 2009a,b] have been proposed with guaranteed convergence. A
growing trend is to employ nonlinear approximation such as neural network (NN) functions [e.g.,
Chung et al., 2019, Haarnoja et al., 2018, Lillicrap et al., 2015, Mnih et al., 2016, Silver, 2012].

The TD/GTD learning algorithms have been analyzed with linear function approximation [Bhandari
et al., 2018, Dalal et al., 2017]. Meanwhile, nonlinear TD/GTD learning algorithms (as well as
other related problems such as Q-learning) are studied in [Bhatnagar et al., 2009, Brandfonbrener
and Bruna, 2019, Chung et al., 2019, Dai et al., 2018, Wai et al., 2019], also see [Bertsekas, 2019].
However, these algorithms lack theoretical guarantees related to minimizing the MSBE or MSPBE
objective as they may get stuck in a local optimum. Furthermore, these algorithms are designed for
arbitrary nonlinear function approximation, whose actual implementations involve computationally
intensive steps such as computing the Hessians for the nonlinear functions.

In this paper, we analyze the efficiency of an off-policy GTD learning algorithm with NN function
approximation. We consider a simplified setting employing a pair of over-parameterized 2-layer
ReLU NNs. A key result proven is that the proposed neural GTD algorithm is guaranteed to converge
globally to a minimizer of the MSBE problem, despite the corresponding optimization problem is
non-convex. Our main contributions are:

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

htwai@se.cuhk.edu.hk
zy6@princeton.edu
zhaoranwang@gmail.com
mhong@umn.edu

• We derive a new formulation for MSBE minimization with a primal NN and a dual NN as
approximators. A neural GTD algorithm, which obeys similar update rules as the classical GTD2
algorithm, is proposed for the resultant min-max optimization problem.

• Under an off-policy learning setting, we analyze the convergence rates of the neural GTD
algorithm with various sampling techniques, including population update, stochastic updates
with i.i.d. samples and Markov samples.
• We focus on the 2-layer ReLU NN architecture. We show that when the width of the NN employed

goes to infinity and the TD error function lies in the NN function class, the proposed neural
GTD algorithm is guaranteed to find a global minimizer of the MSBE problem. Importantly, the
convergence rates measured with the functional distance are independent of NN’s width.

Related Works Recent works have studied the global convergence to optimal solutions of different
RL algorithms. Examples are [Cai et al., 2019, Wang et al., 2019, Xu and Gu, 2019] which studied
neural TD learning, neural policy gradient, and neural Q-learning, respectively. These works rely
on that in the limit when the number of neurons approaches infinity, the nonlinear NN function is
locally approximated by a linear function. The present paper follows a similar philosophy, i.e., by
reducing the neural GTD algorithm to a primal-dual method for solving a convex-concave problem.
We develop new analysis to handle biases in gradients and off-policy learning settings.

Our work is also related to recent works on finite time guarantees for GTD learning algorithms
using linear function approximation. For instance, Dalal et al. [2018, 2019], Liu et al. [2015]
provide guarantees when the algorithms acquire i.i.d. samples; Du et al. [2017] apply variance
reduction technique; Doan [2019], Gupta et al. [2019], Wang et al. [2017], Xu et al. [2019] consider
when Markov samples are used. In comparison, we extend these analysis to using NN function
approximation and offer finite-time guarantees in the overparameterization limit.

Lastly, the present work is related to recent advances in overparameterized (deep) NNs. Inspired by
the classical works [Bartlett, 1998, Rahimi and Recht, 2008] and empirical studies in [Neyshabur and
Li, 2019, Zhang et al., 2016], it has been recently shown that overparameterized NNs are efficiently
learnable using gradient-type algorithms in [Allen-Zhu et al., 2019a,b, Arora et al., 2019, Jacot et al.,
2018, Lee et al., 2019, Mei et al., 2018]. A key insight used is that NN functions exhibit an implicit
local linearization, which allows one to ‘convexify’ the corresponding training problem and establish
global convergence. This line of analysis is also known as ‘lazy training’ for NNs. Notice that
the recent works [Allen-Zhu and Li, 2020, Chizat and Bach, 2018, Daniely, 2017] have suggested
stronger theories for the generalization power of deep NNs beyond the ‘lazy training’ characterization.
This paper develops the analysis by adapting the above results to neural GTD learning via the implicit
local linearization. Unlike the above works, our challenge involves providing dimension-independent
bounds in the function space for the off-policy learning algorithm.

2 Markov Decision Process

Consider a discounted markov decision process (MDP) described by
(
S,A,Pa,R, γ

)
where S is

the possibly infinite state space and A is the action space. Given an action a ∈ A, the operator
Pa : S× S→ R+ is a Markov transition kernel such that for any measurable function f on S, we
denote for any s ∈ S that

E
[
f(s′)|s′ ∼ Pa(s, ·)

]
= Paf(s) =

∫
S
f(y)Pa(s,dy), (1)

where s′ denotes the next state that is transitioned into. The function R(s, a) is the reward received
after action a in state s; lastly, γ ∈ (0, 1) is the discount factor. We assume sups,a R(s, a) ≤ r.

The target policy π(a|s) is the conditional probability of action a ∈ A given the current state
s ∈ S [Szepesvári, 2010]. This induces a Markov chain with the transition kernel Pπ(s, ·) :=
Ea∼π(·|s)[P

a(s, ·)]. The policy evaluation problem aims at learning a value function Vπ : S → R,
defined as the discounted total reward starting from state s:

Vπ(s) := E
[∑∞

t=0 γ
tR(st, at)

∣∣ s0 = s, at ∼ π(·|st), st+1 ∼ Pat(st, ·)
]
. (2)

Applying the Bellman equation [Van Hasselt, 2012] shows that

0 = Vπ(s)− Ea∼π(·|s)
[
R(s, a)

]
− γPπVπ(s). (3)

The existence of Vπ(s) follows if the Markov chain driven by Pπ is aperiodic and irreducible. From
the above, the policy evaluation problem may be solved by finding a value function Vπ(s) which

2

satisfies (3). This problem is challenging since (i) the state space S is large, and (ii) the transition
kernel Pπ(·, ·) is unknown. The latter must be learnt from the observed state/action pairs while
solving the policy evaluation simultaneously.

2.1 Off-policy Policy Evaluation with Function Approximation

We consider nonlinear approximation of the value function using two-layer neural network (NN)
of m neurons with rectified linear units (ReLUs). Each state s ∈ S is encoded by a d-dimensional
vector, denoted by xs ∈ Rd with ‖xs‖2 = 1. The NN is over-parameterized with m� 1 neurons,
each with the weight as br ∈ R, and the parameter described by θ ∈ Θ ⊆ Rmd (for simplicity, we
may assume Θ = Rmd). Our aim is to approximate the value function in (3) as:

Vπ(s) ≈ f(s,θ) :=

m∑
r=1

br√
m

ReLU(〈θ(r),xs〉) =

m∑
r=1

br√
m
1
{
〈θ(r),xs〉 > 0

}
〈θ(r),xs〉, (4)

where 1{·} is the 0-1 indicator function with 1{E} = 1 if E is true; otherwise 1{E} = 0. Notice that
f(·,θ) is differentiable with respect to θ when 〈θ(r),xs〉 6= 0. We assume:
H1. Consider the NN function (4). The weights br are generated as br ∼ U({−1, 1}). The
parameters θ = (θ(1), ...,θ(m)) are initialized with θ(r)

0 ∼ N (0, 1
d Id). All weights/parameters are

drawn independently. These initialization parameters are denoted by Ξ0 = (θ0, b1, ..., bm).

Fixing the NN weights at (br)
m
r=1. Let B > 0 be a fixed radius, we consider the NN function

approximation (4) where θ is taken from the ball SB = {θ ∈ Θ : ‖θ − θ0‖ ≤ B}.
Off-policy Learning. We consider off-policy learning, where the observed state-action triplets
(s, a, s′) are generated from a behavior policy Π(a|s) 6= π(a|s). Similarly, PΠ is the induced Markov
kernel for the state sequence (s0, s1, ...). The Markov chain induced by PΠ is assumed ergodic
with the unique stationary distribution µΠ, and the supports of policies satisfy supp{π(·|·)} ⊆
supp{Π(·|·)}. Let the importance ratio and the temporal difference (TD) error be

ρ(a|s) := π(a|s)
Π(a|s) , δ(s, a, s′;θ) := f(s,θ)− γf(s′,θ)− R(s, a). (5)

The following conditional expectation approximates the r.h.s. of (3):

δ̄(s,θ) := Ea∼Π(·|s),s′∼Pa(s,·)
[
ρ(a|s)δ(s, a, s′;θ)

]
= Ea∼π(·|s),s′∼Pa(s,·)

[
δ(s, a, s′;θ)

]
. (6)

Our goal is to find the NN parameter θ ∈ SB to minimize the mean squared Bellman error (MSBE).
Let υ ≥ 0 be the regularization parameter, we formulate the MSBE minimization problem

min
θ∈SB

J(θ) := Es∼µΠ

[
1
2 δ̄(s,θ)2 + υ

2 f(s,θ)2
]
, (7)

When υ = 0, one may apply an off-policy modification to the neural TD learning in [Cai et al., 2019],
with θ′ ← θ − βρ(a|s)δ(s, a, s′;θ)∇f(s,θ), where β > 0. However, as observed by [Baird, 1995,
Sutton et al., 2016], with off-policy samples the TD algorithm may diverge; also see §3.3. This is
due to the non-Hurwitz matrix which forms the mean field of update, since the behavior and target
policies are mismatched. Below, we develop an algorithm similar to gradient-based TD (GTD)
learning which is shown to resolve the non-convergent issue.

Neural GTD Algorithm. Consider rewriting the MSBE function as:

Es∼µΠ

[
1
2 δ̄(s,θ)2

]
=
∫
S

1
2 δ̄(s,θ)2µΠ(ds)

(a)
=
∫
S

maxy(s)

{
y(s)δ̄(s,θ)− 1

2y(s)2
}
µΠ(ds)

(b)
= maxy(·)

{
Es∼µΠ

[
y(s)δ̄(s,θ)

]
− 1

2Es∼µΠ [y(s)2]
}
, (8)

where (a) is due to 1
2δ

2 = maxy{yδ − y2

2 }, and (b) swapped the max and
∫

operators. Substituting
(8) into (7) yields a non-convex min-max problem. Notice that the above reformulation is inspired by
those derived in prior works such as [Dai et al., 2017, 2018, Shapiro, 2011].

The optimizer to the maximization (8) is given by y?(s,θ) = δ̄(s,θ), which is the expected TD error.
Notice that this leads to another intractable problem since |S| is large. As such, we consider applying
an additional NN function approximation. We find an NN parameter w ∈ SB such that

δ̄(s,θ) ≈ f(s,w), ∀ s ∈ S. (9)

3

Algorithm 1 Neural GTD algorithms for MSBE

1: Input: step sizes (βk)k≥0; maximum number of iterations n.
2: Generate initialization parameters θ0 = w0 ∈ Rmd with H1, and draw a random integer In:

P(In = k) = βk/
∑n
`=0 β`, k = 0, ..., n. (11)

3: for k = 0, 1, 2, ..., In do
4: (I.i.d. sample) Draw a state s ∼ µΠ and set sk = s; or (Markov sample) set sk = s′k−1.
5: Draw action ak ∼ Π(·|sk), and s′k ∼ Pak(sk, ·) according to the behavior policy.
6: Compute the gradient at θk as∇δ̃k(θk), where δ̃k(θk) is the empirical TD error:

δ̃k(θ) := ρ(ak|sk)
{
f(sk,θ)− γf(s′k,θ)− R(sk, ak)

}
. (12)

7: Let PSB (·) be the Euclidean projection onto SB , perform the updates as:

θk+1 = PSB
{
θk − βkf(sk,wk)∇δ̃k(θk)− βkυf(sk,θk)∇f(sk,θk)

)}
,

wk+1 = PSB
{
wk + βk δ̃k(θk)∇f(sk,wk)− βkf(sk,wk)∇f(sk,wk)

)}
.

(13)

8: Return: (approx.) optimal parameters (θIn ,wIn).

Using (9), problem (7) is approximated as a non-convex non-concave min-max problem:

min
θ∈SB

max
w∈SB

Jυ(θ,w) := Es∼µΠ

[
f(s,w)δ̄(s,θ)− 1

2
f(s,w)2 +

υ

2
f(s,θ)2

]
. (10)

Observe that problem (10) involves the simultaneous optimization of two NNs. In addition to the
‘primal NN’ (θ), we employ a ‘dual NN’ (w) to approximate the TD error (5). We propose a neural
GTD algorithm in Algorithm 1. The algorithm, which shares similar update equations as GTD2
[Sutton et al., 2009a], is essentially a projected primal-dual gradient method on (10). Compared to
nonlinear algorithms such as [Bhatnagar et al., 2009], the neural GTD algorithm does not involve
computing the Hessians of NN which makes it more practical for the over-parameterized setting.

Remark 1. Dai et al. [2018] derived a similar reformulation of the MSBE function with nonlinear
function approximation as (10). However, unlike the neural GTD which is a single loop algorithm,
[Dai et al., 2018, Algorithm 1] requires solving an inner maximization for each iteration which possi-
bly requires a simulator. Furthermore, the analysis therein is not suitable for the overparameterized
NN setting as it involves bounding the approximation error using an `∞ norm.

Remark 2. We notice that the GTD2 algorithm [Sutton et al., 2009a] shares a similar update
equation as the neural GTD, yet GTD2 was derived through minimizing a projected MSBE objective
function. This coincidence can be justified as the approximation in (9) is exact when the expected TD
error lies in the space of NN functions. As such, the latter implicitly imposed a function projection.
A key difference between our derivation and an algorithm derived from an exact projected MSBE
formulation is that the ours avoids a Hessians computation step; e.g., see [Bhatnagar et al., 2009].

3 Finding a Global Minimizer for MSBE
This section summarizes our main results. Our analysis hinges on the following linearized NN
function:

f̂(s,θ) :=

m∑
r=1

br√
m
1
{
〈θ(r)

0 ,xs〉 > 0
}
〈θ(r),xs〉 ≡ 〈θ, `(xs)〉, (14)

where ` : Rd → Rmd. Compared to (4), the function f̂(s,θ) is identical to f(s,θ) except for
fixing θ = θ0 in the activation function 1{·}. Moreover, f(s,θ) is differentiable w.r.t. θ. Note that
‖`(xs)‖22 ≤ 1 for any s ∈ S and initialization Ξ0 [cf. H1].

Our central idea is to treat f̂(s,θ) as a surrogate to the nonlinear NN function f(s,θ). In particular,
we analyze the convergence of neural GTD for finding a saddle point of the linearized problem:

min
θ∈SB

max
w∈SB

Ĵυ(θ,w) := Es∼µΠ

[
f̂(s,w)δ̂(s,θ)− 1

2 f̂(s,w)2 + υ
2 f̂(s,θ)2

]
, (15)

4

where

δ̂(s,θ) := Ea∼Π(·|s),s′∼Pa(s,·)
[
ρ(a|s)

{
f̂(s,θ)− γf̂(s′,θ)− R(s, a)

}]
, (16)

Problem (15) differs from (10) through linearizing the NN functions. Importantly, problem (15) is a
convex-concave optimization with the saddle point denoted as ẑ(Ξ0) = (θ̂(Ξ0), ŵ(Ξ0)).

Assuming that m� 1, in Section 3.1, we show that the neural GTD algorithm converges to a saddle
point of (15); then in Section 3.2, we show that an optimal solution to (7) can be taken as the primal
solution in a saddle point to (15). Finally, Corollary 3.1 shows that the neural GTD algorithm finds a
global minimizer of MSBE.

3.1 Convergence to Saddle Point of (15)

We present convergence guarantees for neural GTD in two favors — first we study a population-based
method using exact gradients; then we study the stochastic methods using i.i.d. and Markov samples.
Before proceeding, we state the following assumption on the stationary distribution:
H2. There exists a constant c0 such that for any τ > 0, y ∼ N (0, 1

d Id), it holds almost surely that

Es∼µΠ

[
1{|〈y,xs〉| ≤ τ}|y

]
≤ c0τ/‖y‖2. (17)

The above condition is a regulatory assumption which requires xs to be ‘uniformly’ distributed when
s is drawn from µΠ. To simplify notations, we let zk := (θ>k w

>
k)>. Also, we define the L2 distance

df̂ (zk, ẑ(Ξ0)) := Es∼µΠ

[
|f̂(s,θk)− f̂(s, θ̂(Ξ0))|2 + |f̂(s,wk)− f̂(s, ŵ(Ξ0))|2

]
, (18)

where ẑ(Ξ0) is a saddle point to (15) given the initial NN parameters Ξ0. If df̂ (zk, ẑ(Ξ0)) ≈ 0, then
zk gives the primal-dual NNs that are close in the function space to the NNs parameterized by ẑ(Ξ0).

Population Neural GTD. We study a population neural GTD algorithm with:

θk+1 = PSB
{
θk − βk∇θJυ(θk,wk)

}
, wk+1 = PSB

{
wk + βk∇wJυ(θk,wk)

}
, (19)

where we assume that the exact gradient of the population objective function Jυ(θk,wk) is available.
This form of update is relevant to a ‘batch’ neural GTD algorithm where samples of state transitions
are collected a-priori. We have the following finite-time convergence result for (19):

Theorem 3.1. Assume that H1, H2 hold, and the step size satisfies supk≥0 βk ≤ 1∧υ
8((1∨υ)2+(1+γ)2) .

For the iterates generated by (19) and any n ≥ 1, it holds:

min
k∈{0,...,n}

Einit[df̂ (zk, ẑ(Ξ0))] ≤ Cp
0

(
B3

(1 ∧ υ)m
1
4

)
+ Cp

1

(
‖z0 − ẑ‖22

(1 ∧ υ)
∑n
k=0 βk

)
, (20)

for some constants Cp
0,C

p
1 that are independent ofm,B, and df̂ (zk, ẑ) is defined in (18). Moreover,

the expectation Einit[·] is taken over the initialization of the NN Ξ0.

Stochastic Neural GTD. Next we focus on using stochastic samples in Algorithm 1. First, in
the simplest setting, the state pairs (sk, s

′
k) are drawn i.i.d. according to sk ∼ µΠ, ak ∼ Π(·|sk),

s′k ∼ Pak(sk, ·), see line 5 of the pseudo code. We can rewrite the algorithm as

θk+1 = PSB
{
θk − βk(∇θJυ(zk) + e

(1)
k)
}
, wk+1 = PSB

{
wk + βk(∇wJυ(zk) + e

(2)
k)
}
, (21)

where e(i)
k , i = 1, 2 are the noise due to taking i.i.d. samples. Denote s̃k := (sk, ak, s

′
k), one has

e
(1)
k = ∇θJυ(θk,wk; s̃k)−∇θJυ(θk,wk), e

(2)
k = ∇wJυ(θk,wk; s̃k)−∇wJυ(θk,wk), (22)

where∇Jυ(θk,wk; s̃k) denote the sampled gradients using the state pairs s̃k, see (13). Denote Fk
as the filtration of the random variables {θ0, s̃0, s̃1, ..., s̃k}. Assume the following holds:
H3. For any k ≥ 0, there exists a constant σ such that for any i = 1, 2,

E
[
e

(i)
k |Fk−1

]
= 0, E

[
‖e(i)
k ‖

2
2|Fk−1

]
≤ σ2, (23)

5

In other words, the noise vectors e(i)
k , i = 1, 2 are martingale differences adapted to the filtration

(Fk)k≥0. The second condition in (23) can be implied by the boundedness of zk, in fact, using
similar techniques as in Cai et al. [2019], it can be shown that σ2 = O(B2).

Theorem 3.2. Assume H1, H2, H3 hold and the step size satisfies supk≥0 βk ≤ 1∧υ
12((1∨υ)2+(1+γ)2) .

For the iterates generated by Algorithm 1 and any n ≥ 1, it holds:

EIn,init
[
df̂ (zIn , ẑ(Ξ0))

]
≤ Cs

0

(
B3

(1 ∧ υ)m
1
4

)
+ Cs

1

(
‖z0 − ẑ‖22 + σ2

∑n
k=0 β

2
k

(1 ∧ υ)
∑n
k=0 βk

)
, (24)

for some constants Cs
0,C

s
1 that are independent of m, B, and the function df̂ (zIn , ẑ(Ξ0)) was

defined in (18). The expectation above is taken over the independent r.v. In, the initialization to the
NN Ξ0, and the i.i.d. samples of states drawn from behavior policy during the algorithm.

Discussions of Theorem 3.1 and 3.2. The conclusions (20), (24) imply that neural GTD finds a
saddle point to the regularized MSBE problem with linearized NN function (15). For the population
neural GTD, if we set βk to be constant, then the last term in (20) decays to zero at the rate O(1/n);
for the stochastic neural GTD, setting a step size as βk = O(1/

√
k) and the last term in (24) decays

at the rate of O(log n/
√
n). These rates are comparable to exact and stochastic primal-dual gradient

methods, respectively, see [Chambolle and Pock, 2016, Juditsky et al., 2011]. Meanwhile, the first
terms represent the bias controlled by the width of the 2-layer NN, and the bias is in the order of
O(B3m−1/4). Importantly, we observe that the error bound converges to zero when n,m→∞.

For both theorems, the error bound df̂ (zk, ẑ) computes the L2 distance between the linearized NN
functions, taken over behavior policy’s stationary distribution µΠ. This optimality measure on the
function space is used instead of the Euclidean norm ‖zk− ẑ‖22 of the parameter space so as to avoid
trivial bounds since zk is 2md-dimensional (and we consider m→∞).

Markov Samples. An alternative version of Theorem 3.2 is derived when Markov samples are used,
i.e., the sampled state-pair s̃k = (sk, ak, sk+1) is drawn from a single sample path of the Markov
chain induced by the MDP and behavior policy Π, see line 4 & 7 of Algorithm 1.

Theorem 3.3. Assume H1, the step size satisfies |βk − βk+1| ≤ ξβ2
k for some constant ξ,

supk≥0 βk ≤ 1∧υ
12((1∨υ)2+(1+γ)2) , supa,s ρ(a|s) = ρ̄. Consider Algorithm 1 with Markov sam-

ples and any n ≥ 1. With probability at least 1 − eΩ(log2 m) over NN initializations, it holds

EIn
[
df̂ (zIn , ẑ)

]
= O

(
B

8
3 (logm)

3
2 /(1− ρ)

(1 ∧ υ)m
1
6

+
‖z0 − ẑ‖22 + B2

1−ρ + (B
2

1−ρ)
∑n
k=0 β

2
k

(1 ∧ υ)
∑n
k=0 βk

)
, (25)

where df̂ (zIn , ẑ(Ξ0)) was defined in (18) and ρ ∈ [0, 1) is the convergence rate of the Markov
chain. The expectation is taken over for r.v. In, and the sample path of Markov chain (s̃0, s̃1, ...).

Details are in Appendix D where we specify additional conditions on the Markov chain induced
by the behavior policy. There are two differences from Theorem 3.2. First, the above holds in
high probability w.r.t. the NN initialization. Second, the bias, variance are O(B

8
3 (logm)

3
2 (1 −

ρ)−1m−1/6), O(B2(1− ρ)−1), which depends on the mixing time of Markov chain.

3.2 Minimizing the MSBE with Neural GTD Algorithms

Theorems 3.1 & 3.2 show the neural GTD algorithms converge to an optimal solution of (15) when
n,m→∞. To show that an optimal solution of (15) is also optimal to (7), we consider:
H4. For any θ ∈ SB , there exists w(θ) ∈ SB such that Einit,s∼µΠ [|δ̄(s,θ)− f(s,w(θ))|2] ≤ cnn,
where cnn ≥ 0 and the expectation is taken w.r.t. s ∼ µΠ and the NN initializations Ξ0.

The above assumption depends on the reward function R(s, a). Particularly, we have cnn = 0 if the
TD error function lies in the function class of 2-layer ReLU NNs. Furthermore, we anticipate that
cnn � 1 under the overparameterization setting m� 1. This is due to the representation power of
such NNs as demonstrated in the recent works, e.g., [Neyshabur and Li, 2019].

Based on the above results, for any θ ∈ SB , we can control the MSBE Jυ(θ)− Jυ(θ?) as

6

Theorem 3.4. Assume H1,H2,H4, and the importance ratio is bounded as supa,s ρ(a|s) = ρ̄. Let
θ?(Ξ0) be an optimal solution to (7). For any θ ∈ SB ,

Einit

[
Jυ(θ)− Jυ(θ?(Ξ0))

]
≤ CJ0Einit

[
df̂ (z, ẑ(Ξ0))

]
+ CJ1 (B +B

3
2m−

1
4)
√
Einit

[
df̂ (z, ẑ(Ξ0))

]
+O

(
B3m−1/2 +B5/2m−1/4 + cnn

) (26)

for some constants CJ0 ,C
J
1 that are independent of B,m. In the above, z is defined as the vector

z = (θ,w) for any w ∈ SB , and df̂ (z, ẑ(Ξ0)) was defined in (18).

The difference Jυ(θ)− Jυ(θ?(Ξ0)) corresponds to the sub-optimality of a given NN parameter θ to
the regularized mean squared Bellman error objective function. The above theorem quantifies this
sub-optimality in terms of the distance to a saddle point of the problem (15).

Combining Theorem 3.4 with the previous analysis in Theorem 3.1 & 3.2, we obtain the global
convergence guarantees of MSBE for the neural GTD algorithms as follows:
Corollary 3.1. Assume H1,H2,H4 and the importance ratio is bounded as supa,s ρ(a|s) = ρ̄. We
have the following guarantees for Neural GTD algorithms:

• Consider the population neural GTD algorithm [cf. (19)]. Set βk = O(1). For any n ≥ 1,

min
k∈{0,...,n}

Einit

[
Jυ(θk)− Jυ(θ?(Ξ0))

]
= O

(
n−1 + (B +B

3
2m−

1
4)n−

1
2

)
+O

(
B3m−

1
4 +B

5
2m−

1
8 + cnn

)
,

(27)

• Consider the stochastic neural GTD algorithm with i.i.d. samples [cf. Algorithm 1]. Assume in
addition H3 and set βk = O(1/

√
k). For any n ≥ 1,

Einit,In

[
Jυ(θIn)− Jυ(θ?(Ξ0))

]
= Õ(σ2 n−

1
2 + (B +B

3
2m−

1
4)σ n−

1
4)

+O(B3m−
1
4 +B

5
2m−

1
8 + cnn),

(28)

where the Õ(·) notation hides the logarithm terms in the upper bounds.
The expectations above are taken over the NN initialization Ξ0 and the number of iterations In.

When the bias term cnn is small, the above corollary shows that as n,m → ∞, the neural GTD
algorithms find an NN parameter θIn which globally minimizes the MSBE (7). Moreover, similar
conclusions can be drawn for the Markov sample settings.

3.3 Preliminary Numerical Experiment

Figure 1: Comparing the averaged MSBE
after 10 runs of Neural TD and Neural
GTD in off-policy learning.

We perform preliminary experiments to support the above theories
on a toy example of off-policy learning. We consider an MDP
taken from the Garnet class with |S| = 500 states, |A| = 5 possible
actions per state with uniformly distributed rewards, and the discount
factor is γ = 0.9. We generate two random policies with the same
support as the behavior/target policies, respectively. In Fig. 1, we
compare the average MSBE against the number of neurons m, using
a 2-layer, ReLU NN with random initialization according to H1,
after T = 3 × 105 iterations of neural GTD and neural TD [Cai
et al., 2019] run with Markovian samples [cf. Algorithm 1], from 10
independent runs of state/action.

From the figure, we observe that the average MSBE (solid line)
decreases with m stably for neural GTD, as predicted by the above theorems. Meanwhile, the MSBE
fluctuates with m with neural TD, indicating that the latter can be unstable in the tested off-policy
setting. Note that neural TD algorithm [Cai et al., 2019] has only been analyzed with on-policy data.

4 Proof Sketches
This section highlights the major steps involved in showing our main claims from the previous section.
We first review on the approximation quality of the NN function, and develop its consequences in

7

the GTD learning paradigm. This will lead to our main theorems in Theorem 3.1 & 3.2. Then, we
perform a perturbation analysis in light of Jυ(θ; Ξ0) to yield Theorem 3.4.

Approximating an NN function by Linearization. To establish Theorem 3.1 & 3.2, we observe:

Lemma 4.1. [Cai et al., 2019, Lemma 5.1] Under H1, H2, there exists constant c0 where for any
θ ∈ SB ,

Einit,s∼µΠ

[
|f(s,θ)− f̂(s,θ)|2

]
≤ c0B3m−1/2. (29)

Essentially, the expected approximation error of the function values f(·,θ) by f̂(·,θ) decays as
O(m−1/2) for any θ ∈ SB . As m→∞, the NN function behaves like a linear function.

Neural GTD as Biased Gradient. Our next step is to analyze the convergence of neural GTD
learning [cf. (19) or Algorithm 1]. To this regard, we treat the algorithms as biased primal-dual
gradient methods for (15), even though the updates have been designed for (10). Concretely, we
consider the population neural GTD (19). Observe that

∇θJυ(θk,wk) = ∇θĴυ(θk,wk) + ê
(1)
k , ∇wJυ(θk,wk) = ∇wĴυ(θk,wk) + ê

(2)
k , (30)

where ê(i)
k , i = 1, 2 represent the discrepancies between the gradient of Ĵυ(θ,w), Jυ(θ,w):

ê
(1)
k = E

[
f(s,wk)∇δ̄(s,θk)− f̂(s,wk)∇δ̂(s,θk) + υ

{
f(s,θk)∇f(s,θk)− f̂(s,θk)∇f̂(s,θk)

}]
ê

(2)
k = E

[(
δ̄(s,θk)− f(s,wk)

)
∇wf(s,wk)−

(
δ̂(s,θk)− f̂(s,wk)

)
∇wf̂(s,wk)

]
,

where the expectations are taken w.r.t. s ∼ µΠ. We recall that δ̂(s,θk) is the TD error with the
linearized NN function parameterized by θk. Therefore, each of the above terms represent differences
between the NN function and its linear approximation.

As observed in Lemma 4.1, the above discrepancies in the function value diminishes as m → ∞.
This observation also extends to the associated gradients as we prove that

Lemma 4.2. Under H1, H2, it holds for any k ≥ 0 that

Einit[‖ê(1)
k ‖

2
2] ∨ Einit[‖ê(2)

k ‖
2
2] ≤ C0B

3m−1/2, (31)

for some constant C0 that is independent of B,m, the above expectations are taken with respect to
the initialization parameters Ξ0 of the NN.

From Lemma 4.2, it is clear that if m is sufficiently large, then the population neural GTD algorithm
(19) follow closely a primal-dual gradient method for the convex-concave problem (15).

If we assume that ê(1)
k = ê

(2)
k = 0, then the convergence of (19) to a global optimal solution is

guaranteed by the classical analysis from, e.g., [Chambolle and Pock, 2016, He and Yuan, 2012].
Fix n ∈ N, the results from [Chambolle and Pock, 2016] shows that using a slight modification to
(19), one can find an O(1/n) saddle point (θn,wn) in n iterations. However, such result does not
immediately relate to a bound on the MSBE Jυ(θn) which will be needed later. In addition, the
analysis in [Chambolle and Pock, 2016] does not consider bias in the gradient (30). Lastly, although
the objective function Ĵυ(θ,w) admits a quadratic form, we note that the parameters θ,w are both
md-dimensional vectors. As m → ∞, the strong convexity/concavity modulus in the Euclidean
space associated with the objective function may approach zero. Also see [Lorenz and Pock, 2015]
for extensions of the primal-dual algorithm to Hilbert space.

In light of the above challenges, we adopt an error bound metric that adapts to the problem structure
at hand. A natural choice is the L2 distance between f̂(·,θ), f̂(·, θ̂) in the function space, as defined
in df̂ (z, ẑ) [cf. (18)]. Define the primal-dual gradient operator on z = (θ,w) as:

Φ̂(z) :=
(
∇θĴυ(z)> −∇wĴυ(z)>

)>
. (32)

Lemma 4.3. Let ẑ be a saddle point of the problem (15). For any z = (θ,w) ∈ SB × SB . Set
µ = min{1, υ} and LΦ = 4((min{1, υ})2 + (1 + γ)2), it holds

〈Φ̂(z)− Φ̂(ẑ), z − z?〉 ≥ µdf̂ (z, ẑ), ‖Φ̂(z)− Φ̂(ẑ)‖22 ≤ LΦ df̂ (z, ẑ). (33)

8

Note that the constants µ,LΦ are independent of the problem dimension m. The condition (33)
shows that the primal-dual gradient operator Φ̂(z) is a smooth monotone operator.

Lemma 4.2 & 4.3 show that the population neural GTD algorithm is a biased primal-dual gradient
method on the convex-concave saddle point problem (15). In the appendix, we will show

E[‖zk+1 − ẑ‖22] ≤ E
[
‖zk − ẑ‖22 − 2µβkdf̂ (zk, ẑ) + β2

kLΦdf̂ (zk, ẑ)
]

+O
(
βkB

3/m
1
4

)
, (34)

where the expectation is taken with respect to the NN initialization. Taking a summation of the above
inequalities from k = 0 to k = n and canceling terms yield Theorem 3.1.

In the i.i.d. sample case, the stochastic neural GTD algorithm can be analyzed in a similar manner
through exploiting the conditional zero mean and bounded variance properties in H3. The latter leads
to Theorem 3.2. In the Markov sample case, we utilize the Poisson equation which decomposes
the noise terms into a martingale part and a Markov part. We show that the Markov part is small in
magnitude. The derivations are similar to [Karimi et al., 2019], yet we have adapted the analysis to
the primal-dual gradient method. In addition, inspired by [Gao et al., 2019], we derive similar bounds
to Lemma 4.2 which hold in high probability over the initialization. This leads to Theorem 3.3, see
Appendix D for the details.

Finding Global Minimizer of MSBE. Our last task is to evaluate the solution quality of the output
from neural GTD in terms of deviation from the minimum regularized MSBE (7).

To derive Theorem 3.4, we shall exploit H4 and the Fenchel’s conjugation in (8). In particular, it can
be shown that

Jυ(θ)
(a)

≤ Jυ(θ̂) +O
(
m−1/4 + df̂ (z, ẑ)

1
2

) (b)

≤ Jυ(θ̂,w(θ̂)) +O
(
m−1/4 + df̂ (z, ẑ)

1
2 + cnn

)
where (a) can be derived using Lemma 4.1, and (b) is due to H4 which guarantees the existence of
w(θ̂). Note that Jυ(θ̂,w(θ̂)) is the primal-dual objective function defined in (10). Subsequently,
using Lemma 4.1, we obtain

Jυ(θ̂,w(θ̂)) ≤ Ĵυ(θ̂,w(θ̂)) +O(m−1/4) ≤ Ĵυ(θ?, ŵ) +O(m−1/4) (35)

where the last inequality is due to Ĵυ(θ̂,w(θ̂)) ≤ Ĵυ(θ̂, ŵ) and the fact (θ̂, ŵ) is a saddle point to
(15). Applying Lemma 4.1 again yields the inequality

Ĵυ(θ?, ŵ) ≤ Jυ(θ?, ŵ) +O(m−1/4) ≤ Jυ(θ?) +O(m−1/4), (36)

where the last inequality is due to the optimality of δ̄(·;θ?) for the maximization in (8). We remark
that the above inequalities hold in an expectation taken over the initialization Ξ0 of NN [cf. H1].

Collecting terms in the above leads to Theorem 3.4 which shows

Jυ(θ)− Jυ(θ?) = O(m−1/4 + cnn + df̂ (z, ẑ)
1
2). (37)

Combined with Theorem 3.1 & 3.2, we conclude that the neural GTD algorithms find a global
minimizer to the regularized MSBE problem (7), i.e., justifying our main claims in Corollary 3.1.

5 Conclusions

We have derived the first neural GTD learning algorithm for off-policy learning and proved its global
convergence to a minimizer of the regularized MSBE. The main idea is to use a Fenchel conjugate’s
equivalent formulation to the MSBE objective function and design a novel objective function that
involves two NNs. We consider different sample requirements (population, i.i.d. samples and Markov
samples), and analyze the convergence rates to a global MSBE minimizer.

9

Acknowledgement & Funding Disclosure The authors would like to thank Mr. Alan Lun (CUHK)
for conducting the preliminary numerical experiments in this paper. H.-T. Wai is supported by the
CUHK Direct Grant #4055113. M. Hong is supported in part by NSF under Grant CCF-1651825,
CMMI-172775, CIF-1910385 and by AFOSR under grant 19RT0424.

Broader Impact This work does not present any foreseeable societal consequence.

References
Z. Allen-Zhu and Y. Li. Backward feature correction: How deep learning performs deep learning.

arXiv preprint arXiv:2001.04413, 2020.
Z. Allen-Zhu, Y. Li, and Y. Liang. Learning and generalization in overparameterized neural networks,

going beyond two layers. In Advances in neural information processing systems, pages 6155–6166,
2019a.

Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-parameterization.
In International Conference on Machine Learning, pages 242–252, 2019b.

S. Arora, S. S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of optimization and generaliza-
tion for overparameterized two-layer neural networks. In ICML, 2019.

L. Baird. Residual algorithms: Reinforcement learning with function approximation. In International
Conference on Machine Learning, pages 30–37, 1995.

P. Bartlett. The sample complexity of pattern classification with neural networks: the size of the
weights is more important than the size of the network. IEEE Transactions on Information Theory,
44(2):525–536, 1998.

D. P. Bertsekas. Feature-based aggregation and deep reinforcement learning: A survey and some new
implementations. IEEE/CAA Journal of Automatica Sinica, 6(1):1–31, 2019.

J. Bhandari, D. Russo, and R. Singal. A finite time analysis of temporal difference learning with
linear function approximation. arXiv preprint arXiv:1806.02450, 2018.

S. Bhatnagar, D. Precup, D. Silver, R. S. Sutton, H. R. Maei, and C. Szepesvári. Convergent
temporal-difference learning with arbitrary smooth function approximation. In Advances in Neural
Information Processing Systems, pages 1204–1212, 2009.

D. Brandfonbrener and J. Bruna. On the expected dynamics of nonlinear td learning. arXiv preprint
arXiv:1905.12185, 2019.

Q. Cai, Z. Yang, J. D. Lee, and Z. Wang. Neural temporal-difference learning converges to global
optima. In Advances in Neural Information Processing Systems, pages 11312–11322, 2019.

A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal–dual algorithm.
Mathematical Programming, 159(1-2):253–287, 2016.

L. Chizat and F. Bach. A note on lazy training in supervised differentiable programming. arXiv
preprint arXiv:1812.07956, 2018.

W. Chung, S. Nath, A. Joseph, and M. White. Two-timescale networks for nonlinear value function
approximation. In ICLR, 2019.

B. Dai, N. He, Y. Pan, B. Boots, and L. Song. Learning from conditional distributions via dual
embeddings. In Artificial Intelligence and Statistics, pages 1458–1467, 2017.

B. Dai, A. Shaw, L. Li, L. Xiao, N. He, Z. Liu, J. Chen, and L. Song. Sbeed: Convergent reinforcement
learning with nonlinear function approximation. In International Conference on Machine Learning,
pages 1125–1134, 2018.

G. Dalal, B. Szorenyi, G. Thoppe, and S. Mannor. Finite sample analysis of two-timescale stochastic
approximation with applications to reinforcement learning. arXiv preprint arXiv:1703.05376,
2017.

G. Dalal, G. Thoppe, B. Szörényi, and S. Mannor. Finite sample analysis of two-timescale stochastic
approximation with applications to reinforcement learning. In Conference On Learning Theory,
pages 1199–1233, 2018.

G. Dalal, B. Szorenyi, and G. Thoppe. A tale of two-timescale reinforcement learning with the
tightest finite-time bound. arXiv preprint arXiv:1911.09157, 2019.

10

A. Daniely. SGD learns the conjugate kernel class of the network. In Advances in Neural Information
Processing Systems, pages 2422–2430, 2017.

T. T. Doan. Finite-time analysis and restarting scheme for linear two-time-scale stochastic approxi-
mation. arXiv preprint arXiv:1912.10583, 2019.

R. Douc, E. Moulines, P. Priouret, and P. Soulier. Markov chains. Springer, 2018.
S. S. Du, J. Chen, L. Li, L. Xiao, and D. Zhou. Stochastic variance reduction methods for policy

evaluation. In International Conference on Machine Learning, pages 1049–1058, 2017.
G. Fort, E. Moulines, P. Priouret, et al. Convergence of adaptive and interacting markov chain monte

carlo algorithms. The Annals of Statistics, 39(6):3262–3289, 2011.
R. Gao, T. Cai, H. Li, C.-J. Hsieh, L. Wang, and J. D. Lee. Convergence of adversarial training in

overparametrized neural networks. In Advances in Neural Information Processing Systems, pages
13009–13020, 2019.

H. Gupta, R. Srikant, and L. Ying. Finite-time performance bounds and adaptive learning rate
selection for two time-scale reinforcement learning. In Advances in Neural Information Processing
Systems, pages 4706–4715, 2019.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

B. He and X. Yuan. Convergence analysis of primal-dual algorithms for a saddle-point problem:
from contraction perspective. SIAM Journal on Imaging Sciences, 5(1):119–149, 2012.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural
networks. In Advances in neural information processing systems, pages 8571–8580, 2018.

A. Juditsky, A. Nemirovski, and C. Tauvel. Solving variational inequalities with stochastic mirror-prox
algorithm. Stochastic Systems, 1(1):17–58, 2011.

B. Karimi, B. Miasojedow, E. Moulines, and H.-T. Wai. Non-asymptotic analysis of biased stochastic
approximation scheme. In Conference on Learning Theory, pages 1944–1974, 2019.

J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington. Wide neural
networks of any depth evolve as linear models under gradient descent. In Advances in neural
information processing systems, pages 8570–8581, 2019.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

B. Liu, J. Liu, M. Ghavamzadeh, S. Mahadevan, and M. Petrik. Finite-sample analysis of proximal
gradient td algorithms. In UAI, pages 504–513, 2015.

D. A. Lorenz and T. Pock. An inertial forward-backward algorithm for monotone inclusions. Journal
of Mathematical Imaging and Vision, 51(2):311–325, 2015.

S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-layer neural
networks. PNAS, 115(33):E7665–E7671, 2018.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International Conference on Machine
Learning, pages 1928–1937, 2016.

B. Neyshabur and Z. Li. Towards understanding the role of over-parametrization in generalization of
neural networks. In International Conference on Learning Representations (ICLR), 2019.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in Neural
Information Processing Systems, pages 1177–1184, 2008.

A. Shapiro. Analysis of stochastic dual dynamic programming method. European Journal of
Operational Research, 209(1):63–72, 2011.

D. Silver. Gradient temporal difference networks. In EWRL, pages 117–130, 2012.
R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3(1):

9–44, 1988.
R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and E. Wiewiora. Fast

gradient-descent methods for temporal-difference learning with linear function approximation. In
International Conference on Machine Learning, pages 993–1000, 2009a.

11

R. S. Sutton, H. R. Maei, and C. Szepesvári. A convergent o(n) temporal-difference algorithm
for off-policy learning with linear function approximation. In Advances in Neural Information
Processing Systems, pages 1609–1616, 2009b.

R. S. Sutton, A. R. Mahmood, and M. White. An emphatic approach to the problem of off-policy
temporal-difference learning. The Journal of Machine Learning Research, 17(1):2603–2631, 2016.

C. Szepesvári. Algorithms for reinforcement learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 4(1):1–103, 2010.

H. Van Hasselt. Reinforcement learning in continuous state and action spaces. In Reinforcement
learning, pages 207–251. Springer, 2012.

H.-T. Wai, M. Hong, Z. Yang, Z. Wang, and K. Tang. Variance reduced policy evaluation with smooth
function approximation. In Advances in Neural Information Processing Systems, pages 5776–5787,
2019.

L. Wang, Q. Cai, Z. Yang, and Z. Wang. Neural policy gradient methods: Global optimality and rates
of convergence. arXiv preprint arXiv:1909.01150, 2019.

Y. Wang, W. Chen, Y. Liu, Z.-M. Ma, and T.-Y. Liu. Finite sample analysis of the GTD policy
evaluation algorithms in Markov setting. In Advances in Neural Information Processing Systems,
pages 5504–5513, 2017.

P. Xu and Q. Gu. A finite-time analysis of q-learning with neural network function approximation.
arXiv preprint arXiv:1912.04511, 2019.

T. Xu, S. Zou, and Y. Liang. Two time-scale off-policy td learning: Non-asymptotic analysis over
markovian samples. In Advances in Neural Information Processing Systems, pages 10633–10643,
2019.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

12

A Proof of Theorem 3.1

We shall use the notations (a ∨ b) = max{a, b} and (a ∧ b) = min{a, b}.
Recall that (15) is given by:

min
θ∈SB

max
w∈SB

Ĵυ(θ,w) := Es∼µΠ

[
f̂(s,w)δ̂(s,θ)

]
− 1

2
Es∼µΠ [f̂(s,w)2]+

υ

2
Es∼µΠ [f̂(s,θ)2]. (38)

To begin our analysis, denote zk := (θk,wk) and the optimal primal-dual solution to (15) (or (38))
as ẑ = (θ̂, ŵ). In this regard, we can write the population update as:

θk+1 = PSB
{
θk − βk

(
∇θĴυ(zk) + ê

(1)
k

)}
, wk+1 = PSB

{
wk + αk

(
∇wĴυ(zk) + ê

(2)
k

)}
,

(39)

with the errors defined as:

ê
(1)
k = Es∼µΠ

[
f(s,wk)∇δ̄(s,θk) + υf(s,θk)∇f(s,θk)−

(
f̂(s,wk)∇δ̂(s,θk) + υf̂(s,θk)∇f̂(s,θk)

)]
ê

(2)
k = Es∼µΠ

[(
δ̄(s,θk)− f(s,wk)

)
∇wf(s,wk)−

((
δ̂(s,θk)− f̂(s,wk)

)
∇wf̂(s,wk)

)]
,

(40)

whose magnitude is controlled by the following lemma:
Lemma A.1. Under H1, H2, it holds that for any k ≥ 0, we have

Einit[‖ê(1)
k ‖

2
2] ∨ Einit[‖ê(2)

k ‖
2
2] ≤ C0B

3m−1/2, (41)

for some constant C0 that is independent of B,m, k, the above expectations are taken with respect to
the initialization of the NN.

Define the concatenated gradient vectors as Φ̂k(zk) =
(
∇θĴυ(zk)> −∇wĴυ(zk)>

)>
. Using the

fact that θ̂ = PSB{θ̂ − β∇θĴυ(ẑ)} for any β ≥ 0 and the non-expansive property of projection, we
observe that

‖θk+1 − θ̂‖22 ≤ ‖θk − βk(∇θĴυ(zk) + ê
(1)
k −∇θĴυ(ẑ))− θ̂‖22

= ‖θk − θ̂‖22 + β2
k‖∇θĴυ(zk) + ê

(1)
k −∇θĴυ(ẑ)‖22

− 2βk〈θk − θ̂,∇θĴυ(zk) + ê
(1)
k −∇θĴυ(ẑ)〉.

(42)

Similarly, using ŵ = PSB{ŵ − α∇wĴυ(ẑ)} for any α ≥ 0, we get

‖wk+1 − ŵ‖22 ≤ ‖wk + αk(∇wĴυ(zk) + ê
(2)
k −∇wĴυ(ẑ))− ŵ‖22

= ‖wk − ŵ‖22 + β2
k‖∇wĴυ(zk) + ê

(2)
k −∇wĴυ(ẑ)‖22

+ 2βk〈wk − ŵ,∇wĴυ(zk) + ê
(2)
k −∇wĴυ(ẑ)〉.

(43)

Adding up the two inequalities lead to: for any c1 > 0,

‖zk+1 − ẑ‖22 ≤ ‖zk − ẑ‖22 − 2βk〈Φ̂(zk)− Φ̂(ẑ), zk − z?〉+
βk
c1
‖zk − ẑ‖22

+ 2β2
k‖∇Ĵυ(zk)−∇Ĵυ(ẑ)‖22 +

(
2β2

k + c1βk
){
‖ê(1)
k ‖

2
2 + ‖ê(2)

k ‖
2
2

}
,

(44)

where we have denoted ∇Ĵυ(z) = (∇θĴυ(z)> ∇wĴυ(z)>)>. Recall that ẑ = (θ̂, ŵ) is the
saddle point solution to (38), we observe the following lemma (which appears in the main paper as
Lemma 4.3) to be proven in Appendix A.2.
Lemma A.2. There exist constants µ, LΦ such that it holds
1

µ
〈Φ̂(zk)− Φ̂(ẑ), zk − ẑ〉 ≥ Es∼µΠ

[
|f̂(s,wk)− f̂(s, ŵ)|2 + |f̂(s,θk)− f̂(s, θ̂)|2

]
=: df̂ (zk, ẑ),

‖∇Ĵυ(zk)−∇Ĵυ(ẑ)‖22 ≤ LΦ df̂ (zk, ẑ),

(45)

for any k ≥ 0, where µ = min{1, υ} = 1 ∧ υ and LΦ = 4((1 ∨ υ)2 + (1 + γ)2),

13

The above lemma yields:

‖zk+1 − ẑ‖22 ≤ ‖zk − ẑ‖22 − 2βkµdf̂ (zk, ẑ) +
βk
c1
‖zk − ẑ‖22

+ 2β2
kLΦdf̂ (zk, ẑ) +

(
2β2

k + c1βk
){
‖ê(1)
k ‖

2
2 + ‖ê(2)

k ‖
2
2

}
.

(46)

Notice that ‖zk − ẑ‖22 ≤ 4B2, we obtain

2βk
(
µ− βkLΦ

)
df̂ (zk, ẑ) ≤ ‖zk − ẑ‖22 − ‖zk+1 − ẑ‖22 + 4B2 βk

c1
+
(
2β2

k + c1βk
){
‖ê(1)
k ‖

2
2 + ‖ê(2)

k ‖
2
2

}
.

(47)

Note that we have chosen βk such that µ− βkLΦ ≥ µ/2. Setting c1 = m
1
4 and using Lemma A.1,

we obtain

µβk df̂ (zk, ẑ) ≤ ‖zk − ẑ‖22 − ‖zk+1 − ẑ‖22 + 4β2
k

(C0B
3

√
m

)
+ 2

βk

m
1
4

(
2B2 + C0B

3
)
. (48)

Let n ≥ 1, summing up both sides of the inequality from k = 0 to k = n leads to

min
k∈{0,...,n}

df̂ (zk, ẑ) ≤ 1

(1 ∧ υ)
∑n
k=0 βk

{
‖z0 − ẑ‖22 + (4C0B

3/
√
m)
∑n
k=0 β

2
k

}
+

4B2 + 2C0B
3

(1 ∧ υ)m
1
4

.

(49)
Simplifying the constants conclude the proof.

A.1 Proof of Lemma A.1

In this subsection, we should use the shorthand notation Eµ[·] to denote that the expectation is taken
w.r.t. s ∼ µΠ. Let us begin by borrowing the following lemmas from [Cai et al., 2019]
Lemma A.3. [Cai et al., 2019, Lemma F.1] Under H1, H2, there exists constant c1 such that it holds
for any θ ∈ SB that

Einit,µ

[
1

m

m∑
r=1

1{|〈θ(r)
0 ,xs〉| ≤ ‖θ(r) − θ(r)

0 ‖2}

]
≤ c1Bm−1/2. (50)

The proof of the following lemma can be adapted from [Cai et al., 2019, Lemma F.2], see Ap-
pendix A.3 for the proof.
Lemma A.4. Under H1, H2, there exists constant c2 such that it holds for any θ ∈ SB that

Einit,µ

[
|f̂(s,θ0)|2 1

m

m∑
r=1

1{|〈θ(r)
0 ,xs〉| ≤ ‖θ(r) − θ(r)

0 ‖2}

]
≤ c2Bm−1/2 +m−1. (51)

Now, we begin proving the Lemma A.1. First we define a constant C̃0 stated in the lemma as:

C̃0 := max
{{

8(1+γ2)+4υ2
}{
c0B

3+2c1B
3+2c2B+2

}
, 6c0B

3+8(c1r
2B+3c1B

3+3c2B+3)
}
.

(52)
Based on the above lemmas, let us observe

‖ê(1)
k ‖

2
2 ≤ 2Eµ

[
‖f(s,wk)∇δ̄(s,θk)− f̂(s,wk)∇δ̂(s,θk)‖22︸ ︷︷ ︸

=:E
(1,1)
k

]
+ 2υ2 Eµ

[
‖f(s,θk)∇f(s,θk)− f̂(s,θk)∇f̂(s,θk)‖22︸ ︷︷ ︸

=:E
(1,2)
k

]
.

(53)

We have

E
(1,1)
k ≤ 2|f(s,wk)− f̂(s,wk)|2 ‖∇δ̄(s,θk)‖22 + 2|f̂(s,wk)|2 ‖∇δ̄(s,θk)−∇δ̂(s,θk)‖22. (54)

14

Since

∇δ̄(s,θk) = ∇f(s,θk)−γEπ[∇f(s′,θk)|s], ∇δ̂(s,θk) = ∇f̂(s,θk)−γEπ[∇f̂(s′,θk)|s], (55)

where Eπ[·|s] denotes the conditional expectation Ea∼π(·|s),s′∼Pa(s,·)[·] using the target policy. With
‖xs‖2 = 1, it can be shown that ‖∇δ̄(s,θk)‖2 ∨ ‖∇δ̂(s,θk)‖2 ≤ (1 + γ). Moreover,

‖∇δ̄(s,θk)−∇δ̂(s,θk)‖22 ≤ 2‖∇f(s,θk)−∇f̂(s,θk)‖22
+ 2γ2Eπ[‖∇f(s′,θk)−∇f̂(s′,θk)‖22|s].

(56)

For any s ∈ S, we have

∇f(s,θk)−∇f̂(s,θk) =

 (1{〈θ(1)
k ,xs〉 > 0} − 1{〈θ(1)

0 ,xs〉 > 0})m−1/2b1xs
...

(1{〈θ(m)
k ,xs〉 > 0} − 1{〈θ(m)

0 ,xs〉 > 0})m−1/2bmxs.

 . (57)

As such,

‖∇f(s,θk)−∇f̂(s,θk)‖22 =
1

m

m∑
r=1

|br|2|1{〈θ(r)
k ,xs〉 > 0} − 1{〈θ(r)

0 ,xs〉 > 0}|2‖xs‖22

(a)

≤ 1

m

m∑
r=1

|1{〈θ(r)
k ,xs〉 > 0} − 1{〈θ(r)

0 ,xs〉 > 0}|2

(b)

≤ 1

m

m∑
r=1

1{|〈θ(r)
0 ,xs〉| ≤ ‖θ(r)

k − θ
(r)
0 ‖2},

(58)

where (a) uses |br| ≤ 1, ‖xs‖22 = 1, and (b) follows from the fact

|1{〈θ(r)
k ,xs〉 > 0} − 1{〈θ(r)

0 ,xs〉 > 0}| ≤ 1{|〈θ(r)
0 ,xs〉| ≤ ‖θ(r)

k − θ
(r)
0 ‖2},

since 1{〈θ(r)
k ,xs〉 > 0} 6= 1{〈θ(r)

0 ,xs〉 > 0} implies |〈θ(r)
0 ,xs〉| ≤ ‖θ(r)

k − θ
(r)
0 ‖2. Lastly, we

observe

|f̂(s,wk)|2 ≤ 2|f̂(s,θ0)|2 + 2|f̂(s,wk)− f̂(s,θ0)|2 ≤ 2|f̂(s,θ0)|2 + 2B2. (59)

Using Lemma 4.1, A.3, A.4, we obtain

Einit,µ[E
(1,1)
k] ≤ 4(1 + γ2)

{
c0B

3 + 2c1B
3 + 2c2B

}
m−1/2 + 8(1 + γ2)m−1 (60)

Similarly, we observe

E
(1,2)
k ≤ 2|f(s,θk)− f̂(s,θk)|2‖∇f(s,θk)‖22 + 2|f̂(s,θk)|2‖∇f(s,θk)−∇f̂(s,θk)‖22. (61)

Similar to (59), we have |f̂(s,θk)|2 ≤ 2|f̂(s,θ0)|2 + 2B2. Applying similar steps as before yields

Einit,µ[E
(1,2)
k] ≤

(
2c0B

3 + 2(2c1B
3 + 2c2B)

)
m−1/2 + 4m−1. (62)

Finally, we get

Einit[‖ê(1)
k ‖

2
2] ≤ 2Einit,µ

[
E

(1,1)
k + υ2E

(1,2)
k

]
≤ C̃0m

−1/2. (63)

The next step is to bound Einit[‖ê(2)
k ‖22], we observe that

‖ê(2)
k ‖

2
2 ≤ Eµ

[
‖
(
δ̄(s,θk)− f(s,wk)

)
∇wf(s,wk)−

((
δ̂(s,θk)− f̂(s,wk)

)
∇wf̂(s,wk)

)
‖22
]

≤ 2Eµ
[
|δ̄(s,θk)− f(s,wk)− (δ̂(s,θk)− f̂(s,wk))|2‖∇f(s,wk)‖22

]
+ 2Eµ

[
|δ̂(s,θk)− f̂(s,wk)|2‖∇f̂(s,wk)−∇f(s,wk)‖22

]
.

(64)

15

We observe that

Einit,µ

[
|δ̄(s,θk)− f(s,wk)− (δ̂(s,θk)− f̂(s,wk))|2‖∇f(s,wk)‖22

]
≤ Einit,µ

[
|δ̄(s,θk)− f(s,wk)− (δ̂(s,θk)− f̂(s,wk))|2

]
≤ 3c0B

3m−1/2,
(65)

where the last inequality is due to Lemma 4.1 and the fact ‖∇f(s,wk)‖22 ≤ 1. Moreover, since
|δ̂(s,θk)− f̂(s,wk)|2 ≤ 4(r2 + 3B2 + 3|f̂(s,θ0)|2), we have

Einit,µ

[
|δ̂(s,θk)− f̂(s,wk)|2‖∇f̂(s,wk)−∇f(s,wk)‖22

]
(a)

≤ 4Einit,µ

[
(r2 + 3B2 + 3|f̂(s,θ0)|2)

1

m

m∑
r=1

1{|〈θ(r)
0 ,xs〉| ≤ ‖w(r)

k − θ
(r)
0 ‖2}

]
(b)

≤
(
4c1r

2B + 12c1B
3 + 12c2B

)
m−1/2 + 12m−1,

(66)

where (a) uses (58) and (b) is due to Lemma A.3. Combining the above inequalities also yields

Einit[‖ê(2)
k ‖

2
2] ≤ C̃0m

−1/2. (67)
The proof is concluded.

A.2 Proof of Lemma A.2

We should use the shorthand notation Eµ[·] to denote that the expectation is taken w.r.t. s ∼ µΠ, as
well as a ∼ Π(·|s), s′ ∼ Pa(s, ·). Define the following mean field matrix/vectors:

A0 = Eµ
[
`(xs)`(xs)

>], A1 = Eµ
[
ρ(a|s)`(xs)`(xs′)>

]
, b = Eµ

[
ρ(a|s)R(s, a)`(xs)

]
,

and we further define Ã1 := A0 − γA1. The objective function can then be written as:

Ĵυ(θ,w) = w>Ã1θ −w>b−
1

2
w>A0w +

υ

2
θ>A0θ.

A direct computation of the gradient of the above leads to

〈Φ̂(zk)− Φ̂(ẑ), zk − ẑ〉 = υ(θk − θ̂)>A0(θk − θ̂) + (wk − ŵ)>A0(wk − ŵ)

= υ Eµ
[
(θk − θ̂)>`(s)`(s)>(θk − θ̂)

]
+ Eµ

[
(wk − ŵ)>`(s)`(s)>(wk − ŵ)

]
= υ Eµ

[
|f̂(s,θk)− f̂(s, θ̂)|2

]
+ Eµ

[
|f̂(s,wk)− f̂(s, ŵ)|2

]
≥ min{1, υ} df̂ (zk, ẑ),

where the last equality is due to the definition of f̂(·, ·) in (14). This proves the first inequality of the
lemma.

For the second identity, we observe that(
∇θĴυ(zk)−∇θĴυ(ẑ)

∇wĴυ(zk)−∇wĴυ(ẑ)

)
=

(
Ã>1 (wk − ŵ) + υA0(θk − θ̂)

Ã1(θk − θ̂)−A0(wk − ŵ)

)
.

This yields

‖∇Ĵυ(zk)−∇Ĵυ(ẑ)‖2 ≤ ‖Ã>1 (wk−ŵ)‖2+υ ‖A0(θk−θ̂)‖2+‖Ã1(θk−θ̂)‖2+‖A0(wk−ŵ)‖2.
We have
‖A0(θk − θ̂)‖2 =

∥∥Eµ[`(xs)(f̂(s,θk)− f̂(s, θ̂))
]∥∥

2
≤ Eµ

[
‖`(xs)(f̂(s,θk)− f̂(s, θ̂))‖2

]
≤ Eµ

[
|f̂(s,θk)− f̂(s, θ̂)| ‖`(xs)‖2

]
≤
√

Eµ
[
|f̂(s,θk)− f̂(s, θ̂)|2

]√
Eµ[‖`(xs)‖22],

where we have applied the Cauchy-Schwarz inequality in the last step. Also,

‖Ã>1 (wk − ŵ)‖2 = ‖(A0 − γA>1)(wk − ŵ)‖2
= ‖Eµ[(`(xs)− γρ(a|s)`(xs′))(f̂(s,wk)− f̂(s, ŵ))]‖2
(a)

≤ Es∼µΠ,a∼π(·|s),s′∼Pa(·|s)
[
|f̂(s,wk)− f̂(s, ŵ)| ‖`(xs)− γ`(xs′)‖2

]
≤ Eµ

[
|f̂(s,wk)− f̂(s, ŵ)| ‖`(xs)‖2

]
+ γEs∼µΠ,a∼π(·|s),s′∼Pa(·|s)

[
|f̂(s,wk)− f̂(s, ŵ)| ‖`(xs′)‖2

]
(b)

≤ (1 + γ)

√
Eµ
[
|f̂(s,wk)− f̂(s, ŵ)|2

]
,

16

where the expectation in (a) is switched to the target policy through evaluating the expectation with
the importance ratio, and (b) uses ‖`(xs)‖22 ≤ 1.

Similarly, we get

‖Ã1(θk − θ̂)‖2 = ‖(A0 − γA1)(θk − θ̂)‖2 ≤ ‖A0(θk − θ̂)‖2 + γ‖A1(θk − θ̂)‖2
=
∥∥Eµ[`(xs)(f̂(s,θk)− f̂(s, θ̂))

]∥∥
2

+ γ
∥∥Es∼µΠ,a∼π(·|s),s′∼Pa(·|s)

[
`(xs)(f̂(s′,θk)− f̂(s′, θ̂))

]∥∥
2

≤ Eµ
[
|f̂(s,θk)− f̂(s, θ̂)|‖`(xs)‖2

]
+ γ Es∼µΠ,a∼π(·|s),s′∼Pa(·|s)

[
|f̂(s′,θk)− f̂(s′, θ̂)|‖`(xs)‖2

]
≤ (1 + γ)

√[
|f̂(s,θk)− f̂(s, θ̂)|2

]
.

Therefore,

‖∇Ĵυ(zk)−∇Ĵυ(ẑ)‖22
≤ 4
(

(1 + (1 + γ)2)Eµ
[
|f̂(s,wk)− f̂(s, ŵ)|2

]
+ (υ2 + (1 + γ)2)Eµ

[
|f̂(s,θk)− f̂(s, θ̂)|2

])
≤ 4{(1 ∨ υ)2 + (1 + γ)2} df̂ (zk, ẑ).

This concludes the proof.

A.3 Proof of Lemma A.4

Observe the following expansion

|f̂(s,θ0)|2 =
1

m

(m∑
r=1

br1{〈θ(r)
0 ,xs〉 > 0}〈θ(r)

0 ,xs〉
)2

≤ 1

m

 m∑
r=1

1{〈θ(r)
0 ,xs〉 > 0}|〈θ(r)

0 ,xs〉|2 +

m∑
r=1

∑
r′ 6=r

brbr′1{〈θ(r)
0 ,xs〉 > 0}〈θ(r)

0 ,xs〉1{〈θ(r′)
0 ,xs〉 > 0}〈θ(r′)

0 ,xs〉

≤ 1

m

 m∑
r=1

‖θ(r)
0 ‖22 +

m∑
r=1

∑
r′ 6=r

brbr′1{〈θ(r)
0 ,xs〉 > 0}〈θ(r)

0 ,xs〉1{〈θ(r′)
0 ,xs〉 > 0}〈θ(r′)

0 ,xs〉

 .

Together with the above expansion and using the fact that Einit[brbr′] = 0 for any r 6= r′, the desired
expectation with respect to the NN initialization can be computed as

Einit,µ

[
|f̂(s,θ0)|2 1

m

m∑
r=1

1{|〈θ(r)
0 ,xs〉| ≤ ‖θ(r) − θ(r)

0 ‖2}

]

≤ 1

m2
Einit,µ

[(
m∑
r=1

‖θ(r)
0 ‖22

)(
m∑
r=1

1{|〈θ(r)
0 ,xs〉| ≤ ‖θ(r) − θ(r)

0 ‖2}

)]

≤ 1

m2
Einit,µ

 m∑
r=1

‖θ(r)
0 ‖22

∑
r′ 6=r

1{|〈θ(r′)
0 ,xs〉| ≤ ‖θ(r′) − θ(r′)

0 ‖2}+

m∑
r=1

‖θ(r)
0 ‖221{|〈θ

(r)
0 ,xs〉| ≤ ‖θ(r) − θ(r)

0 ‖2}

 .
Let us study the first term inside the expectation above:

1

m2
Einit,µ

 m∑
r=1

‖θ(r)
0 ‖22

∑
r′ 6=r

1{|〈θ(r′)
0 ,xs〉| ≤ ‖θ(r′) − θ(r′)

0 ‖2}

(a)
=

1

m

m∑
r=1

Einit,µ[‖θ(r)
0 ‖22]Einit,µ

 1

m

∑
r′ 6=r

1{|〈θ(r′)
0 ,xs〉| ≤ ‖θ(r′) − θ(r′)

0 ‖2}

≤ 1

m

m∑
r=1

Einit,µ[‖θ(r)
0 ‖22]Einit,µ

[
1

m

m∑
r′=1

1{|〈θ(r′)
0 ,xs〉| ≤ ‖θ(r′) − θ(r′)

0 ‖2}

]
(b)

≤ c1Bm
−1/2,

(68)

17

where (a) is due to the independence between θ(r)
0 and θ(r′)

0 with r′ 6= r and (b) is due to Lemma A.3.
For the second term, we observe

1

m2
Einit,µ

[
m∑
r=1

‖θ(r)
0 ‖221{|〈θ

(r)
0 ,xs〉| ≤ ‖θ(r) − θ(r)

0 ‖2}

]
≤ 1

m2

m∑
r=1

Einit[‖θ(r)
0 ‖22] =

1

m
. (69)

Combining (68) and (69) leads to the desired result.

B Proof of Theorem 3.2

Note that the stochastic neural GTD algorithm is similar to the population GTD algorithm except
for the additional error term e

(i)
k in the updates [cf. (22)]. In particular, with respect to (15), the

stochastic neural GTD algorithm in Algorithm 1 can be written as:

θk+1 = PSB
{
θk − βk

(
∇θĴυ(zk) + ê

(1)
k + e

(1)
k

)}
,

wk+1 = PSB
{
wk + βk

(
∇wĴυ(zk) + ê

(2)
k + e

(2)
k

)}
,

(70)

We proceed by observing that (42), (43) can be modified as

‖θk+1 − θ̂‖22 ≤ ‖θk − θ̂‖22 + β2
k‖∇θĴυ(zk) + ê

(1)
k + e

(1)
k −∇θĴυ(ẑ)‖22

− 2βk〈θk − θ̂,∇θĴυ(zk) + ê
(1)
k + e

(1)
k −∇θĴυ(ẑ)〉,

‖wk+1 − ŵ‖22 ≤ ‖wk − ŵ‖22 + β2
k‖∇wĴυ(zk) + ê

(2)
k + e

(2)
k −∇wĴυ(ẑ)‖22

+ 2βk〈wk − ŵ,∇wĴυ(zk) + ê
(2)
k + e

(2)
k −∇wĴυ(ẑ)〉.

Note that when conditioned on Fk−1 = σ{θ0, s̃0, ..., s̃k−1}, the iterate zk = (θk,wk) is de-
terministic. As such, using H3 that the noise e(i)

k is zero-mean when conditioned on Fk−1,
E[〈θk − θ̂, e(1)

k 〉 | Fk−1] = E[〈wk − ŵ, e(2)
k 〉 | Fk−1] = 0.

It follows that for any c1 > 0, we have

E[‖zk+1 − ẑ‖22|Fk−1] ≤ ‖zk − ẑ‖22 − 2βk〈Φ̂(zk)− Φ̂(ẑ), zk − ẑ〉+
βk
c1
‖zk − ẑ‖22

+ 3β2
k ‖∇Ĵυ(zk)−∇Ĵυ(ẑ)‖22 +

(
3β2

k + c1βk
){
‖ê(1)
k ‖

2
2 + ‖ê(2)

k ‖
2
2

}
+ 3β2

k E
[
‖e(1)
k ‖

2
2 + ‖e(2)

k ‖
2
2|Fk−1

]
≤ ‖zk − ẑ‖22 − 2βkµdf̂ (zk, ẑ) +

βk
c1

4B2 + 3β2
kLΦdf̂ (zk, ẑ)

+
(
3β2

k + c1βk
){
‖ê(1)
k ‖

2
2 + ‖ê(2)

k ‖
2
2

}
+ 6β2

kσ
2,

(71)

where the last inequality used ‖zk − ẑ‖22 ≤ 4B2 and Lemma A.2. Rearranging terms and using our
conditions on the step size such that µ− 3

2βkLΦ ≥ µ
2 , these lead to

βkµdf̂ (zk, ẑ) ≤ ‖zk − ẑ‖22 − E[‖zk+1 − ẑ‖22|Fk−1] + 4B2
(βk
c1

)
+
(
3β2

k + c1βk
){
‖ê(1)
k ‖

2
2 + ‖ê(2)

k ‖
2
2

}
+ 6β2

kσ
2}.

(72)

We take c1 = m
1
4 and invoke Lemma A.1, this lead to

βkµdf̂ (zk, ẑ) ≤ ‖zk − ẑ‖22 − E[‖zk+1 − ẑ‖22|Fk−1] +
βk

m
1
4

(
2C0B

3 + 4B2
)

+ 2β2
k

{3C0B
3

√
m

+ 3σ2
}
.

(73)

Taking total expectations on both sides and summing up the inequality from k = 0 to k = n leads to

µ

n∑
k=0

βkE[df (zk, ẑ)] ≤ E[‖z0− ẑ‖22]+
2C0B

3 + 4B2

m
1
4

n∑
k=0

βk +2
{3C0B

3

√
m

+3σ2
} n∑
k=0

β2
k. (74)

18

Recall that In ∈ {0, ..., n} is an independent random variable chosen from the distribution P(In =
k) = βk/

∑n
`=0 β`, we have

E
[
df (zIn , ẑ)

]
≤ 2C0B

3 + 4B2

µm
1
4

+
E[‖z0 − ẑ‖22] + 2

{
3C0B

3
√
m

+ 3σ2
}∑n

k=0 β
2
k

µ
∑n
k=0 βk

. (75)

This concludes the proof of our theorem.

C Proof of Theorem 3.4

Note that Eµ[·] = Es∼µΠ [·]. We begin the proof by recalling that, for any θ ∈ SB ,

Jυ(θ) =
1

2
Eµ
[
δ̄(s,θ)2 + υf(s,θ)2

]
, (76)

where we define that (the importance ratio ρ(a|s) has been absorbed in the conditional expectation)

δ̄(s,θ) = f(s,θ)− rπ(s)− γPπf(s,θ),

and we have defined rπ(s) = Ea∼π(·|s)[R(s, a)]. Moreover, we define the following using the
linearized NN function:

δ̂(s,θ) = f̂(s,θ)− rπ(s)− γPπ f̂(s,θ).

Estimates on the differences between δ̄, δ̂, f, f̂ We first derive a few upper bounds as follows.
Observe from Lemma 4.1 that for any θ ∈ SB ,

Einit,µ[|δ̄(s,θ)− δ̂(s,θ)|2] ≤ 2(1 + ρ̄2γ2)c0B
3m−1/2 =: R

(0)
δ

as well as Einit,µ[|f(s,θ)− f̂(s,θ)|2] ≤ c0B3m−1/2 =: R
(0)
f . Now, consider that

|f(s,θ)|2 ≤ |f(s,θ)− f̂(s,θ)|2 + 2|f(s,θ)− f̂(s,θ)||f̂(s,θ)|︸ ︷︷ ︸
=:R̄

(1)
f (s,θ)

+|f̂(s,θ)|2,

|δ̄(s,θ)|2 ≤ |δ̄(s,θ)− δ̂(s,θ)|2 + 2|δ̄(s,θ)− δ̂(s,θ)||δ̂(s,θ)|︸ ︷︷ ︸
=:R̄

(1)
δ (s,θ)

+|δ̂(s,θ)|2,

|f(s,θ)|2 ≤ |f(s,θ)− f(s, θ̂)|2 + 2|f(s,θ)− f(s, θ̂)||f(s, θ̂)|︸ ︷︷ ︸
=:R̄

(2)
f (s,θ,θ̂)

+|f(s, θ̂)|2

|δ(s,θ)|2 ≤ |δ(s,θ)− δ(s, θ̂)|2 + 2|δ(s,θ)− δ(s, θ̂)||δ(s, θ̂)|︸ ︷︷ ︸
=:R̄

(2)
δ (s,θ,θ̂)

+|δ(s, θ̂)|2,

Note that R̄(1)
δ , R̄

(1)
f , R̄

(2)
δ , R̄

(2)
f are measurable functions on S and depend on θ, θ̂. We upper bound

these terms as follows.

For R̄(1)
f , due to the Cauch-Schwarz inequality, for any θ ∈ SB , we have

Einit,µ

[
|f(s,θ)− f̂(s,θ)| |f̂(s,θ)|

]
≤
(
Einit,µ

[
|f̂(s,θ)|2

]) 1
2
(
Einit,µ

[
|f(s,θ)− f̂(s,θ)|2

]) 1
2

.

As we have |f̂(s,θ)|2 ≤ 2|f̂(s,θ0)|2 + 2B2, and

Einit,µ

[
|f̂(s,θ0)|2

]
= Einit,µ

[
1

m

m∑
r=1

m∑
r′=1

brbr′1{〈θ(r)
0 ,xs〉 > 0}1{〈θ(r′)

0 ,xs〉 > 0}〈θ(r)
0 ,xs〉〈θ(r′)

0 ,xs〉

]

≤ 1

m
Einit,µ

[
m∑
r=1

1{〈θ(r)
0 ,xs〉 > 0}‖θ(r)

0 ‖22

]
≤ 1,

19

where we have used that br is independent from br′ if r 6= r′ in the first inequality, also see
Appendix A.3. The above implies Einit,µ

[
|f̂(s,θ)|2

]
≤ 2(1 +B2), and thus showing that

Einit,µ[R̄
(1)
f] ≤ c0B3m−1/2 +

√
8c0(1 +B2)B3m−1/4 =: R

(1)
f . (77)

For R̄(1)
δ , for any θ ∈ SB , applying the Cauch-Schwarz inequality yields

Einit,µ

[
|δ(s,θ)− δ̂(s,θ)| |δ̂(s,θ)|

]
≤
(
Einit,µ

[
|δ̂(s,θ)|2

]) 1
2
(
Einit,µ

[
|δ(s,θ)− δ̂(s,θ)|2

]) 1
2

. (78)

The above implies

Einit,µ

[
|δ̂(s,θ)|2

]
≤ 3r2 + 3Einit,µ[|f̂(s,θ)|2] + 3γ2 Einit,µπ [|f̂(s′,θ)|2]

≤ 3(r2 + 2(1 + ρ̄2γ2)(1 +B2)).
(79)

Moreover, applying Lemma 4.1 to (78) shows that

Einit,µ

[
|δ̄(s,θ)− δ̂(s,θ)||δ̂(s,θ)|

]
≤
√

3c0(1 + ρ̄γ)(r2 + 2(1 + ρ̄2γ2)(1 +B2))B3m−1/4.

Gathering terms yields

Einit,µ[R̄
(1)
δ]

≤ c0(1 + ρ̄γ)B3m−1/2 +
√

12c0(1 + ρ̄γ)(r2 + 2(1 + ρ̄2γ2)(1 +B2))B3m−1/4 =: R
(1)
δ .

We note that

R
(1)
f = O(B3m−1/2 +B3/2m−1/4), R

(1)
δ = O(B3m−1/2 +B3/2m−1/4).

To upper bound R̄(2)
δ , we observe that

Eµ
[
|δ(s,θ)− δ(s, θ̂)|2

]
= Eµ

[∣∣f(s,θ)− f(s, θ̂)− γ(f(s′,θ)− f(s′, θ̂))
∣∣2]

≤ 3Eµ
[∣∣f̂(s,θ)− f̂(s, θ̂)

∣∣2]+ 3γ2 Eµπ
[∣∣f̂(s′,θ)− f̂(s′, θ̂)

∣∣2]+ 12c0B
3m−1/2

≤ 3(1 + ρ̄2γ2)df̂ (z, ẑ) + 12c0B
3m−1/2,

for z = (θ,w) with any w ∈ SB , where we have applied Lemma 4.1 in the second inequality.
Moreover, using (79) and the definition of R̄(1)

δ we have

Einit,µ

[
|δ̄(s, θ̂)|2

]
≤ R(1)

δ + 3(r2 + 2(1 + ρ̄2γ2)(1 +B2)).

The above shows that

Einit,µ

[
|δ(s,θ)− δ(s, θ̂)||δ(s, θ̂)|

]
≤
(
Einit,µ

[
|δ(s, θ̂)|2

]) 1
2
(
Einit,µ

[
|δ(s,θ)− δ(s, θ̂)|2

]) 1
2

≤
√

3(R
(1)
δ + 3(r2 + 2(1 + ρ̄2γ2)(1 +B2)))

√
(1 + ρ̄2γ2)Einit[df̂ (z, ẑ)] + 4c0B3m−1/2.

These yield

Einit,µ[R̄
(2)
δ]

≤ 3(1 + ρ̄2γ2)Einit[df̂ (z, ẑ)] + 12c0B
3m−1/2

+

√
12(R

(1)
δ + 3(r2 + 2(1 + ρ̄2γ2)(1 +B2)))

√
(1 + ρ̄2γ2)Einit[df̂ (z, ẑ)] + 4c0B3m−1/2 =: R

(2)
δ .

Finally, to upper bound R̄(2)
f , applying Lemma 4.1, we observe that

Eµ
[
|f(s,θ)− f(s, θ̂)|2

]
≤ 2Eµ

[∣∣f̂(s,θ)− f̂(s, θ̂)
∣∣2]+ 4c0B

3m−1/2 ≤ 2df̂ (z, ẑ) + 4c0B
3m−1/2.

Moreover,

Einit,µ

[
|f(s, θ̂)|2

]
≤ R(1)

f + 2(1 +B2).

20

This shows

Einit,µ

[
|f(s, θ̂)||f(s,θ)− f(s, θ̂)|

]
≤
√

2R
(1)
f + 4(1 +B2)

√
Einit[df̂ (z, ẑ)] + 2c0B3m−1/2.

As such, we have

Einit,µ[R̄
(2)
f]

≤ 2Einit[df̂ (z, ẑ)] + 4c0B
3m−1/2 +

√
8R

(1)
f + 16(1 +B2)

√
Einit[df̂ (z, ẑ)] + 2c0B3m−1/2 =: R

(2)
f

We also note that

R
(2)
f = O

(
Einit[df̂ (z, ẑ)] + (B +B3/2m−1/4)

√
Einit[df̂ (z, ẑ)] +B3m−1/2 +B5/2m−1/4

)
,

R
(2)
δ = O

(
Einit[df̂ (z, ẑ)] + (B +B3/2m−1/4)

√
Einit[df̂ (z, ẑ)] +B3m−1/2 +B5/2m−1/4

)
.

Note that R(0)
f , R

(1)
f , R

(2)
f , R

(0)
δ , R

(1)
δ , R

(2)
δ are deterministic quantities.

Bounding Jυ(θ) In the following derivations, the inequalities hold in the expectation taken over
the NN initializations. We shall skip Einit[·] to simplify notations. First observe the following bound
using the above definitions

Jυ(θ) ≤ Jυ(θ̂) +
1

2

(
R

(2)
δ + υR

(2)
f

)
(80)

With a slight abuse in notations, define the following function from the Fenchel’s conjugate (8):

Jυ(θ; y(·)) := Eµ
[
y(s)δ̄(s,θ)− 1

2
y(s)2 +

υ

2
f(s,θ)2

]
(81)

From H4, there existsw(θ̂) ∈ SB such that Eµ[|δ̄(s, θ̂)− f(s,w(θ̂))|2] ≤ cnn. As such, we observe
that

Jυ(θ̂) = Jυ(θ̂; δ̄(·, θ̂))

= Jυ(θ̂,w(θ̂)) + Eµ
[
δ̄(s, θ̂)(δ̄(s, θ̂)− f(s,w(θ̂)))− 1

2
{δ̄(s, θ̂)2 − f(s,w(θ̂))2}

]
= Jυ(θ̂,w(θ̂)) +

1

2
Eµ
[
|f(s,w(θ̂))− δ̄(s, θ̂)|2

]
≤ Jυ(θ̂,w(θ̂)) +

cnn
2
.

(82)

Using the bounds developed earlier in this subsection, we have

Jυ(θ̂,w(θ̂)) ≤ Ĵυ(θ̂,w(θ̂)) +
1

2
(1 + υ)R

(1)
f

+
1

2
Eµ
[
|δ̄(s, θ̂)||f(s,w(θ̂))− f̂(s,w(θ̂))|+ |f̂(s,w(θ̂))||δ̄(s, θ̂)− δ̂(s, θ̂)|

]
.

Since (θ̂, ŵ) is a saddle point to (15), we have

Ĵυ(θ̂,w(θ̂)) ≤ Ĵυ(θ̂, ŵ) ≤ Ĵυ(θ?, ŵ) (83)

Notice that

Ĵυ(θ?, ŵ) ≤ Jυ(θ?, ŵ) +
1

2
(1 + υ)R

(1)
f

+
1

2
Eµ
[
|δ̂(s,θ?)||f(s, ŵ)− f̂(s, ŵ)|+ |f(s, ŵ)||δ̄(s,θ?)− δ̂(s,θ?)|

]
.

Finally, we observe,

Jυ(θ?, ŵ) = Jυ(θ?; f(·, ŵ)) ≤ Jυ(θ?; δ̄(·,θ?)) = Jυ(θ?),

21

where the inequality is due to the fact that δ̄(·,θ?) maximizes Jυ(θ?; y(·)). Collecting terms, we
observe that

Jυ(θ)− Jυ(θ?)− 1

2

(
cnn +R

(2)
δ + υR

(2)
f

)
≤ (1 + υ)R

(1)
f

+
1

2
Eµ
[
|δ̄(s, θ̂)||f(s,w(θ̂))− f̂(s,w(θ̂))|+ |f̂(s,w(θ̂))||δ̄(s, θ̂)− δ̂(s, θ̂)|

]
+

1

2
Eµ
[
|δ̂(s,θ?)||f(s, ŵ)− f̂(s, ŵ)|+ |f(s, ŵ)||δ̄(s,θ?)− δ̂(s,θ?)|

]
≤ 1

2

(√
R

(1)
δ + 3(r2 + 2(1 + ρ̄2γ2)(1 +B2))

√
R

(0)
f +

√
2(1 +B2)

√
R

(0)
δ

)
+

1

2

(√
3(r2 + 2(1 + ρ̄2γ2)(1 +B2))

√
R

(0)
f +

√
R

(1)
f + 2(1 +B2)

√
R

(0)
δ

)

(84)

Finally, we obtain the following bound
Jυ(θ)− Jυ(θ?)

≤ 1

2

(
cnn +R

(2)
δ + υR

(2)
f

)
+ (1 + υ)R

(1)
f

+
1

2

(√
R

(1)
δ + 3(r2 + 2(1 + ρ̄2γ2)(1 +B2))

√
R

(0)
f +

√
2(1 +B2)

√
R

(0)
δ

)
+

1

2

(√
3(r2 + 2(1 + ρ̄2γ2)(1 +B2))

√
R

(0)
f +

√
R

(1)
f + 2(1 +B2)

√
R

(0)
δ

)
(85)

The proof is completed by extracting the right orders in terms of m,B,Einit[df̂ (z, ẑ)] from the

previously derived bounds of R(0)
f , R

(1)
f , R

(2)
f , R

(0)
δ , R

(1)
δ , R

(2)
δ .

D Convergence of Neural GTD Algorithm with Markov Samples

We consider a more sophisticated setting when samples used for the neural GTD algorithm are
collected along a single sample path of the Markov chain (s0, s1, ...). At iteration k of the neural
GTD algorithm, the state pair is taken as s̃k := (sk, sk+1), see Algorithm 1. In this case, the neural
GTD update can be written into the same form as (21), (22). However, for finite k, as (s̃k)k≥0 is not
drawn from the stationary distribution, denoted as µ̃Π, H3 does not hold and the analysis leading to
Theorem 3.2 cannot be applied. Instead, (s̃k)k≥0 forms a uniformly geometric ergodic Markov chain
whose kernel is denoted by P̃Π. Let us define ρ ∈ [0, 1) be its mixing constant. Since the Markov
chain is uniformly geometric ergodic, there exists a constant KP such that

sups̃∈S×S ‖(P̃Π)n(s̃, ·)− µ̃Π(·)‖ ≤ ρnKP , (86)
where ‖ · ‖ denotes the total variation norm.

We use the standard Bachmann-Landau notations for asymptotic quantities in the following. In
particular, consider two non-negative functions h(x), g(x). We say that h(x) = O(g(x)) if there
exists c0 > 0, x0 ≥ 0 such that h(x) ≤ c0g(x) for all x ≥ x0; likewise, h(x) = Ω(g(x)) if there
exists c1 > 0, x1 ≥ 0 such that h(x) ≥ c1g(x) for all x ≥ x0.

As explained in the main text of the paper, in the Markov sample settings, we prove the convergence
of neural GTD with high probability with respect to the random initialization specified in H1. To this
end, we need to derive the high probability bounds for certain quantities. Observe the lemmas:
Lemma D.1. Assume that H1 holds, m = Ω(d3/2), andB = O(m1/2(logm)−3). For any (θ,w) ∈
SB × SB , and s̃ ∈ S × S, with probability at least 1 − eΩ(log2 m) with respect to the random
initialization, it holds

‖∇θJυ(θ,w; s̃)‖2 ∨ ‖∇wJυ(θ,w; s̃)‖2 ≤ O(B ∨ logm) =: ς. (87)

Lemma D.2. Assume that H1 holds, m = Ω(d3/2), and B = O(m1/2(logm)−3). For any z, z′ ∈
SB × SB and s̃ ∈ S× S, there exist constants LJ ,CJ such that with probability at least 1− elog2(m)

with respect to the random initialization,

‖∇Jυ(z; s̃)−∇Jυ(z′; s̃)‖2 ≤ LJ‖z − z′‖2 + CJB
4/3(logm)3/2m−1/6. (88)

22

Lemma D.3. Assume that H1 holds, m = Ω(d3/2), and B = O(m1/2(logm)−3). For any θ ∈ SB
and s ∈ S, with probability at least 1 − eΩ(B2/3m2/3) with respect to the random initialization, it
holds

|f(s,θ)− f̂(s,θ)| = O(B4/3m−1/6
√

logm). (89)

We present the main conclusion on the convergence of neural GTD in detail [cf. Theorem 3.3] below:

Theorem D.1. Assume that H1 hold, m = Ω(d3/2), and B = O(m1/2(logm)−3). Furthermore,
for any k ≥ 0, there exists a constant ξ such that

|βk − βk+1| ≤ ξβ2
k. (90)

For the iterates generated by Algorithm 1 with the Markov chain satisfying (86), and any n ≥ 1, it
holds with probability at least 1− eΩ(log2 m) over the random initialization that:

EIn
[
df̂ (zIn , ẑ)

]
= O

(
B

8
3 +B

7
3 (logm)

1
2 /(1− ρ)

(1 ∧ υ)m
1
6 / logm

+
‖z0 − ẑ‖22 + β0

B2

1−ρ + (B3 + B2

1−ρ)
∑n
k=0 β

2
k

(1 ∧ υ)
∑n
k=0 βk

)
,

(91)

where the function df̂ (zIn , ẑ) was defined in (18). Moreover, the expectation above is taken over the
independent r.v. In, and the i.i.d. samples of states drawn during the algorithm.

Lastly, we remark that the conditions m = Ω(d3/2), and B = O(m1/2(logm)−3) can be satisfied
when m is sufficiently large and we choose B = O(1).

Proof. Now, let us recall that the neural GTD update can be written as:

θk+1 = PSB
{
θk − βk

(
∇θĴυ(zk) + ê

(1)
k + e

(1)
k

)}
,

wk+1 = PSB
{
wk + βk

(
∇wĴυ(zk) + ê

(2)
k + e

(2)
k

)}
,

(92)

and that the errors are expressed as:

ê
(1)
k = ∇θJυ(zk)−∇θĴυ(zk), e

(1)
k = ∇θJυ(zk; s̃k)− Eµ̃[∇θJυ(zk; s̃)].

ê
(2)
k = ∇wJυ(zk)−∇wĴυ(zk), e

(2)
k = ∇wJυ(zk; s̃k)− Eµ̃[∇wJυ(zk; s̃)],

(93)

where the expectation Eµ̃[·] is evaluated with respect to the stationary distribution µ̃Π of the Markov
chain (s̃k)k≥0. We observe the following lemma which is analogous to Lemma A.1:

Lemma D.4. Assume that H1, H2 hold. For any z ∈ SB×SB , with probability at least 1−eΩ(log2 m)

with respect to the random initialization, it holds

‖e(1)
k ‖

2
2 ∨ ‖e

(2)
k ‖

2
2 ≤ CeB8/3m−1/3(logm)2. (94)

Using [Douc et al., 2018, Proposition 21.2.3], together with Lemma D.1 and some regulatory

conditions, there exists measurable functions d̂J
(i)

υ : SB × S→ Rmd, i = 1, 2, satisfying

e
(i)
k = d̂J

(i)

υ (zk; s̃k)− P̃Πd̂J
(i)

υ (zk; s̃k), i = 1, 2. (95)

This is also known as the Poisson equation. Again with Lemma D.1, it can be shown that (e.g., using
[Fort et al., 2011])

supz∈SB×SB ,s̃∈S×S ‖d̂J
(i)

υ (z; s̃)‖2 ≤ ς KP /(1− ρ) =: ς̂ ,

Furthermore, for any s̃ ∈ S× S and z, z′ ∈ SB × SB , using Lemma D.2,

‖d̂J
(i)

υ (z; s̃)− d̂J
(i)

υ (z′; s̃)‖2 ≤ LJ KP /(1−ρ)‖z−z′‖2 +(CJKP /(1−ρ))B4/3(logm)3/2m−1/6,
(96)

for brevity, we denote L̂J := LJ KP /(1− ρ), ĈJ := CJKP /(1− ρ).

23

We proceed to proving the convergence of neural GTD by following the analysis done in previous
sections. Since the neural GTD update follows the same form as in (21), (22), we observe that every
steps in the proof of Theorem 3.2 follows. Also, the second inequality in H3 holds with σ2 replaced
by 4ς2. In particular, applying Lemma A.2 and we observe that the following (which is analogous to
(71)) holds for any k ≥ 0, c1 > 0

E[‖zk+1 − ẑ‖22|Fk−1] ≤ ‖zk − ẑ‖22 − 2βkµdf̂ (zk, ẑ) + 3β2
kLΦdf̂ (zk, ẑ) +

βk
c1

4B2

+
(
3β2

k + c1βk
){
‖ê(1)
k ‖

2
2 + ‖ê(2)

k ‖
2
2

}
+ 24β2

kς
2

− 2βkE
[
〈θk − θ̂, e(1)

k 〉 − 〈wk − ŵ, e
(2)
k 〉|Fk−1

]
,

where the last term is new. Using the step size condition, Lemma D.4 and setting c1 = m1/6/logm,
we can derive the following inequality:

E
[
df̂ (zIn , ẑ)

]
≤ 2CeB

8
3 + 4B2

µm
1
6 / logm

+
E[‖z0 − ẑ‖22] + 2

{
3CeB

8
3m−1/3(logm)2 + 12ς2

}∑n
k=0 β

2
k

µ
∑n
k=0 βk

+
2
∣∣∑n

k=0 βkE
[
〈θk − θ̂, e(1)

k 〉 − 〈wk − ŵ, e
(2)
k 〉
]∣∣

µ
∑n
k=0 βk

.

(97)

Our remaining task is to bound the weighted sum of inner products in the last term. Observe

βk

〈
θk − θ̂, e(1)

k

〉
= βk

〈
θk − θ̂, d̂J

(1)

υ (zk; s̃k)− d̂J
(1)

υ (zk; s̃k+1) + d̂J
(1)

υ (zk; s̃k+1)− P̃Πd̂J
(1)

υ (zk; s̃k)

〉
.

By (95), we observe that d̂J
(1)

υ (zk; s̃k+1) − P̃Πd̂J
(1)

υ (zk; s̃k) is a martingale difference such

that E[〈θk − θ̂, d̂J
(1)

υ (zk; s̃k+1) − P̃Πd̂J
(1)

υ (zk; s̃k)〉|Fk−1] = 0, where we recall Fk =
σ{θ0, s̃0, s̃1, ..., s̃k}. Furthermore, the remaining inner product can be decomposed into four terms:

βk

〈
θk − θ̂, d̂J

(1)

υ (zk; s̃k)− d̂J
(1)

υ (zk; s̃k+1)

〉
= βk

〈
θk − θ̂, d̂J

(1)

υ (zk; s̃k)

〉
− βk+1

〈
θk+1 − θ̂, d̂J

(1)

υ (zk+1; s̃k+1)

〉
︸ ︷︷ ︸

=A1
k

+
(
βk+1 − βk

)〈
θk+1 − θ̂, d̂J

(1)

υ (zk+1; s̃k+1)

〉
︸ ︷︷ ︸

=A2
k

+βk

〈
θk+1 − θk, d̂J

(1)

υ (zk+1; s̃k+1)

〉
︸ ︷︷ ︸

=A3
k

+ βk

〈
θk − θ̂, d̂J

(1)

υ (zk+1; s̃k+1)− d̂J
(1)

υ (zk; s̃k+1)

〉
︸ ︷︷ ︸

=A4
k

.

In particular, we have∣∣∣∣∣
n∑
k=0

A1
k

∣∣∣∣∣ = β0

〈
θ0 − θ̂, d̂J

(1)

υ (z0; s̃0)

〉
−βn+1

〈
θn+1 − θ̂, d̂J

(1)

υ (zn+1; s̃n+1)

〉
≤ (β0+βn+1)Bς̂,

∣∣∣∣∣
n∑
k=0

A2
k

∣∣∣∣∣ (a)

≤ ξBς̂

n∑
k=0

β2
k,

∣∣∣∣∣
n∑
k=0

A3
k

∣∣∣∣∣ (b)

≤ ς̂ς

n∑
k=0

β2
k,∣∣∣∣∣

n∑
k=0

A4
k

∣∣∣∣∣ (c)

≤ 2L̂JBς

n∑
k=0

β2
k + ĈJ

B7/3(logm)3/2

m1/6

n∑
k=0

βk,

where (a) is due to the additional condition (90) on the step size βk; (b) is due to the uniform
boundedness on sampled gradient, i.e., Lemma D.1, as well as the non-expansive property of

24

projection; (c) is due to the Lipschitz gradient condition in Lemma D.2 and (96). Notice that the same
analysis is applicable to the sum of inner product βk〈wk − ŵ, e(1)

k 〉. The above analysis shows that

2

∣∣∣∣∣
n∑
k=0

βkE
[
〈θk − θ̂, e(1)

k 〉 − 〈wk − ŵ, e
(2)
k 〉
]∣∣∣∣∣

≤ 4
{

(β0 + βn+1)Bς̂ + (ξBς̂ + ς̂ς + 2L̂JBς)

n∑
k=0

β2
k + ĈJ

B7/3(logm)3/2

m1/6

n∑
k=0

βk

}
.

(98)

Plugging the above into (97) gives the convergence rate as

E
[
df (zIn , z

?)
]
≤ 2CeB

8
3 + 4B2

µm
1
6 / logm

+
E[‖z0 − ẑ‖22] + 2

{
3CeB

8
3m−1/3(logm)2 + 12ς2

}∑n
k=0 β

2
k

µ
∑n
k=0 βk

+
2(β0 + βn+1)Bς̂ + 2(ξBς̂ + ς̂ς + 2L̂JBς)

∑n
k=0 β

2
k

µ
∑n
k=0 βk

+
4ĈJB

7/3(logm)3/2

m1/6

= O

(
B

8
3 +B

7
3 (logm)

1
2 /(1− ρ)

(1 ∧ υ)m
1
6 / logm

+
‖z0 − ẑ‖22 + β0

B2

1−ρ + B2

1−ρ
∑n
k=0 β

2
k

(1 ∧ υ)
∑n
k=0 βk

)
,

(99)

where we have recalled that µ = 1 ∧ υ and assumed B = Ω(logm) in estimating the upper bound
for ς, ς̂ .

We thus conclude that the neural GTD algorithm converges when using Markov samples, yet the rate
holds with high probability with respect to the random initialization. Moreover, the asymptotic bias
of O(B

8
3 (logm)

3
2 /((1− ρ)(1 ∧ υ)m

1
6)) is higher than that of the i.i.d. case.

Lastly, we present the following result that is akin to Theorem 3.4, but holds with high probability
with respect to the random initialization of NN.

Corollary D.1. Assume H1, H4. For any θ ∈ SB , with probability at least 1− eΩ(log2 m), it holds

Jυ(θ)− Jυ(θ?)

≤ O
(

cnn + df̂ (z, ẑ) +B
√
df̂ (z, ẑ) +B8/3m−1/3 logm+B7/3m−1/6

√
logm

)
,

where z is defined as the vector z = (θ,w) for any w ∈ SB , and df̂ (z, ẑ(Ξ0)) was defined in (18).

Proof. The proof follows from repeating the steps from the previous section using the high probability
bounds in this appendix. Following the previous notations, it can be shown that it holds with
probability at least 1− eΩ(log2 m) for

r.h.s. of (84) = O
(
B8/3m−1/3 logm+B7/3m−1/6

√
logm

)
,

where we have repeatedly applied Lemma D.3 and [Allen-Zhu et al., 2019b, Theorem 1], see (101).

Moreover, for R(2)
δ , R

(2)
f , it can be shown that

R
(2)
δ ∨R

(2)
f = O

(
df̂ (z, ẑ) +B

√
df̂ (z, ẑ)

)
.

Combining the terms yields the desired corollary.

D.1 Proof of Lemma D.1

First we observe that the gradient is given by:

∇θJυ(θ,w; s̃) = f(s,w)∇δ(s, a, s′;θ) + υ f(s,θ)∇f(s,θ), (100)

where we recall the definition of δ(·) from (5). Using [Gao et al., 2019, Lemma A.5], it can be shown
that with probability at least 1− eΩ(B2/3m2/3), we have for any s, a, s′ ∈ S××A× S,

‖∇f(s,θ)‖2 = O(1), ‖∇δ(s, a, s′;θ)‖2 = O(1),

25

where we have also used supa,s ρ(a|s) = O(1). Furthermore, from [Allen-Zhu et al., 2019b,
Theorem 1], with probability at least 1− eΩ(log2 m), we have

|f(s,θ)| ≤ |f(s,θ0)|+ |f(s,θ)− f(s,θ0)| = O(B ∨ logm), (101)

where we have used the Lipschitz property of the NN function where |f(s,θ)− f(s,θ0)| = O(B).
Combining the above observations gives ‖∇θJυ(θ,w; s̃)‖2 = O(B ∨ logm) with probability at
least 1− eΩ(log2 m). On the other hand, we observe

∇wJυ(θ,w; s̃) = (δ(s, a, s′;θ)− f(s,w))∇wf(s,w). (102)

Following the same arguments as before yields ‖∇wJυ(θ,w; s̃)‖2 = O(B ∨ logm) with high
probability. The proof is concluded.

D.2 Proof of Lemma D.2

Observe that

‖∇θJυ(z; s̃)−∇θJυ(z′; s̃)‖ ≤ ‖f(s,w)∇δ(s, a, s′;θ)− f(s,w′)∇δ(s, a, s′;θ′)‖2
+ υ ‖f(s,θ)∇f(s,θ)− f(s,θ′)∇f(s,θ′)‖2.

As we have

‖f(s,w)∇δ(s, a, s′;θ)− f(s,w′)∇δ(s, a, s′;θ′)‖2
≤ |f(s,w)− f(s,w′)|‖∇δ(s, a, s′;θ)‖2 + |f(s,w′)|‖∇δ(s, a, s′;θ)−∇δ(s, a, s′;θ′)‖2
(a)

≤ O(1) ‖w −w′‖2 +O(B4/3m−1/6(logm)3/2),

where (a) holds with probability at least 1− eΩ(log2 m) by using [Allen-Zhu et al., 2019b, Theorem
1] on the first term and [Gao et al., 2019, Lemma A.5] on the second term. Similarly, we have

‖f(s,θ)∇f(s,θ)− f(s,θ′)∇f(s,θ′)‖2 ≤ O(1) ‖θ − θ′‖2 +O(B4/3m−1/6(logm)3/2).

On the other hand, we have

‖∇wJυ(z; s̃)−∇wJυ(z′; s̃)‖2
= ‖(δ(s, a, s′;θ)− f(s,w))∇f(s,w)− (δ(s, a, s′;θ′)− f(s,w′))∇f(s,w′)‖2
≤ |δ(s, a, s′;θ)− f(s,w)− (δ(s, a, s′;θ′)− f(s,w′))| ‖∇f(s,w)‖2

+ |δ(s, a, s′;θ′)− f(s,w′)| ‖∇f(s,w)−∇f(s,w′)‖2.

(103)

Using the same arguments as before, we can show

‖∇wJυ(z; s̃)−∇wJυ(z′; s̃)‖2 ≤ O(1)‖z − z′‖2 +O(B4/3m−1/6(logm)3/2).

This concludes our proof.

D.3 Proof of Lemma D.3

Observe that

f(s,θ)− f̂(s,θ) =

∫ 1

0

〈∇f(s, (1− t)θ0 + tθ)−∇f̂(s,θ0),θ − θ0〉dt

≤ B
∫ 1

0

‖∇f(s, (1− t)θ0 + tθ)−∇f(s,θ0)‖2dt = O(B4/3m−1/6
√

logm),

where the last equality is due to [Gao et al., 2019, Lemma A.5] and it holds with probability at least
1− eΩ(B2/3m2/3). This concludes the proof of the lemma.

26

D.4 Proof of Lemma D.4

Following the proof from our previous Lemma A.1, we observe that

‖ê(1)
k ‖

2
2 ≤ 2Eµ[E

(1,1)
k + υ2E

(1,2)
k],

with

E
(1,1)
k ≤ 2|f(s,wk)− f̂(s,wk)|2 ‖∇δ̄(s,θk)‖22 + 2|f̂(s,wk)|2 ‖∇δ̄(s,θk)−∇δ̂(s,θk)‖22,

E
(1,2)
k ≤ 2|f(s,θk)− f̂(s,θk)|2‖∇f(s,θk)‖22 + 2|f̂(s,θk)|2‖∇f(s,θk)−∇f̂(s,θk)‖22.

Using Lemma D.3 and [Gao et al., 2019, Lemma A.5], with probability at least 1− eΩ(B2/3m2/3), we
have

|f(s,θk)− f̂(s,θk)|2‖∇f(s,θk)‖22 = O(B8/3m−1/3 logm).

Moreover, as ∇f̂(s,θk) = ∇f̂(s,θ0) and∇δ̂(s,θk) = ∇δ̂(s,θ0), using (101), we have

|f̂(s,wk)|2 ‖∇δ̄(s,θk)−∇δ̂(s,θk)‖22 = O
(
(B ∨ logm)B2/3m−1/3 logm

)
,

where the equality holds with probability at least 1 − eΩ(log2 m) due to [Allen-Zhu et al., 2019b,
Theorem 1] and [Gao et al., 2019, Lemma A.5]. Combining the above yields

‖e(1)
k ‖

2
2 = O(B8/3m−1/3(logm)2). (104)

On the other hand,

‖e(2)
k ‖

2
2 ≤ 2Eµ

[
|δ̄(s,θk)− f(s,wk)− (δ̂(s,θk)− f̂(s,wk))|2‖∇f(s,wk)‖22

]
+ 2Eµ

[
|δ̂(s,θk)− f̂(s,wk)|2‖∇f̂(s,wk)−∇f(s,wk)‖22

]
.

Likewise, we can bound

|δ̄(s,θk)− f(s,wk)− (δ̂(s,θk)− f̂(s,wk))|2‖∇f(s,wk)‖22 = O(B8/3m−1/3 logm)

|δ̂(s,θk)− f̂(s,wk)|2‖∇f̂(s,wk)−∇f(s,wk)‖22 = O
(
(B ∨ logm)B2/3m−1/3 logm

)
,

with probability at least 1− eΩ(log2 m). Thus, we also get

‖e(1)
k ‖

2
2 = O(B8/3m−1/3(logm)2). (105)

This concludes our proof.

27

	Introduction
	Markov Decision Process
	Off-policy Policy Evaluation with Function Approximation

	Finding a Global Minimizer for MSBE
	Convergence to Saddle Point of (15)
	Minimizing the MSBE with Neural GTD Algorithms
	Preliminary Numerical Experiment

	Proof Sketches
	Conclusions
	Proof of Theorem 3.1
	Proof of Lemma A.1
	Proof of Lemma A.2
	Proof of Lemma A.4

	Proof of Theorem 3.2
	Proof of Theorem 3.4
	Convergence of Neural GTD Algorithm with Markov Samples
	Proof of Lemma D.1
	Proof of Lemma D.2
	Proof of Lemma D.3
	Proof of Lemma D.4

