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Abstract

State-of-the-art optimization is steadily shifting towards massively parallel pipelines
with extremely large batch sizes. As a consequence, CPU-bound preprocessing and
disk/memory/network operations have emerged as new performance bottlenecks, as
opposed to hardware-accelerated gradient computations. In this regime, a recently
proposed approach is data echoing (Choi et al., 2019), which takes repeated gradient
steps on the same batch while waiting for fresh data to arrive from upstream. We
provide the first convergence analyses of “data-echoed” extensions of common
optimization methods, showing that they exhibit provable improvements over their
synchronous counterparts. Specifically, we show that in convex optimization with
stochastic minibatches, data echoing a�ords speedups on the curvature-dominated
part of the convergence rate, while maintaining the optimal statistical rate.

1 Introduction
Recent empirical successes in large-scale machine learning have been powered by massive data
parallelism and hardware acceleration, with batch sizes trending beyond 10K+ images [46] or
1M+ tokens [9]. Numerous interdisciplinary sources [5, 12, 24, 33] indicate that the performance
bottlenecks of contemporary deep learning pipelines can lie in many places other than gradient
computation. In other words, since the initial breakthroughs in hardware-accelerated deep learning
[14, 28, 37], GPUs (and TPUs, FPGAs, etc.) have become too fast for upstream data loaders and
preprocessors to keep up with.
Choi et al. [13] propose data echoing, a simple and versatile way to improve training performance in
this regime. Each stage of the data pipeline runs asynchronously, oblivious to whether its input has
been refreshed upstream. In particular, the optimization algorithm may choose to take additional
gradient steps before a minibatch is refreshed, rather than spend idle time waiting for more data. The
authors present a large-scale proof-of-concept empirical study, and find that data echoing a�ords a
3.25⇥ speedup in a network-bound ImageNet setting.
Some natural curiosities arise from this practice: When might this overfit? How carefully should one
adjust the step size of an echoed gradient? Does acceleration work? A theoretical understanding of
convergence guarantees for these data-echoed optimization algorithms is missing.

⇤Work performed while at Google Brain.
†Work performed while at Google AI Princeton and Princeton University.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.
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Figure 1: Schematic of data echoing, inspired by Choi et al. [13]. If the upstream data pipeline is
 = 4 times slower than SGD, then SGD can potentially take that many steps on the same batch
before the next one arrives.

) = 1 ) general
 = 1 SGD
 small Compute-bound ERM Data echoing (Thm. 7)
 large Data-bound ERM Approx-Prox [43]
 !1 Statistical ERM Minibatch-Prox [43]

Table 1: Regimes of echoing factor  and number of batches ) which our analyses interpolates.

In this paper, we settle the issues of convergence and generalization for echoed gradient methods in
convex optimization. We show that these methods can match the optimization performance of their
non-stochastic counterparts, while achieving optimal statistical rates. As state-of-the-art batch sizes
continue to grow, along with the distributed systems that enable them, we hope that this will provide a
first theoretical grounding towards understanding the algorithmic and statistical challenges in these
hardware-motivated optimization settings.
1.1 Technical contributions
Our model of data echoing is parameterized by the batch size ⌫, the number of fresh i.i.d. batches ) ,
and the echoing factor  , which is the number of gradient steps an algorithm can take on the (convex)
loss on each batch. This reflects the hardware-determined setting where the data loader is at least  
times slower than the optimizer.
Convergence in all data echoing regimes. We first show that echoed SGD, with the correctly tuned
step size, achieves a factor- speedup on the curvature term of the standard convergence rate, while
keeping the optimal statistical term. Next, we develop an echoed method that is oblivious to the
echoing factor  , getting the same rates for echoed SGD with an appropriately chosen proximal
regularizer. Finally, we show that Nesterov’s accelerated gradient descent, when echoed, achieves the
optimal rates on quadratic losses. As a side contribution, we fix a small error in a technical lemma in
[11], used in establishing the stability of AGD on quadratics. For general convex losses, we arrive at
the same open question as these authors.
Full interpolation between known regimes. To set up notation, suppose that we go over ) batches
of data, and perform  echoed gradient steps for each batch. In the special case of ) = 1 fresh batches,
the problem becomes empirical risk minimization with a limited computational budget of  gradient
steps. When  is small, the error is dominated by a curvature term, while for large enough  this
falls below the statistical term.
Motivated by the communication-limited setting, Wang et al. [43] focus on the case where ) is general
and  !1, analyzing the convergence of exact optimization of the prox-regularized minibatch loss.
They develop a mild “approx-prox” guarantee when  is large enough to enable an exact+perturbation
analysis. Our analysis generalizes and strengthens these results, handling all values of  ; Table 1
summarizes this discussion. When ⌫! 1, the statistical problem disappears, and we recover the
classical setting of full gradient descent with  ) oracle calls [8, 35].
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Algorithm Standard Data-echoed

SGD $

✓
Ø⇡2

)
+ Ω⇡p

⌫)

◆

(classical; see Lan [29])

$

✓
Ø⇡2

 )
+ Ω⇡p

⌫)

◆

(Theorem 7)

Minibatch-Prox $

✓
4� /∑ + Ω⇡p

⌫)

◆

(Wang et al. [43];  large)

$

✓
Ø⇡2

 )
+ Ω⇡p

⌫)

◆

(Theorem 10)

Stochastic AGD $

✓
Ø⇡2

)2 + Ω⇡p
⌫)

◆

(Lan [29])

$

✓
Ø⇡2

 2)2 + Ω⇡p
⌫)

◆

(Theorem 13; quadratics)

Table 2: Single-step and data-echoed convergence rates of stochastic optimization algorithms studied
in this paper. Notice that the optimization terms depend analogously on the total number of steps  ) ,
and the statistical terms have optimal dependence on the total number of i.i.d. samples ⌫) .

Stability-based analysis. We provide a modular proof framework for data echoing convergence
bounds, based on uniform stability [7] and a potential-based notion of regret, which isolates the “bias”
(curvature) and “variance” (generalization) components of the problem. This recipe (Theorem 4) can
be used to sharpen bounds in more restricted settings, or analyze future data-echoed algorithms.
1.2 Motivation and context
It is well-known in the practice of GPU training that model parameter updates are not necessarily the
performance bottleneck; this is why SSD storage is critical for pipelines on the scale of ImageNet
[17]. For quantitative studies of I/O performance in deep learning, see [12, 45]. Many empirical
advances have stemmed from innovations in data augmentation [15, 22, 41]. Unlike neural network
training and inference, these data transformations can be highly sequential and/or heterogeneous, and
must be done on CPU. Unlocking GPU parallelism for CPU-bound computations is often a significant
engineering e�ort [16, 20, 27, 32].
Extremely large batch sizes have become the norm in training state-of-the-art models [4, 9, 18, 40, 46].
An overwhelming theme has been that constant factors matter; for example, memory-bound optimizers
[2, 10, 39] care about factors of 2-3. When selecting hyperparameters in large-batch training setups,
it is common to balance the curvature- and noise-dominated terms [26, 34, 38, 42]. This underscores
the need to better understand the fine-grained dependences on ⌫, ) , and  , especially the resources at
stake are on the scale of GPU-years.
The idea of repeated steps on a batch/workers has also been investigated in the context of federated
learning [25], where a related concept is referred to as local SGD or federated averaging. There are
two key distinctions: federated learning considers multiple copies of local SGD running on di�erent
workers, which synchronize intermittently through averaging; under the most simplified assumptions,
each individual gradient step within a worker is taken on a fresh batch. While the improvements
obtained in this recent and concurrent line of work (see [44] and references therein) bear resemblance
to our bounds, we do not see a direct reduction in either direction. Indeed, due to the distinctions
mentioned, getting similar improvements to the curvature term in federated learning is not possible
beyond quadratics, as shown by [44]. Obtaining optimal rates for convex functions in the federated
learning setting remains an interesting open problem.
1.3 The bias-variance problem in data echoing
As mentioned earlier, data echoing presents a natural tradeo� between the optimization gains from
repeating gradient steps vs. the potential loss of generalization due to overfitting to stale batches.
To understand this in detail, let us revisit the standard convergence guarantee for SGD on smooth
functions:

E[� (Fout)] � � (F⇤)  $

✓
1
)
+ 1p

⌫)

◆
.

We interpret the first term as a bias (curvature) term, which diminishes at a faster rate due to
smoothness. The second term is the variance (statistical) term, which arises due to the stochasticity
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in the data, and thus naturally scales as the inverse square root of the batch size. Viewing ⌫ as fixed,
the variance term is intrinsic to the data; therefore, we cannot expect data-echoing (or any algorithm)
to give us improvements on that term for free. In fact, it is possible to make this term degrade, by
overfitting on a batch. On the other hand, we can expect the bias term, which is governed by progress
on the curvature of the underlying population loss, to decrease as we are given more echoing steps  .
In light of this, the best analogous convergence rate one should hope to achieve in the data-echoing
setting is

$

✓
1
 )

+ 1p
⌫)

◆
.

Our results establish exactly this rate for the data-echoed version of gradient descent. The data-echoed
version of accelerated gradient descent is also shown to possess similar gains but with a faster rate of
 2)2. The challenge is to prevent overfitting; obtaining such rates requires careful control (depending
on  ) of step sizes. Later, we alleviate this need via data-echoed proximal GD, whose parameters are
independent of  .
1.4 Overview of techniques
All of our theorems follow the same analysis structure. In particular, we formalize a notion of
potential-bounded regret (Definition 3), which connects an algorithm’s function-value progress on
a minibatch to a decrement on a certain potential function with respect to an arbitrary point. This
potential function depends on the algorithm in question, but the key property is that it telescopes
when summed over batches; this provides a fast rate on the bias term with respect to ) .
The second piece of the analysis connects function-value decrease on a batch to the population
objective via the notion of uniform stability (Definition 1). Note that the potential decrease scales
inversely with  , whereas the stability constant increases with  (unless a proximal regularizer is
added). The key to maintaining the optimal statistical rate is to balance these terms via the choice of
an appropriate step size. This type of algorithmic stability analysis has appeared various times in the
literature [7, 11, 21]; we show here that it a�ords a way to analyze echoed gradient methods.

2 Preliminaries
2.1 Problem definition
Given a convex set W ✓ R= and a domain • with a distribution D, we consider the following
stochastic convex optimization problem:

minimize
F 2W

� (F) def= E
ª⇠D

[ 5 (F, ª)] . (1)

Here 5 : R= ⇥ • ! R is such that for any ª, 5 (·, ª) is convex, di�erentiable, Ω-Lipschitz, and
Ø-smooth; i.e., for all F,F0 2W,

5 (F) � 5 (F0)  hr 5 (F0),F � F0i + Ø

2
kF � F0k2.

When the minimizer exists, we define F⇤ = arg minF 2W � (F). However, our results pertaining to
optimality gaps � (F) � � (F⇤) hold for arbitrary F⇤, encompassing the case when this minimizer
does not exist. We further assume that we have access to an initial point F0 with a bounded distance
⇡ from the comparator; i.e., kF0 � F⇤k  ⇡ .

Minibatch optimization. We will work in the stochastic minibatch oracle model: at each time step C,
we receive a new batch (of size ⌫) examples ªªª(C) = {ª(C ,8) }⌫8=1 sampled i.i.d. from the distribution D.
For any batch of examples ªªª = {ª(8) }, we define the empirical objective on the batch as

5̄ªªª (F)
def=

1
|ªªª|

⌫X

8=1
5 (F, ª(8) ).

Throughout this paper, we will use boldface ªªª to denote a batch of ⌫ examples, and unbolded ª to
represent a single example in •.
Optimization algorithms. We formalize a generic notion of optimization algorithms. Since these
algorithms are called repeatedly by the data-echoing procedure, we will augment the output space of
optimization algorithms with a notion of state, which it internally maintains and passes to the next
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run of the same algorithm. Formally, an optimization algorithm is an iterative procedure which takes
four arguments: an initial point Finit 2W, an initial state Binit, the current batch ªªª which determines
the current objective 5̄ªªª, and the number of steps : . The algorithm outputs a point Fout 2W and an
output state Bout. In short, an algorithm A implements

(Fout, Bout)  A(Finit, Binit,ªªª, :).
We will suppress the notation of one or more of the arguments to A when they will be clear from the
context, and write 5 (A(·)) as a shorthand for 5 (Fout), ignoring the auxiliary state Bout. Note that
Fout and Bout are random variables, determined by the stochastic minibatch ªªª.
2.2 Algorithmic stability
Definition 1 (Uniform stability). A deterministic3 algorithm A is considered to be ≤-uniformly stable
with respect to loss function 5 : W ⇥ •! R if, for two batches of data ªªª,ªªª0 di�ering in exactly one
example, we have that

sup
ª2•

| 5 (A(ªªª), ª) � 5 (A(ªªª0), ª) |  ≤.

The following is a well-known result connecting stability to generalization [7]. Here, we state a
version taken from [21]:
Theorem 2. If an algorithm A is ≤-uniformly stable, then it holds that���� E

ªªª⇠D⌫

⇥
5̄ªªª (A(ªªª)) � � (A(ªªª))

⇤ ����  ≤.

3 The data echoing meta-algorithm
Given an minibatch optimization algorithm A, its data-echoed extension is defined by Algorithm 1.

Algorithm 1 Data echoing meta-algorithm
1: Input: Optimizer A; initializer Finit := F0; initial state Binit := B0; number of inner steps  
2: for C = 0, . . . ,) � 1 do
3: Receive a batch of examples ªªª(C) = {ª(C ,8) }⌫8=1.
4: Execute A on ªªª(C) starting at FC for  steps: (FC+1, BC+1)  A(FC , BC ,ªªª(C) , ).
5: Output: Average iterate Fout := 1

)

P) �1
C=0 FC

3.1 Data-echoed algorithms
Using the framework of Algorithm 1, we introduce the data-echoed versions of three ubiquitous
optimization algorithms. In [13], several types of data echoing are defined; we focus on what the
authors call batch echoing.
Data-echoed gradient descent. We first formalize gradient descent in our optimization framework.
The gradient descent procedure only contains the fixed learning rate as the state:

Binit = Bout := {¥}.
The iterations defining the inner algorithm A are straightforward:

F0 = Finit, {F 9+1 = F 9 � ¥r 5̄ªªª (F 9 )} �1
9=0 , Fout = F .

When Algorithm 1 is instantiated with this choice of A, we call the overall procedure data-echoed
gradient descent.
Data-echoed proximal gradient descent. The state of the proximally-regularized gradient descent
procedure contains three variables: the fixed learning rate ¥, the prox parameter ∞, and Fpivot, the
center of the prox term:

Binit := {¥, ∞,Fpivot}.
We now define the proximal function

5̄prox (F) = 5̄ªªª (F) +
∞

2
kF � Fpivotk2.

3A similar definition exists for randomized algorithms [7]. In this work, we focus on deterministic algorithms.
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The iterations proceed in same way as gradient descent, but on 5̄prox:

F0 = Finit, {F 9+1 = F 9 � ¥r 5̄prox (F 9 )} �1
9=0 , Fout = F .

The output returned is Bout = {¥, ∞, 1
 

P �1
9=0 F 9 }. This particular choice of returning the average

iterate as the next Fpivot simplifies our analysis. With this choice of A, this overall procedure will be
called data-echoed proximal gradient descent.
Data-echoed accelerated gradient descent. The state space for accelerated gradient consists of a
step size ¥, an initial momentum vector 3, and a momentum scale factor ∏; thus Binit = {¥, 3,∏}.
Define the following scalar sequences with ∏0 = ∏:

∏2
9+1 � ∏ 9+1 = ∏2

9 , ∞ 9+1 =
∏ 9 � 1
∏ 9+1

.

The updates now follow the progression as in Nesterov’s acceleration [36]:

F0 = Finit, 30 = 3, F 9+1 = (F 9 + 3 9 ) � ¥r 5̄ªªª (F 9 + 3 9 ), 3 9+1 = ∞ 9+1 (F 9+1 � F 9 ).
Finally, the outputs are given by Bout = {¥, 3 ,∏ },Fout = F .
With this choice of A, we refer to the overall procedure as data-echoed accelerated gradient descent.

4 Convergence analyses of echoed methods
We will analyze the data-echoing algorithms by separating their optimization properties from their
stability properties. For the latter, we use the standard notion of uniform stability, as defined earlier.
For the optimization part, we use a notion of potential-bounded regret, which we define next.
Definition 3 (Potential-bounded regret). We say that an algorithm A has potential-bounded regret
with potential function +A if given a Ø smooth convex function 5 on a domain W and a starting point
Finit, A produces a point Fout such that for all F⇤ 2W, it holds that

5 (Fout) � 5 (F⇤)  +A(Finit, Binit,F
⇤) �+A(Fout, Bout,F

⇤).

This inequality is a fundamental lemma in the standard analysis of mirror descent (see [6], or
Section B.2 from [1]), but we extend it to nested stateful algorithms instead of a single step. For the
echoed algorithms we analyze in this work, squared Euclidean norms will be suitable potentials.
We state and prove our main generic theorem below:
Theorem 4. Let A be an ≤-uniformly stable algorithm. Furthermore, suppose A has the potential-
bounded regret property with respect to +A. Then, for any F⇤ 2W, Algorithm 1 with inner algorithm
A satisfies

E[� (Fout)] � � (F⇤) 
+A(F0, B0,F⇤) � E[+A(F) , B) ,F⇤)]

)
+ ≤.

Proof. From the potential-bounded regret property of the algorithm A, we get that

5̄ªªª(C ) (FC+1) � 5̄ªªª(C ) (F⇤)  +A(FC , BC ,F⇤) �+A(FC+1, BC+1,F
⇤).

Let EC [·] denote the expectation conditioned on all randomness in the minibatches up to (and
including) time C. We now get from the uniform stability of A that

E[� (FC+1)] = E
C�1

E
ªªª(C )

[� (FC+1)]  E
C�1


E
ªªª(C )

[ 5̄ªªª(C ) (FC+1)] + ≤
�
.

Thus we have

E[� (FC+1)] � � (F⇤)  E
C�1

E
ªªª(C )

[ 5̄ªªª(C ) (FC+1) � 5̄ªªª(C ) (F⇤)] + ≤

 E
C�1

E
ªªª(C )

[+A(FC , BC ,F⇤) �+A(FC+1, BC+1,F
⇤)] + ≤

 E[+A(FC , BC ,F⇤)] � E[+A(FC+1, BC+1,F
⇤)] + ≤.
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Summing the above over time and using the convexity of � gives us that

E[� (Fout)] � � (F⇤) 
) �1X

C=0

E[� (FC+1)] � � (F⇤) + ≤
)

 +A(F0, B0,F⇤) � E[+A(F) , B) ,F⇤)]
)

+ ≤. ⌅

In the rest of the section, we present various applications of our main data echoing theorem. In
each case, we will consider a standard algorithm, derive its stability and potential bounded regret
properties, then use Theorem 4 to derive the convergence rate for its echoed version. All regret proofs
can be found in Appendix A, and stability proofs in Appendix B; the corresponding convergence rates
for the echoed algorithms are proven in Appendix C.
4.1 Echoed gradient descent
We begin by establishing the following properties of gradient descent. In the rest of the theorem and
lemma statements in this section F⇤ is an arbitrary point in W.
Lemma 5 (Potential-bounded regret for GD). Let 5 be a Ø-smooth convex function. Then  steps of
gradient descent on 5 , with a step size ¥  1/Ø, satisfies the potential-bounded regret property with
+ (F, B,F⇤) := 1

2 kF � F⇤k2:

5 (Fout) � 5 (F⇤) 
1
¥ 

✓ kFinit � F⇤k2
2

� kFout � F⇤k2
2

◆
.

Lemma 6 (Stability of GD). For a Ø-smooth function 5 , and any 0  ¥  1/Ø, gradient descent
on 5 , run with step size ¥ for  steps, is ≤-uniformly stable with ≤ = 2¥ Ω2/⌫.

Combining Lemmas 5 and 6, we conclude the following convergence bound for data-echoed GD:
Theorem 7 (Data-echoed GD). ) outer steps of data-echoed gradient descent, with a step size of

¥ = min
⇢

1
Ø ,

Ω
 ⇡

q
⌫
)

�
and  internal steps, produces a point F>DC satisfying

E[� (Fout)] � � (F⇤) 
Ø⇡2

2 )
+ 2Ω⇡p

⌫)
.

4.2 Echoed proximal gradient descent
For proximal GD, we derive the following bounds on potential-bounded regret and stability:
Lemma 8. Let 5 be a Ø-smooth convex function. Consider the potential function

+ (F, {¥, ∞,Fpivot},F⇤) =
kF � F⇤k2

2¥ 
+
∞kF � Fpivotk2

2
.

Then  -step proximal gradient descent, with step-size ¥  1/(Ø + ∞) has regret bounded by
5 (Fout) � 5 (F⇤)  + (Fout, Bout,F

⇤) �+ (Finit, Binit,F
⇤).

Lemma 9 (Stability of prox-GD). For aØ-smooth function 5 , any ∏ � 0 and any 0  ¥  1/(Ø+∏),
 steps of proximal gradient descent are ≤-uniformly stable with ≤ = 2Ω2

⌫∞

�
1 � (1 � ¥∞) 

�
.

The proofs of both lemmas are included in the the supplementary material. Combining Lemmas 8
and 9, we get the following guarantee on the performance of data-echoed prox-GD (proof included in
the supplementary material):
Theorem 10 (Data-echoed prox-GD). ) outer steps of echoed gradient descent, with a prox parameter
of ∞ = Ω

⇡

q
)
⌫ , step size ¥ = 1

Ø+∞ , and  internal steps, produces a point Fout satisfying

E[� (Fout)] � � (F⇤) 
r

1 + 1
 

· 2ΩkFinit � F⇤kp
⌫)

+ ØkFinit � F⇤k2
2 )

.

Note that using this algorithm, the correct choice of step size ¥ no longer depends on the echoing
factor  . In fact, even if  varies across the execution of the proximal algorithm, a straightforward
extension of our analysis shows that proximal gradient descent can achieve

P
C  C instead of the

 ) factor in the denominator of the bias term. This resilience to indeterminate echoing factors is
especially appealing for the motivating setting of asynchronous pipelines.
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4.3 Echoed accelerated gradient descent
For the case of Nesterov’s accelerated gradient descent, we consider a slightly modified version of our
data-echoing meta-procedure. This arises from the fact that even the stochastic setting of accelerated
gradient descent, algorithms output the final iterate and not the average iterate. The resulting slightly
modified procedure is outlined in Algorithm 2.

Algorithm 2 Data-echoing meta-algorithm (final iterate)
1: Input: Optimizer A; initializer Finit := F0; initial state Binit := B0; number of inner steps  .
2: for C = 0, . . . ,) � 1 do
3: Receive a batch of examples ªªª(C) = {ª(C ,8) }⌫8=1.
4: Execute A on ªªª(C) starting at FC for  steps: FC+1, BC+1  A(FC , BC ,ªªª(C) , C ).
5: Output: Final iterate Fout := F)

We also add a slight extension to our potential-based regret abstraction:
Lemma 11 (Potential-bounded regret for AGD). Let 5 be a Ø-smooth convex function. Running
accelerated gradient descent for  steps, with a step size ¥  1/Ø, gives the regret bound

(∏2
out � ∏out) ( 5 (Fout) � 5 (F)) � (∏2

init � ∏init) ( 5 (Finit) � 5 (F))

 1
2¥

(kFinit + ∏init3init � Fk2 � kFout + ∏out3out � Fk2).

Further, to bound the stability, we note the following lemma which was essentially proved in [11].
Since we believe there is a small typo in the main argument in the original presentation of the proof,
we provide an alternate derivation in the supplementary material.
Lemma 12 (Stability of AGD). Suppose that 5 is a Ø-smooth convex quadratic function of F for any
ª. Then, for any 0  ¥  1/Ø and initial state Binit,  steps of accelerated gradient descent are
≤-uniformly stable with ≤ = $ (¥Ω2 2/⌫).

Combining Lemmas 11 and 12 we obtain the following guarantee for data-echoed AGD:
Theorem 13. Suppose 5 is a convex quadratic in F, for all ª. Then, ) outer steps of echoed AGD,
with echoing factor  and step size ¥ = £(min{ 1

Ø ,
Ω

 2⇡
p
⌫/) 3/2

}), produces a point F>DC satisfying

E[� (Fout)] � � (F⇤) = $
✓
ØkF0 � F⇤k2

 2)2 + ΩkF0 � F⇤kp
⌫)

◆
.

5 Experiments
We demonstrate numerical experiments on convex machine learning benchmarks. This acts as a
validation of our theoretical findings, as well as a way to examine “beyond worst-case” phenomena
not captured by our minimax convergence guarantees. This can be seen as a combination of the
experiments of Figures 4-6 in [13], where we have exchanged the state-of-the-art setting for a more
robust one, allowing for a closer dissection of the bias-variance decomposition.
Methodology. We consider two logistic regression problems as a benchmark, the scaled CoverType
dataset from the UCI repository [19], and MNIST [30]. We record the number of iterations (including
as well as excluding the data-echoing iterations) needed for SGD to reach within 1% of the optimum
training loss, as we increase the echoing factor  , and thus decrease the rate of fresh independent
samples usable by SGD. For each choice of (⌫, ), we tune a constant learning rate by grid search, to
minimize this time. All details can be found in the supplementary material.
Results and discussion. Figures 2 and 3 show our findings. As batch size ⌫ increases, there is a
phase transition from a variance-dominated regime (the $ (Ω⇡/

p
⌫)) term in our analysis is larger)

to a bias-dominated regime (the $ (Ø⇡/ )) term is larger). In the former regime, data-echoed SGD
saturates on the stale data, and the optimal learning rate scales inversely with  , as predicted by
the theory. In the latter regime, echoing attains a nearly embarrassingly-parallel speedup, and the
optimal learning rate is close to constant. These experiments provide an end-to-end example of how
the bias-variance decomposition can help to understand and diagnose the benefits and limitations of
data-echoed algorithms.
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Figure 2: Convergence times as a function of echoing factor  , for logistic regression on the
CoverType dataset. Learning rates (yellow) are tuned for each (⌫, ) to minimize convergence times.
Convergence times are presented in number of SGD steps  ) (blue), as well as number of independent
samples consumed ⌫) (red). Note that the red curves reflect wall-clock time for data-echoing when
the data loader is  times slower than the optimizer. As batch size ⌫ increases, we move from the
noise-dominated regime (red curve plateaus) to the curvature-dominated regime (blue curve plateaus).

Figure 3: Convergence times, as in Figure 2, for logistic regression on the MNIST dataset. Note that
the phase transition from noise-dominated to curvature-dominated regimes happens in a batch size
range commonly used in deep learning benchmarks with this dataset.

A note on deep neural nets. Our theoretical setting was originally motivated by hardware constraints
most frequently encountered in the massively parallel training of deep neural networks. Beyond the
convex setting, we note that the experimental design problem become significantly more challenging.
Some potential confounds include the learning rate choice a�ecting the generalization gap [23], and
counterintuitive interactions between learning rate and batch normalization [3, 31]. In [13], the
authors study the end-to-end performance gains of data echoing. Indeed, those experiments need
many tweaks (like example-wise echoing, data re-augmentation, and individually tuned momentum
and learning rate schedules) to obtain their most impressive speedups.

6 Conclusion
We have established first theoretical analysis in the nascent field of optimization algorithms for
asynchronous data pipelines, where we have found that gradient descent and well-known variants can
be adapted to resist overfitting to stale data. An immediate open problem is to develop a corresponding
theory for local convergence and saddle point avoidance in the non-convex setting. This work provides
further motivation to show the $ (¥Ω2 2/⌫)-uniform stability of AGD for smooth convex functions,
which was conjectured in [11] with di�erent motives. More broadly, we hope that the design and
analysis of algorithms in optimization for machine learning can derive fruitful inspiration from nascent
hardware considerations, like those that motivated this work.
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Broader Impact
This work is theoretical in nature, and is concerned with the very general framework of stochastic
optimization. As such, there are no foreseen ethical or societal consequences for the research presented
herein. We hope that by providing theoretical groundwork and algorithmic techniques for e�cient
large-scale optimization in settings informed by modern developments in optimization, works like this
one will contribute to alleviating the steep resource and energy costs of large-scale machine learning.
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