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Abstract

Knowledge graph (KG) embedding is well-known in learning representations of
KGs. Many models have been proposed to learn the interactions between enti-
ties and relations of the triplets. However, long-term information among multiple
triplets is also important to KG. In this work, based on the relational paths, which
are composed of a sequence of triplets, we define the Interstellar as a recurrent
neural architecture search problem for the short-term and long-term information
along the paths. First, we analyze the difficulty of using a unified model to work
as the Interstellar. Then, we propose to search for recurrent architecture as the
Interstellar for different KG tasks. A case study on synthetic data illustrates the
importance of the defined search problem. Experiments on real datasets demon-
strate the effectiveness of the searched models and the efficiency of the proposed
hybrid-search algorithm. 1

1 Introduction

Knowledge Graph (KG) [3, 43, 52] is a special kind of graph with many relational facts. It has in-
spired many knowledge-driven applications, such as question answering [30, 37], medical diagnosis
[60], and recommendation [28]. An example of the KG is in Figure 1(a). Each relational fact in
KG is represented as a triplet in the form of (subject entity, relation, object entity), abbreviated as
(s, r, o). To learn from the KGs and benefit the downstream tasks, embedding based methods, which
learn low-dimensional vector representations of the entities and relations, have recently developed
as a promising direction to serve this purpose [7, 18, 45, 52].

Many efforts have been made on modeling the plausibility of triplets (s, r, o)s through learning em-
beddings. Representative works are triplet-based models, such as TransE [7], ComplEx [49], ConvE
[13], RotatE [44], AutoSF [61], which define different embedding spaces and learn on single triplet
(s, r, o). Even though these models perform well in capturing short-term semantic information in-
side the triplets in KG, they still cannot capture the information among multiple triplets.

In order to better capture the complex information in KGs, the relational path is introduced as
a promising format to learn composition of relations [19, 27, 38] and long-term dependency of
triplets [26, 11, 18, 51]. As in Figure 1(b), a relational path is defined as a set of L triplets
(s1, r1, o1), (s2, r2, o2), . . . , (sL, rL, oL), which are connected head-to-tail in sequence, i.e. oi =
si+1, 8i = 1 . . . L � 1. The paths not only preserve every single triplet but also can capture the
dependency among a sequence of triplets. Based on the relational paths, the triplet-based models
can be compatible by working on each triplet (si, ri, oi) separately. TransE-Comp [19] and PTransE
[27] learn the composition relations on the relational paths. To capture the long-term information

1Code is available at https://github.com/AutoML-4Paradigm/Interstellar, and corre-
spondence is to Q. Yao.
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(b) Examples of relational paths.
Figure 1: Short-term information is represented by a single triplet. Long-term information passes
across multiple triplets. The two kinds of information in KGs can be preserved in the relational path.

in KGs, Chains [11] and RSN [18] design customized RNN to leverage all the entities and relations
along path. However, the RNN models still overlook the semantics inside each triplet [18]. Another
type of models leverage Graph Convolution Network (GCN) [24] to extract structural information in
KGs, e.g. R-GCN, GCN-Align [53], CompGCN [50]. However, GCN-based methods do not scale
well since the entire KG needs to be processed and it has large sample complexity [15].

In this paper, we observe that the relational path is an important and effective data structure that
can preserve both short-term and long-term information in KG. Since the semantic patterns and the
graph structures in KGs are diverse [52], how to leverage the short-term and long-term information
for a specific KG task is non-trivial. Inspired by the success of neural architecture search (NAS)
[14], we propose to search recurrent architectures as the Interstellar to learn from the relational
path. The contributions of our work are summarized as follows:

1. We analyze the difficulty and importance of using the relational path to learn the short-term and
long-term information in KGs. Based on the analysis, we define the Interstellar as a recurrent
network to process the information along the relational path.

2. We formulate the above problem as a NAS problem and propose a domain-specific search space.
Different from searching RNN cells, the recurrent network in our space is specifically designed
for KG tasks and covers many human-designed embedding models.

3. We identify the problems of adopting stand-alone and one-shot search algorithms for our search
space. This motivates us to design a hybrid-search algorithm to search efficiently.

4. We use a case study on the synthetic data set to show the reasonableness of our search space.
Empirical experiments on entity alignment and link prediction tasks demonstrate the effective-
ness of the searched models and the efficiency of the search algorithm.

Notations. We denote vectors by lowercase boldface, and matrix by uppercase boldface. A KG
G = (E ,R,S) is defined by the set of entities E , relations R and triplets S . A triplet (s, r, o) 2 S
represents a relation r that links from the subject entity s to the object entity o. The embeddings in
this paper are denoted as boldface letters of indexes, e.g. s, r,o are embeddings of s, r, o. “�" is the
element-wise multiply and “⌦" is the Hermitian product [49] in complex space.

2 Related Works

2.1 Representation Learning in Knowledge Graph (KG)

Given a single triplet (s, r, o), TransE [7] models the relation r as a translation vector from subject
entity s to object entity o, i.e., the embeddings satisfy s + r ⇡ o. The following works DistMult
[55], ComplEx [49], ConvE [13], RotatE [44], etc., interpret the interactions among embeddings s, r
and o in different ways. All of them learn embeddings based on single triplet.

In KGs, a relational path is a sequence of triplets. PTransE [27] and TransE-Comp [19] propose to
learn the composition of relations (r1, r2, . . . , rn). In order to combine more pieces of information
in KG, Chains [11] and RSN [18] are proposed to jointly learn the entities and relations along the
relational path. With different connections and combinators, these models process short-term and
long-term information in different ways.
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Table 1: The recurrent function of existing KG embedding models. We represent the triplet/path-
based models by Definition 1. N (·) denotes the neighbors of an entity. W 2 Rd⇥d’s are different
weight matrices. � is a non-linear activation function. “cell” means a RNN cell [12], like GRU [9]
LSTM [46] etc. For mini-batch complexity, m is the batch size, d is the embedding dimension.

type model unit function complexity

triplet-based TransE [7] vt = st + rt,ht = 0 O(md)
ComplEx [49] vt = st ⌦ rt, ,ht = 0 O(md)

GCN-based R-GCN [40] st = �(st�1 +
P

s02N (s) W
(r)
t s0t�1) O(|E||R|d)

GCN-Align [53] st = �(st�1 +
P

s02N (s) Wts
0
t�1) O(|E|d)

path-based

add vt = ht,ht = ht�1 + rt O(mLd)
PTransE [27] multiply vt = ht,ht = ht�1 � rt O(mLd)

RNN vt = ht,ht=cell(rt,ht�1) O(mLd
2)

Chains [11] vt = ht,ht=cell(st, rt,ht�1) O(mLd
2)

RSN [18] vt=W1st+W2ht,ht=cell(rt, cell(st,ht�1)) O(mLd
2)

Interstellar a searched recurrent network O(mLd
2)

Graph convolutional network (GCN) [24] have recently been developed as a promising method to
learn from graph data. As a special instance of graph, GCN has also been introduced in KG learning,
e.g., R-GCN [40], GCN-Align [53], VR-GCN [58] and CompGCN [50]. However, these models are
hard to scale well since the whole KG should be loaded. for each training iteration. Besides, GCN
has been theoretically proved to have worse generalization guarantee than RNN in sequence learning
tasks (Section 5.2 in [15]). Table 1 summarizes above works and compares them with the proposed
Interstellar, which is a NAS method customized to path-based KG representation learning.

2.2 Neural Architecture Search (NAS)

Searching for better neural networks by NAS techniques have broken through the bottleneck in
manual architecture designing [14, 20, 41, 63, 56]. To guarantee effectiveness and efficiency, the
first thing we should care about is the search space. It defines what architectures can be represented
in principle, like CNN or RNN. In general, the search space should be powerful but also tractable.
The space of CNN has been developed from searching the macro architecture [63], to micro cells
[29] and further to the larger and sophisticated cells [47]. Many promising architectures have been
searched to outperform human-designed CNNs in literature [1, 54]. However, designing the search
space for recurrent neural network attracts little attention. The searched architectures mainly focus
on cells rather than connections among cells [36, 63].

To search efficiently, evaluation method, which provides feedback signals, and search algorithm,
which guides the optimization direction, should be simultaneously considered. There are two im-
portant approaches for NAS. 1) Stand-alone methods, i.e. separately training and evaluating each
model from scratch, are the most guaranteed way to compare different architectures, whereas very
slow. 2) One-shot search methods, e.g., DARTS [29], ASNG [1] and NASP [57], have recently
become the most popular approach that can efficiently find good architectures. Different candidates
are approximately evaluated in a supernet with parameter-sharing (PS). However, PS is not always
reliable, especially in complex search spaces like the macro space of CNNs and RNNs [5, 36, 41].

3 The Proposed Method

As in Section 2.1, the relational path is informative in representing knowledge in KGs. Since the path
is a sequence of triplets with varied length, it is intuitive to use Recurrent Neural Network (RNN),
which is known to have a universal approximation ability [39], to model the path as language models
[46]. While RNN can capture the long-term information along steps [32, 9], it will overlook domain-
specific properties like the semantics inside each triplet without a customized architecture [18].
Besides, what kind of information should we leverage varies from tasks [52]. Finally, as proved in
[15], RNN has better generalization guarantee than GCN. Thus, to design a proper KG model, we
define the path modeling as a NAS problem for RNN here.

3.1 Designing a Recurrent Search Space

To start with, we firstly define a general recurrent function (Interstellar) on the relational path.

3



Definition 1 (Interstellar). An Interstellar processes the embeddings of s1, r1 to sL, rL recurrently.
In each recurrent step t, the Interstellar combines embeddings of st, rt and the preceding informa-
tion ht�1 to get an output vt. The Interstellar is formulated as a recurrent function

[vt,ht] = f(st, rt,ht�1), 8t = 1 . . . L, (1)

where ht is the recurrent hidden state and h0 = s1. The output vt is to predict object entity ot.

In each step t, we focus on one triplet (st, rt, ot). To design the search space A, we need to figure
out what are important properties in (1). Since st and rt are indexed from different embedding sets,
we introduce two operators to make a difference, i.e. Os for st and Or for rt as in Figure 2. Another
operator Ov is used to model the output vt in (1). Then, the hidden state ht is defined to propagate
the information across triplets. Taking Chains [11] as an example, Os is an adding combinator for
ht�1 and st, Or is an RNN cell to combine Os and rt, and Ov directly outputs Or as vt.
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Figure 2: Search space A of f for (1).

Table 2: The split search space of f in Figure 2
into macro-level ↵1 and micro-level ↵2.
macro-level connections ht�1, Os,0, st

↵1 2 A1 combinators +, �, ⌦, gated

micro-level activation identity, tanh, sigmoid

↵2 2 A2 weight matrix {Wi}6i=1, I

To control the information flow, we search the connections from input vectors to the outputs, i.e. the
dashed lines in Figure 2. Then, the combinators, which combine two vectors into one, are important
since they determine how embedding are transformed, e.g. “+” in TransE [7] and “�” in DistMult
[55]. As in the search space of RNN [63], we introduce activation functions tanh and sigmoid to
give non-linear squashing. Each link is either a trainable weight matrix W or an identity matrix I to
adjust the vectors. Detailed information is listed in Table 2.

Let the training and validation set be Gtra and Gval, M be the measurement on Gval and L be the
loss on Gtra. To meet different requirements on f , we propose to search the architecture ↵ of f as a
special RNN. The network here is not a general RNN but one specific to the KG embedding tasks.
The problem is defined to find an architecture ↵ such that validation performance is maximized, i.e.,

↵
⇤ = argmax↵2A M (f(F ⇤;↵),Gval) , s.t. F

⇤ = argminF L (f(F ;↵),Gtra) , (2)

which is a bi-level optimization problem and is non-trivial to solve. First, the computation cost to get
F

⇤ is generally high. Second, searching for ↵2A is a discrete optimization problem [29] and the
space is large (in Appendix A.1). Thus, how to efficiently search the architectures is a big challenge.

Compared with standard RNNs, which recurrently model each input vectors, the Interstellar models
the relational path with triplets as basic unit. In this way, we can determine how to model short-term
information inside each triplet and what long-term information should be passed along the triplets.
This makes our search space distinctive for the KG embedding problems.

3.2 Proposed Search Algorithm

In Section 3.1, we have introduced the search space A, which contains considerable different archi-
tectures. Therefore, how to search efficiently in A is an important problem. Designing appropriate
optimization algorithm for the discrete architecture parameters is a big challenge.

3.2.1 Problems with Existing Algorithms

As introduced in Section 2.2, we can either choose the stand-alone approach or one-shot approach to
search the network architecture. In order to search efficiently, search algorithms should be designed
for specific scenarios [63, 29, 1]. When the search space is complex, e.g. the macro space of CNNs
and the tree-structured RNN cells [63, 36], stand-alone approach is preferred since it can provide
accurate evaluation feedback while PS scheme is not reliable [5, 41]. However, the computation
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cost of evaluating an architecture under the stand-alone approach is high, preventing us to efficiently
search in large spaces.

One-shot search algorithms are widely used in searching micro spaces, e.g. cell structures in CNNs
and simplified DAGs in RNN cells [1, 36, 29]. Searching architectures on a supernet with PS in
the simplified space is relatively possible. However, since the search space in our problem is more
complex and the embedding status influences the evaluation, PS is not reliable (see Appendix B.2).
Therefore, one-shot algorithms is not appropriate in our problem.

3.2.2 Hybrid-search Algorithm

Even though the two types of algorithms have their limitations, is it possible to take advantage from
both of them? Back to the development from stand-alone search in NASNet [63] to one-shot search
in ENAS [36], the search space is simplified from a macro space to micro cells. We are motivated
to split the space A into a macro part A1 and a micro part A2 in Table 2. ↵1 2 A1 controls
the connections and combinators, influencing information flow a lot; and ↵2 2 A2 fine-tunes the
architecture through activations and weight matrix. Besides, we empirically observe that PS for ↵2

is reliable (in Appendix B.2). Then we propose a hybrid-search method that can be both fast and
accurate in Algorithm 1. Specifically, ↵1 and ↵2 are sampled from a controller c — a distribution
[1, 54] or a neural network [63]. The evaluation feedback of ↵1 and ↵2 are obtained through
the stand-along manner and one-shot manner respectively. After the searching procedure, the best
architecture is sampled and we fine-tune the hyper-parameters to achieve the better performance.

Algorithm 1 Proposed search recurrent architecture as the Interstellar algorithm.
Require: search space A ⌘ A1 [A2 in Figure 2, controller c for sampling ↵ = [↵2,↵1].
1: repeat
2: sample the micro-level architecture ↵2 2 A2 by c;
3: update the controller c for k1 steps using Algorithm 2 (in stand-alone manner);
4: sample the macro-level architecture ↵1 2 A1 by c;
5: update the controller c for k2 steps using Algorithm 3 (in one-shot manner);
6: until termination
7: Fine-tune the hyper-parameters for the best architecture ↵⇤ = [↵⇤

1,↵
⇤
2] sampled from c.

8: return ↵⇤ and the fine-tuned hyper-parameters.

In the macro-level (Algorithm 2), once we get the architecture ↵, the parameters are obtained by full
model training. This ensures that the evaluation feedback for macro architectures ↵1 is reliable. In
the one-shot stage (Algorithm 3), the main difference is that, the parameters F are not initialized and
different architectures are evaluated on the same set of F , i.e. by PS. This improves the efficiency
of evaluating micro architecture ↵2 without full model training.

Algorithm 2 Macro-level (↵1) update
Require: controller c, ↵2 2 A2, parameters F .
1: sample an individual ↵1 by c to get the architecture

↵ = [↵1,↵2];
2: initialize F and train to obtain F ⇤ until converge

by minimizing L (f(F ,↵),Gtra);
3: evaluate M(f(F ⇤

,↵),Gval) to update c.
4: return the updated controller c.

Algorithm 3 Micro-level (↵2) update
Require: controller c, ↵1 2 A1, parameters F .
1: sample an individual ↵2 by c to get the archi-

tecture ↵ = [↵1,↵2];
2: sample a mini-batch Btra from Gtra and update F

with gradient rFL (f(F ,↵),Btra);
3: sample a mini-batch Bval from Gval and evaluate

M (f(F ,↵),Bval) to update c.
4: return the updated controller c.

The remaining problem is how to model and update the controller, i.e. step 3 in Algorithm 2 and
step 3 in Algorithm 3. The evaluation metrics in KG tasks are usually ranking-based, e.g. Hit@k,
and are non-differentiable. Instead of using the direct gradient, we turn to the derivative-free op-
timization methods [10], such as reinforcement learning (policy gradient in [63] and Q-learning in
[4]), or Bayes optimization [6]. Inspired by the success of policy gradient in searching CNNs and
RNNs [63, 36], we use policy gradient to optimize the controller c.

Following [1, 16, 54], we use stochastic relaxation for the architectures ↵. Specifically, the para-
metric probability distribution ↵ ⇠ p✓(↵) is introduced on the search space ↵ 2 A and then the
distribution parameter ✓ is optimized to maximize the expectation of validation performance

max
✓

J(✓) = max
✓

E↵⇠p✓(↵) [M (f(F ⇤;↵),Gval)] . (3)
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Then, the optimization target is transformed from (2) with the discrete ↵ into (3) with the continuous
✓. In this way, ✓ is updated by ✓t+1 = ✓t+⇢r✓J(✓t), where ⇢ is the step-size, and r✓J(✓) =
E [M(f(F ;↵),Gval)r✓ ln (p✓t(↵))] is the pseudo gradient of ↵. The key observation is that we do
not need to take direct gradient w.r.t. M, which is not available. Instead, we only need to get the
validation performance measured by M.

To further improve the efficiency, we use natural policy gradient (NPG) [34] r̃✓J(✓t) to replace
r✓J(✓t), where r̃✓J(✓t) = [H(✓t)]

�1 r✓J(✓t) is computed by multiplying a Fisher information
matrix H(✓t) [2]. NPG has shown to have better convergence speed [1, 2, 34] (see Appendix A.2).

4 Experiments

4.1 Experiment Setup

Following [17, 18, 19], we sample the relational paths from biased random walks (details in Ap-
pendix A.3). We use two basic tasks in KG, i.e. entity alignment and link prediction. Same as the
literature [7, 18, 52, 62], we use the “filtered” ranking metrics: mean reciprocal ranking (MRR) and
Hit@k(k = 1, 10). Experiments are written in Python with PyTorch framework [35] and run on
a single 2080Ti GPU. Statistics of the data set we use in this paper is in Appendix A.4. Training
details of each task are given in Appendix A.5. Besides, all of the searched models are shown in
Appendix C due to space limitations.

4.2 Understanding the Search Space

Here, we illustrate the designed search space A in Section 3.1 using Countries [8] dataset, which
contains 271 countries and regions, and 2 relations neighbor and locatedin. This dataset contains
three tasks: S1 infers neighbor ^ locatedin ! locatedin or locatedin ^ locatedin ! locatedin;
S2 require to infer the 2 hop relations neighbor^ locatedin ! locatedin; S3 is harder and requires
modeling 3 hop relations neighbor ^ locatedin ^ locatedin ! locatedin.

To understand the dependency on the length of paths for various tasks, we extract four subspaces
from A (in Figure 2) with different connections. Specifically, (P1) represents the single hop embed-
ding models; (P2) processes 2 successive steps; (P3) models long relational paths without interme-
diate entities; and (P4) includes both entities and relations along path. Then we search f in P1-P4
respectively to see how well these subspaces can tackle the tasks S1-S3.
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Figure 3: Four subspaces with different connection components in the recurrent search space.

For each task, we randomly generate 100 models for each subspace and record the model with the
best area under curve of precision recall (AUC-PR) on validation set. This procedure is repeated 5
times to evaluate the testing performance in Table 3. We can see that there is no single subspace
performing well on all tasks. For easy tasks S1
and S2, short-term information is more impor-
tant. Incorporating entities along path like P4
is bad for learning 2 hop relationships. For the
harder task S3, P3 and P4 outperform the oth-
ers since it can model long-term information in
more steps.

Table 3: Performance on Countries dataset.
S1 S2 S3

P1 0.998±0.001 0.997±0.002 0.933±0.031
P2 1.000±0.000 0.999±0.001 0.952±0.023
P3 0.992±0.001 1.000±0.000 0.961±0.016
P4 0.977±0.028 0.984±0.010 0.964±0.015

Interstellar 1.000±0.000 1.000±0.000 0.968± 0.007

Besides, we evaluate the best model searched in the whole space A for S1-S3. As in the last line
of Table 3, the model searched by Interstellar achieves good performance on the hard task S3.
Interstellar prefers different candidates (see Appendix C.2) for S1-S3 over the same search space.
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This verifies our analysis that it is difficult to use a unified model that can adapt to the short-term
and long term information for different KG tasks.

4.3 Comparison with State-of-the-art KG Embedding Methods

Entity Alignment. The entity alignment task aims to align entities in different KGs referring the
same instance. In this task, long-term information is important since we need to propagate the align-
ment across triplets [18, 45, 62]. We use four cross-lingual and cross-database subset from DBpedia
and Wikidata generated by [18], i.e. DBP-WD, DBP-YG, EN-FR, EN-DE. For fair comparison, we
follow the same path sampling scheme and the data set splits in [18].

Table 4: Performance comparison on entity alignment task. H@k is short for Hit@k. The results of
TransD [21], BootEA [45], IPTransE [62], GCN-Align [53] and RSN [18] are copied from [18].

models DBP-WD DBP-YG EN-FR EN-DE
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

triplet
TransE 18.5 42.1 0.27 9.2 24.8 0.15 16.2 39.0 0.24 20.7 44.7 0.29

TransD* 27.7 57.2 0.37 17.3 41.6 0.26 21.1 47.9 0.30 24.4 50.0 0.33
BootEA* 32.3 63.1 0.42 31.3 62.5 0.42 31.3 62.9 0.42 44.2 70.1 0.53

GCN
GCN-Align 17.7 37.8 0.25 19.3 41.5 0.27 15.5 34.5 0.22 25.3 46.4 0.22
VR-GCN 19.4 55.5 0.32 20.9 55.7 0.32 16.0 50.8 0.27 24.4 61.2 0.36
R-GCN 8.6 31.4 0.16 13.3 42.4 0.23 7.3 31.2 0.15 18.4 44.8 0.27

path

PTransE 16.7 40.2 0.25 7.4 14.7 0.10 7.3 19.7 0.12 27.0 51.8 0.35
IPTransE* 23.1 51.7 0.33 22.7 50.0 0.32 25.5 55.7 0.36 31.3 59.2 0.41

Chains 32.2 60.0 0.42 35.3 64.0 0.45 31.4 60.1 0.41 41.3 68.9 0.51
RSN* 38.8 65.7 0.49 40.0 67.5 0.50 34.7 63.1 0.44 48.7 72.0 0.57

Interstellar 40.7 71.2 0.51 40.2 72.0 0.51 35.5 67.9 0.46 50.1 75.6 0.59

Table 4 compares the testing performance of the models searched by Interstellar and human-
designed ones on the Normal version datasets [18] (the Dense version [18] in Appendix B.1). In
general, the path-based models are better than the GCN-based and triplets-based models by mod-
eling long-term dependencies. BootEA [45] and IPTransE [62] win over TransE [7] and PTransE
[27] respectively by iteratively aligning discovered entity pairs. Chains [11] and RSN [18] outper-
form graph-based models and the other path-based models by explicitly processing both entities and
relations along path. In comparison, Interstellar is able to search and balance the short-term and
long-term information adaptively, thus gains the best performance. We plot the learning curve on
DBP-WD of some triplet, graph and path-based models in Figure 4(a) to verify the effectiveness of
the relational paths.

Link Prediction. In this task,
an incomplete KG is given
and the target is to predict the
missing entities in unknown
links [52]. We use three
famous benchmark datasets,
WN18-RR [13] and FB15k-
237 [48], which are more real-
istic than their superset WN18
and FB15k [7], and YAGO3-
10 [31], a much larger dataset.

Table 5: Link prediction results.
models WN18-RR FB15k-237 YAGO3-10

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR
TransE 12.5 44.5 0.18 17.3 37.9 0.24 10.3 27.9 0.16

ComplEx 41.4 49.0 0.44 22.7 49.5 0.31 40.5 62.8 0.48
RotatE* 43.6 54.2 0.47 23.3 50.4 0.32 40.2 63.1 0.48
R-GCN - - - 15.1 41.7 0.24 - - -
PTransE 27.2 46.4 0.34 20.3 45.1 0.29 12.2 32.3 0.19

RSN 38.0 44.8 0.40 19.2 41.8 0.27 16.4 37.3 0.24
Interstellar 43.8 54.6 0.48 23.3 50.8 0.32 42.4 66.4 0.51

We search architectures with dimension 64 to save time and compare the models with dimension
256. Results of R-GCN on WN18-RR and YAGO3-10 are not available due to out-of-memory
issue. As shown in Table 5, PTransE outperforms TransE by modeling compositional relations, but
worse than ComplEx and RotatE since the adding operation is inferior to ⌦ when modeling the
interaction between entities and relations [49]. RSN is worse than ComplEx/RotatE since it pays
more attention to long-term information rather than the inside semantics. Interstellar outperforms
the path-based methods PTransE and RSN by searching architectures that model fewer steps (see
Appendix C.4). And it works comparable with the triplet-based models, i.e. ComplEx and RotatE,
which are specially designed for this task. We show the learning curve of TransE, ComplEx, RSN
and Interstellar on WN18-RR in Figure 4(b).
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4.4 Comparison with Existing NAS Algorithms

In this part, we compare the proposed Hybrid-search algorithm in Interstellar with the other NAS
methods. First, we compare the proposed algorithm with stand-alone NAS methods. Once an archi-
tecture is sampled, the parameters are initialized and trained into converge to give reliable feedback.
Random search (Random), Reinforcement learning (Reinforce) [63] and Bayes optimization (Bayes)
[6] are chosen as the baseline algorithms. As shown in Figure 5 (entity alignment on DBP-WD and
link prediction on WN18-RR), the Hybrid algorithm in Interstellar is more efficient since it takes
advantage of the one-shot approach to search the micro architectures in A2.

(a) Entity alignment. (b) Link prediction.
Figure 4: Single model learning curve.

(a) Entity alignment. (b) Link prediction.
Figure 5: Compare with NAS methods.

Then, we compare with one-shot NAS methods with PS on the entire space. DARTS [29] and ASNG
[1] are chosen as the baseline models. For DARTS, the gradient is obtained from loss on training
set since validation metric is not differentiable. We show the performance of the best architecture
found by the two one-shot algorithms. As shown in the dashed lines, the architectures found by
one-shot approach are much worse than that by the stand-alone approaches. The reason is that PS
is not reliable in our complex recurrent space (more experiments in Appendix B.2). In comparison,
Interstellar is able to search reliably and efficiently by taking advantage of both the stand-alone
approach and the one-shot approach.

4.5 Searching Time Analysis

We show the clock time of Interstellar on entity alignment and link prediction tasks in Table 6. Since
the datasets used in entity alignment task have similar scales (see Appendix A.4), we show them in
the same column. For each task/dataset, we show the computation cost of the macro-level and micro-
level in Interstellar for 50 iterations between step 2-5 in Algorithm 1 (20 for YAGO3-10 dataset);
and the fine-tuning procedure after searching for 50 groups of hyper-parameters, i.e. learning rate,
decay rate, dropout rate, L2 penalty and batch-size (details in Appendix A.5). As shown, the entity
alignment tasks take about 15-25 hours, while link prediction tasks need about one or more days due
to the larger data size. The cost of the search process is at the same scale with that of the fine-tuning
time, which shows the search process is not expensive.

Table 6: Comparison of searching and fine-tuning time (in hours) in Algorithm 1.
procedure entity alignment link prediction

Normal Dense WN18-RR FB15k-237 YAGO3-10

search macro-level (line 2-3) 9.9±1.5 14.9±0.3 11.7±1.9 23.2±3.4 91.6±8.7
micro-level (line 4-5) 4.2±0.2 7.5±0.6 6.3± 0.9 5.6±0.4 10.4±1.3

fine-tune (line 7) 11.6±1.6 16.2±2.1 44.3±2.3 67.6±4.5 > 200

5 Conclusion

In this paper, we propose a new NAS method, Interstellar, to search RNN for learning from the re-
lational paths, which contain short-term and long-term information in KGs. By designing a specific
search space based on the important properties in relational path, Interstellar can adaptively search
promising architectures for different KG tasks. Furthermore, we propose a hybrid-search algorithm
that is more efficient compared with the other the state-of-art NAS algorithms. The experimental re-
sults verifies the effectiveness and efficiency of Interstellar on various KG embedding benchmarks.
In future work, we can combine Interstellar with AutoSF [61] to give further improvement on the
embedding learning problems. Taking advantage of data similarity to improve the search efficiency
on new datasets is another extension direction.
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Broader impact

Most of the attention on KG embedding learning has been focused on the triplet-based models. In
this work, we emphasis the benefits and importance of using relational paths to learn from KGs.
And we propose the path-interstellar as a recurrent neural architecture search problem. This is the
first work applying neural architecture search (NAS) methods on KG tasks.

In order to search efficiently, we propose a novel hybrid-search algorithm. This algorithm addresses
the limitations of stand-alone and one-shot search methods. More importantly, the hybrid-search
algorithm is not specific to the problem here. It is also possible to be applied to the other domains
with more complex search space [63, 47, 42].

One limitation of this work is that, the Interstellar is currently limited on the KG embedding tasks.
Extending to reasoning tasks like DRUM [38] is an interesting direction.
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