A Numerical experiments

This section provides additional numerical results, and comparisons of LT&S and RAGE. We actually
present the results of a slightly different version of LT&S than that considered in the main document
(see details below). This new version exhibits much better performance.

A.1 Experimental set-up

The benchmark example. We consider the example proposed by Soare et al. [[12] and that has
become a standard benchmark to compare best arm identification algorithms in stochastic linear
bandits [[T9L[16} 15 14]. In this example, the action setis A = {ej, ea,...,eq,a’} where {e1,...,eq}
correspond to the standard basis in R%, and a’ = cos(w)e; + sin(w)ey where the angle w = 0.1.
The unkown parameter © = 2e;. For this example, we consider two experiments: (i) we fix
d = 0.01 and vary the dimension d € {2,3,4,5,6,7,8,9,10}. (ii) we fix d = 6 and vary 6 €
{0.5,0,1,0.05,0,01,0.005,0.001}.

The many arms example. We use the same parameters as those reported in the main document.
Namely, the following toy experiment that corresponds to the many arms example in [16]. d = 2 and
A = {(1,0),e737/4 i(7/440:) i ¢ [n — 2]} C C where (¢;) are i.i.d. ~ N(0,0.09). = (1,0).
Experiments are made with the risk 6 = 0.05.

Implementation of LT &S. Our implementation for the following results is almost the same as the
one described in Section 5. The only difference lies in the stopping rule: we use improved constants
when defining the threshold (9). The new constant is u = 0.1 (before it was set to 1), and the
threshold is 3(,t) (before we were using 3(56/(t)?,t)). For the benchmark example, we further
consider the following threshold 3(6,t) = (1 4 u)o?(log(1/8) + 0.5log(t) + dlog((u! + 1)1/2))
for the stopping rule. This threshold is not theoretically proven, but we conjecture that there exists a
threshold of the form ¢; log(t/d) + cod with some absolute constants ¢y, ¢ > 0 such that LT&S is
0-PAC and asymptotically optimal.

All experiments were executed on a stationary desktop computer, featuring an Intel Xeon Silver 4110
CPU, 48GB of RAM. Ubuntu 18.04 was installed on the computer. We set up our experiments using
Python 3.7.7.

A.2 Results

Sample complexity. The results on the sample complexity for the many arms experiment are reported
in Table 2 and those of the benchmark example are reported in Table 5 and 6. For the many arms
experiment, LT&S with and without averaging significantly outperforms RAGE [16] and even the
Oracle [12]. At first, it seems surprising that the Oracle is beaten by LT&S, but this can be explained
as follows. Even if the Oracle is aware, from the beginning, of the optimal sampling rule, its stopping
rule is not efficient and depends on the number of arms K. The threshold 3(4,t) in the stopping
rule of LT&S is independent of K, and indeed, the performance of the algorithm is less sensitive
to the number of arms than that of RAGE or the Oracle. The results also suggest that the LT&S
algorithms with or without averaging perform similarly. For the benchmark example, LT&S is overall
competitive with RAGE and X Y-adaptive and performs better than ALBA. The results of experiment
(1) indicate that the sample complexity of LT&S is affected by the increase of the dimension. On the
other hand, LT&S with the modified threshold 3(4,¢) performs much better than RAGE. The results
of experiment (ii) clearly suggest that the sample complexity of LT&S becomes better as § — 0 and
is comparable to RAGE and X )-Adaptive in the moderate regimes. Again, LT&S with the modified
threshold is outperforming all the other algorithms. As a final note all algorithms including LT&S
with the modified threshold ended with success in all experiments over all simulations.

Run-time. The run-time of LT&S and RAGE are reported in Table 3 for the many arms experiment.
Overall, both algorithms are efficient. We note that RAGE is slightly faster. However we expect that
for extremely large numbers of arms, LT&S would run faster than RAGE (the sample complexity of
LT&S is more resilient to an increase in the number of arms). In LT&S, we have used the exponential
lazy update scheme with 7 = {2* : k € N*}. We believe that by fine-tuning this laziness, we would
be able achieve a better trade-off between computational efficiency and sample complexity.
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Support of Lazy T&S. Finally, we look at the support of the allocation chosen under LT&S. The
expected size of the support of LT&S on a single run is reported in Table 4. Even if the number
of arms K is large (in comparison with the ambient dimension), LT&S only tracks allocations that
are sparse, i.e. using very few arms. We further note that the averaging scheme in the tracking rule
does not really affect the support. This is a nice feature as it could allow for the design of a more
memory-efficient algorithm.

Algorithm LT&S LT&S (No averaging) RAGE Oracle
g Sample Complexity Sample Complexity Sample Complexity = Sample Complexity
Number of arms  Mean (Std) Mean (Std) Mean (Std) Mean (Std)
(K = 1000) 424.5 (29.1) 424.5 (29.1) 1148.45  (49.82) 476.45 40.7)
(K = 2500) 458.15 (28.1) 455.95 (28.3) 1440.75 (149.24) 492.15 (43.9)
(K = 5000) 434.65 (32.51) 433.6 (32.6) 1540.3 (158.9) 515.6 (47.6)
(K = 7500) 448.0 (36.9) 447.45 (36.8) 1598.0 (164.6)  547.65 (45.8)
(K = 10000) 452.85 (31.6) 452.95 (31.6) 1479.4 (52.0) 564.85 (46.9)

Table 2: Sample complexity. Results for the many arms experiment [[16]]

. LT&S LT&S (No averaging) RAGE
Algorithm Run time (s) Run time (s) Rune time (s)
Number of arms  Mean (Std) Mean (Std) Mean (Std)
(K = 1000) 13.62 0.5) 13.99 0.5) 34.0 0.5)
(K = 2500) 90.25 2.9 89.41 3.1 156.42 (1.1)
(K = 5000) 940.97 (40.4) 948.86 (40.3) 429.67 (7.47)
(K = 17500) 1340.83 (61.5) 1349.90 (61.4) 707.09 (9.47)
(K = 10000) 1893.73 (79.9) 1915.03 (80.3) 1575.30 (12.43)

Table 3: Runtime. Results for the many arms experiment [16]

Algorithm LT&S. LT&S (No ave'raging)
Support size Support size
Number of arms Mean (Std) Mean (Std)
(K = 1000) 537  (0.25) 2.04 )
(K = 2500) 5.72  (0.20) 2.03 )
(K = 5000) 541 (0200 2.04 )
(K = 7500) 5.34  (0.20) 2.03 0)
(K = 10000) 526 (0.21) 2.04 )

Table 4: Support size. Results for the many arms experiment [16]]. For the standard deviation, we put
(0) when the value is smaller than 10~2.
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LT&S LT&S (modified threshold) RAGE Oracle

Algorithm Sample Complexity Sample Complexity Sample Complexity = Sample Complexity
dimension Mean (Std) Mean (Std) Mean (Std) Mean (Std)
(d=2) 3538.69 (146.9) 2510.50 (106.4) 818591  (591.7) 353095 (139.8)
(d=3) 5040.34  (187.5) 3107.43 (134.8) 774322 (482.3) 3785.07 (147.3)
(d=14) 6236.26  (209.9) 3346.29 (125.3) 8033.51 (464.0) 3968.72 (163.9)
(d=5) 751191  (254.1) 3641.21 (114.4) 8796.97 (511.9) 3968.27 (148.9)
(d =6) 9194.15 (316.8) 4087.21 (136.2) 873426  (441.0) 4079.17 (162.8)
(d=1) 10321.54 (325.1) 4405.74 (143.5) 9675.00 (537.8) 4107.09 (160.6)
(d=28) 1121520 (418.1) 4983.38 (179.1) 10025.60 (550.9) 421597 (167.5)
(d=9) 12700.16 (436.4) 5078.80 (169.5) 10475.19 (555.5) 427495 (167.9)
(d =10) 14049.75 (463.1) 5602.55 (180.9) 9780.54  (360.0) 4321.84 (167.8)

Table 5: Sample complexity. Results for experiment (i) of the benchmark example

Algorithm LT&S LT&S (modified threshold) RAGE XY Adaptive ALBA Oracle
8 Sample Complexity Sample Complexity Sample Complexity Sample Complexity Sample C lexity Sample C lexity
dimension Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std)
(6 =0.5) 7856.16 (301.7) 3080.56 (119.1) 5840.21 (373.6) 619234 (373.8) 20330.67 (837.4) 301691 (133.1)
(6=0.1) 840831 (308.4) 3538.96 (125.4) 7281.7  (408.5) 7785.23 (380.4) 26535.6  (986.4) 3404.78 (140.2)
(6 =0.05) 8641.79 (322.8) 3699.84 (130.1) 7751.79 (4342) 8167.51 (368.3) 28201.37 (1047.8) 3610.33 (146.1)
(6=0.01) 9194.15 (316.8) 4087.21 (136.1) 873426 (441.0) 925596 (317.4) 32661.52 (984.0) 4079.17 (162.7)
(6 =0.005) 9404.55 (315.0) 4297.23 (131.8) 9810.19 (543.8) 9278.82 (315.8) 35335.0 (1148.5) 421938 (165.3)
(6 =0.001) 9583.05 (313.6) 4744.36 (133.3) 9836.42 (378.0) 9897.96 (268.4) 39303.0 (1288.8) 46447 (172.9)

Table 6: Sample complexity. Results for experiment (ii) of the benchmark example.

A.3 Additional remarks and implementation details

Frank-Wolfe algorithm. Frank-Wolfe algorithm [21]] was used to solve the optimization problem
maxqep Y(fie, w) whenever ¢ € T. The algorithm settings were chosen in a similar way as for
RAGE [16]. The step-size was set to 2/(2 + k) for each iteration k. The algorithm stops when the
relative change in w with respect to the 2-norm is lower than 0.01 or if it reaches a maximum of 1000
iterations. The components of w were thresholded to 0 if they were smaller than 1075 and the w was
rescaled properly so that ) , w, = 1. It is worth mentioning that there are no guarantees on the
convergence of this algorithm in our specific setting. This was highlighted by [19]: there, the authors
provided a counter-example for which the algorithm does not converge; they also proposed a new
heuristic that seems to converge. However, in our experiments, the algorithm always converged.

Dependency on K. LT&S does not use explicitally the number K of arms in its stopping rule. More
precisely the exploration threshold (4, ) is independent of K. However, in the algorithm, we still
need to allocate data structures with a memory size scaling linearly in K (storing w; and computing
maxqep P(fie, w)). We suspect that using a more efficient implementation, we might be able to
circumvent this limitation. For instance, our experiments suggest that the allocations w; are sparse.
Furthermore, our analysis is asymptotic in J, and does not reveal the dependency of low order terms
on K in the sample complexity. We conjecture that such dependency is mild and rather negligible if
the minimum gap is relatively large. We leave this question for future work.
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B Properties of ¢

B.1 Proof of Lemmall]

Let (u,w) € R? x A such that ay, is unique. For the first part of the claim we refer to the proof of [17,
Theorem 3.1.]. Now let us prove the continuity of 1) at (i, w). Consider the set of bad parameters
with respect to p, B(u) C R?

B(p)={X:AeR%and3a € A\{a},} A (a— ary) >0},
and denote

1
s dw) = 5 (p=2)7 (Z wwaT) (1= N).
acA
Let (us, w¢)i>1 be a sequence taking values in R? x A and converging to (p,w). Lete < 1 A

7<ﬁbaff‘_:ﬁ> and let ¢t; > 1 such that for all ¢ > ¢; we have ||(ue, wi) — (u,w)|| < e.
m

MiNge A\ {ay }
Now, by our choice of ¢, and uniqueness of aj;, it holds that B(u;) = B(u). Furthermore, note
that f(u, A\, w) is a polynomial in p, A\, w, thus it is in inparticular continuous in x,w, and there
exists to > 1 such that for all ¢ > 5 and for all A € R?, it holds that | f (s, A, wi) — f(p, A, pe)| <
ef(u, A, ut). Hence, with our choice of €, we have for all t > ¢; V to

) - ) = i 7)\7 - i ,)\7
[, w) = (pae, we)| ‘AénBl&)f(u w) Aglf;&)f(ut wy)

< i A
_6’Ag1]31&)f(u, ;W)

< elip(p, w)l.
This concludes the proof of the continuity of .

Now, we know that w +— t(u,w) is continuous on A, and by compactness of the simplex, the
maximum is attained at some wj, € A. Furthermore, since A spans R?, we may construct an
allocation w such that Zae A Waaa' is a positive definite matrix. In addition, by construction of
B(A), there exists some M > 0 such that for all A € B(u) we have || — A|| > M, which implies
that ¢ (u, @) > M?*Ain (3 ,c.4 Waaa') > 0. On the other for any allocation w € A such that
> aeaWaaa' is rank deficient, we may find a A € B(u) where A — g is in the null space of

> aea Waaa . Therefore, >, 4(w})qaa’ is invertible O

B.2 Proof of Lemmalf2]

The lemma is a direct consequence of the maximum theorem (a.k.a. Berge’s theorem) [22]] and only
requires that ¢ is continuous in (1, w) € R% x A, that A is compact, convex and non-empty, and
that ) is concave in w for each z/ € R? in an open neighberhood of ;. These requirements hold
naturally in our setting: (i) by Lemma we have for all i € R? such that ay, is unique and for any
w € A, 1) is continuous in (p, w); (ii) A is a non-empty, compact and convex set; (iii) for all p € R4,
w +— P (p, w) is concave as it can be expressed as the infimum of linear functions in w. Therefore,
the maximum theorem applies and we obtain the desired results. (]
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C Least Squares Estimator

In this appendix, we present concentration bounds and convergence statements on the least squares
estimator. We may recall that the least squares estimation error fi; — @ can be expressed con-
veniently in the following for i —p = (' asal)"1 (X, asns). To make notations
less cluttered, we prefer to express our derivations in matrix form where we define the covari-

ates matrix 4; = [a1 ... a,g]T and noise vector £, = [ ... nt]T. We may then write
fy — = (Al Ay)~1(A] E;). Furthermore, we will reapeatedly use the following decoposition
e = pll = 1A A) (AL Bl < 1AL Eell a7 a2 1(A] A) 712 (13)

where we have ||z]|4 = VT Az for some semi-definite positive matrix A. The above inequality
follows from Cauchy-Schwarz inequality. We also observe that when A, A; is invertible, we have
(AT Ae) 7121 = Aunin(A] Ag) 2,

C.1 Self-Normalized processes

We first present convenient tools from the theory of self-normalized processes [23]], namely the
deviation bounds established by Abbasi-Yadkouri et al. in [9]].

Proposition 4 (Theorem 1. in [9]). Let (F;):>o be a filtration. Let {n;};>1 be a real-valued
stochastic process such that for all ¢ > 1, 7, is F;_1-measurable and satisfies with some postive o,
the conditional o-sub-gaussian condition: E [exp(zn;)|F;—1] < exp (—x?0?/2) , for all z € R. Let

(at)t>1 be an R¢-valued stochastic process adapted to {F; };>¢. Furthermore, let V be a positive
definite matrix. Then for all § € (0, 1) we have

P (AT Bl iy ) < 20 og (det (AT A+ V)V /6)) 216

The following result is a stronger version of Proposition 4] and in fact is behind its proof.

Proposition 5 (Lemma 9. in [9]]). With the same assumptions as in the above proposition. Let 7 be
any stopping time with respect to the filtration (F);>1. Then, for § > 0, we have

P (|47 Br[{ar a, yyr < 207 log (det (AT A, + V)V /5))>1f

C.2 Proof of Lemmal[3

Lemma 3| shows that the convergence rate of the least squares estimator is dictated by the growth rate
of the smallest eigenvalue of the covariates matrx A Ay. Parts of our proof technique are inspired by
recent developments in learning dynamical systems [24].

Proof. Define the event

1
t—a)\min(AtTAt) > c} .

By assumption, £ holds with probability 1. Note that the ¢, c may be random here. It also holds
on the event & that for all t > to we have 24 A; = A A; + ct® which implies that 2( A, A4; +
ct®)~1 = (A] A;)~1. This means that on the event &, for all ¢ > t,, we have HA;'—EtH?ATA )1 <

2||A:Et||%ASAST+CtQ),1. Then, using the decomposition (I3]) we obtain
V2 AL Bl a7 a, 4oty - V2
)\min (AtTAt) 1z ﬁtu/Q

We will show that || A, E¢|| (a7 4, 4etey-1 = o(t?) as. for all 5 > 0. This will ensure immediately

with the upper bound (T4) that ||, — p|| = o(t~?) a.s. for all 8 € (0,a/2). By Proposition[d] it
holds forall 5 > 0Oand ¢ > 0

1/2
<5ATEt|(ATAt+ct°) 1> — (210g (det ((A Ay + ct®Iy)(ct™1q) ") 2 /(5)) ) < 0.

&= {HC> 0,dty > 0,Vt > to,

e — pll < HA;rEtH(AtTAt+ct‘1)*1' (14

2We mean by A~! the pseudo-inverse of A when the matrix is not invertible.

16



Since A is finite, we may upper bound det (4] A; + ct®1y) (ct*Iy) ') < (L2t~ /c+1)% where
L = max,c 4 ||| and deduce that

1 o (1—a)d , 4 1/2
P (tﬁ||AjEt|(A;At+cta)l > (2log (Ldt : /025)) ) <,

which we may rewrite after substitution as

1 T Ld (1—a)d €2t2/6
P (tﬂ”At EtH(A;rAt-',-ctO)—l > E) < C—%t 2 exp (_ 557 .
Forall e > 0, since ), ; i exp(—iff) < 00, we have

- 1
ZP (tIBHA;rEtH(A:At-‘rCt“)_l > E) < 0.
t=1

Thus, by the first Borell-Cantelli lemma, we have for all ¢ > 0

1 .
¥ ({W'A:Etl(AfAtJrcta)l > 5} z.o.) =0.

Thus, we have proved that 7 [| A Exl[ 4T 4,4 cte)-1 2 Oas. O

C.3 Proof of Lemmad]

The proof of Lemmad]is very similar to that of Lemma([3] but in order to obtain a non-asymptotic
concentration bound, a stronger condition is needed, namely a non-asymptotic lower bound for the
rate of growth of the smallest eigenvalue of the covariates matrix A, A;.

Proof. We have by assumption that there are ¢ > 0 and ¢ty > 0 such that for all ¢ > ¢, the event
€ = {Amin (A] 4;) > ct*}

holds with probability 1. We can now carry the same derivation as in the proof of Lemma [C.2] with
the distinction that c, ty are deterministic and conclude that for all € > 0, and ¢ > ¢, we have

V2 LY 1-aya ce2t28
P( |AL Bl (a7 Ay geroy—1 > €| < =t 2 exp(———— |,

2
\ﬁtﬁ ‘ c2 402

with the choice of 3 = «/2 and using the upper bound (T4)) which can be shown similarly under the
event £, we have for all € > 0, and ¢ > ¢t that

o Qtoz
P (e -l > €) < (V2L exp (—202 ) |
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D Stopping rule

The derivation of our stopping rule is inspired by that of Garivier and Kaufmann [18]] for the MAB
setting and relies on the classical generalized log-likelihood ratio (GLLR) test. The main distinction
is that in the linear bandit setting, sampling an arm may provide additional statistical information
about other arms, therefore one has to consider the full history of observations and sampled arms
when comparing arms in the GLLR. We define our GLLR accordingly.

Furthermore, because of the linear structure, we are able to derive an exploration threshold which
does not depend on the number of arms K, but only on the ambient dimension d. Our choice of
threshold relies on the deviation bound presented in Proposition E] (see Lemma 9 in [9])). But most
importantly, to circumvent a naive union bound over the set of arms A, we analyze the stopping time
by leveraging the GLLR formulation (see Lemma([7) under the event of failure (failure to output the
best arm). The stopping rules derived by Soare et al. [[12] follow directly from the deviation bound
in [9], rather than from the GLLR and consequently, they cannot avoid the dependency on K even
for the oracle stopping rule. Most existing algorithms in the literature are phase-based and rely on
elimination criteria to stop [16, 15} [14]. In these algorithms, the phase transition rules and elimination
criteria depend in a way or another on the number of arms K.

D.1 Proof of Lemmal(7]

Here, we show that the generalized log-likelihood ratio can be expressed in a closed form, one that
resembles the expression of ) used in the lower bound.

Let us first recall that, under the gaussian noise assumption, the density function of the sample path
T1, Q1. .., T, Gy 1S

t
1
f(ri,a1,...,7¢, a) X €xp <—2 Z(rs - MTGS)2> .

s=1

Observe that the maximization problem maxy,,.,, ™ (a—t)>—e} fu(7t, @t, - - -, 71, @1) is, by monotonic-
ity of the exponential, equivalent to

¢
: 1 T, )2
min 3 E (rs —p'as)
s.t. pw'(a— b) > —¢,

which is a convex program. The optimality conditions give us

A >0,
Me+pu"(a—0b) =0,
_5_.UT(G_ b) < 07
t t
(Z asaz> = Zasrs + Aa —b) =0,
s=1 s=1

where )\ is the Lagrange multiplier associated with the inequality constraint of the problem.
Under the assumption that Zi:l asa, is invertible, we introduce the least squares estimator

-1
e = (Zzzl asa;r) (2221 asrs>. Then from optimality conditions, it follows that

fut if ﬂ;r(a - b) R
,U,T = R AT (22:1 agaj)il(a—b) . (15)
fr + (—e — i} (a — b)) O (= aaT) e otherwise.
Similarly the solution to the maximization problem maxy,,.(,,.a—b)<e} fu (re,ae,...,m1,01) 18
fut if [ (a—0b) < e,
* t . T -1, ) 16
H2 it + (—e — i} (a — b)) (Zioiesel) (a-b) otherwise. (16)

(a=b)T (Zi=1 asa;r>71(a—b)
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Hence, the generalized log likelihood ratio can be expressed as

Zuo) = (05— 13)" (Z acal ) e — i — 123)
(i (a—b) +e)?
t -1 ’
2a—b)T <Es:1 as@) (a —b)

= sign(y] (a — b) +¢)

The following corollary is an immediate consequence of Lemma /7| Let us recall that Z, () =
Zapo(t)-

Corollary 1. Let t > 0, and assume that >.°_, a,a] > 0. Then for all 4, € argmax, 4 fi; a, it
holds

Z(t) = in Z,p(t) = in  Zs, (1) 17
0= 225,80 70 = By Focr ) (n

Proof. Under the assumption that 3°_ asa] > 0, by Lemma |7} the sign of Z,,(t) is that of
fif (a — b). Additionally, since G; € argmax, 4 i a, it holds for all b € A\{a,} that i, (a, —
b) > 0. Hence it immediately follows that Z,;(t) > 0 if and only if a € argmax, 4 /i/ a.

Furthermore, if @ is not unique, then we may find b € arg max /i, b such that a; # b, and then by
Lemma obtain Z;, ,(t) = 0. Hence, we conclude that regardless of whether & is unique or not,

Z(t) = minbeA\{ét} Z&t,b(t) .
D.2  Proof of Proposition 2]
Let us consider the events

a€A beA\{a}

s=1

t
Si={rT<o0}= {Elt eN": max min Z,(t) > 8(d,t) and Zasa;r = cId} ,
& = {MT(aZ —a,) > 0}.

Now note that if there exists ¢ € N* such that Zi:l asas = clg and ,uT(aZ — ay) > 0 then
ay # az. Additionally, from Corollary EI, we know that under &1, that for all ¢ > 1, it holds that

Z(t) = minge 4\ {a,} Za, b(t). Therefore, we have

t
EiNé = {Ht eN*: Z(t) > p(4,t) and Zasa;r = ¢l and MT(a; —ay) > 0}

s=1

t
=<3t eN*: in  Za, (t) > B(5,t) and sal =clgand p' (af —ay) >0
{ bei{l\l{n&t} .o(t) > B(6,t) an Za as = clgand i (ay, — ay) }

s=1

s=1

t
C {Elt € N*: Zs, ar (t) > B(6,t) and Zasaz— > clgand MT(a; — Q) > 0} .

Since under the event & N &, and by definition of a;, we have i, (a; — a%) > 0,and wh (a}—az) > 0.
In view of (T3), it follows that

) ar—az) 20} Ju (e ag,.sra1) = fu (re ag, s an),
max fu(re,ae, ..o r,a1) > fulre, ae, ..o, a1).

{w ()T (ar—a},)<0}
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Thus under £; N &, it holds that

MAaX,r: ()T (ar—ak)>0 T (re,agy...,m1,01)
Zayar, (t) = log
MAaxX,r: ()T (a—ak)<0 fu’(Tt7at7--~7T1,a1)
< log (f;lt(rt,at, - ,7“176L1))
fulre,ae, ... r1,a1)

t
1, . .
= 5(/% - M)T (Z aﬂj) (fie — )
s=1
1 N
5”# - Mt”QZi:l asal’
which further implies that

t
1 N
EN& C {375 eN": §||M - Mt”QZ;:lasa: > p(6,t) and Zasal = clg

s=1

and ,uT(aZ — Q) > 0}

t
1
c {at eN": - pel3r q0r = B(6,1) and > a.al = cld} :

s=1

We note that when 3°"_ | asa] > cly, thenforall p > 0, (1+p) XL asal = S0 asal + pely,
which means that (1 + p)(32'_, asa] + pely)™" = (32'_, asa])~'. Thus, we may have

S
t
liie =l = || 3 aum,
s=1

This leads to

2

t
L2040 Y
s=1

2
(Si_, asal) (Sh_y asal +pels) ™t

2

(o, asal +pcla)”

t
1
C * . — >
ElﬂEQ{HtGN 2(1+p)Hs§_1asns 15(5,t)},

and with the choice

B(5,t) = (14 p)olog

)

(det((pcrl S asal + mm)
)

we write

EiNé&E C
: — t
1 2 det((pe) S agal + I,)1/2
HtGN*;—H AsNg >0_210 s—1 s .
{ 2 ; ! (Zioiasal+pela) " & 5

Finally, it follows immediately from Proposition 3] that

]P’(T < oo,uT(a; —dy) > O) =P(& NE) <6
O

Proposition 2] does not yet guarantee that we have a 6-PAC startegy. However, a sufficient condition
for any strategy with the proposed decision rule and stopping rule to be §-PAC, is to simply ensure
that P(7 < oo) = 1. This condition will have to be satisfied by our sampling rule.

Corollary 2 (§-PAC guarantee). For any strategy using the proposed decision rule and stopping rule

and such that P(T < cc), it is guaranteed that P(u " (a, — a;) > 0) < 6.
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E Sampling rule

Our sampling rule as described in Section 3.5 is based on tracking a sequence of allocations that
provably approaches the set of optimal allocations. This set of optimal allocations C*(u) that is not
necessarily a singleton as in the multi-armed bandit setting [20]. This makes the analysis extremely
challenging. However by crucially leveraging the geometric properties of this set and the continuity
properties of ¢ and C*(u) we are able to prove that tracking is possible.

Additionally, we choose arms from the support (set of non zero elements) of the average allocations
up to the current round. This is motivated by the fact that when K is exceedingly large in comparison
with the dimension d, it is possible to represent any matrix A in the convex hull conv({aa ' : a € A})
by an allocation w with support of at most O(d?) such that A = Y aca wgaa . This observation
was made by Soare et el. [12] and follows from Caratheorody’s Theorem. A consequence of this
sampling strategy is reflected in Lemma [6]

One further novel part of the analysis is the introduction of laziness, the idea that the algorithm does
not need to perform a computationally demanding task at every round. In the linear bandit setting this
computationally demanding task is the optimization problem max,,e 1 (fi, w). Existing algorithms
in the literature resort to phase-based schemes such us gap elimination in order to attain efficiency.
However these schemes often fail to fully stitch the statistical information between phases. This can
be seen in the least squares constructions of the algorithms X Y-adaptive [12], ALBA [15], RAGE
[L6] where the samples from previous phases are discarded. Our tracking rule allows for a natural
flow of information between rounds regardless of the laziness of the algorithm. This is shown by
Proposition [T}

We shall now prove Proposition [I] and all the related lemmas. Lemma [5|shows that we have sufficient
exploration. Lemma []is the crucial step in our analysis here. It’s a tracking lemma that formalizes
the idea that we may track a sequence that converges to a set C rather than a point. The proof requires
the convexity of the set C'. In the main analysis of the sampling rule C' is replaced by C*(u).

E.1 Proof of Lemmalf3

The idea of the proof is to show that if at some time ¢y + 1, the condition )‘min(ZZﬂ asal) > f(t)
is violated, then the number of rounds needed to satisfy the condition again cannot exceed d rounds.

First, we note that d = inf{¢t > 1 : )\min(ZZ:l asa]) > f(t)}. Indeed, we have by construction that
forallt < d, )‘min(Zi:1 asa) ) = 0and A\pin (Ej:1 asa;r> = Amin (Zaer aaT) = f(d). Now,

if there exists o > d, such that A (22021 asaz) > f(to) and Amin (220:11 asaz> < f(to+1),

then we may define t; = inf {t > 10 Amin (22:1 asa;r) > f(t)}. Let us observe that for all
to <t <ty, we have

s=1

t to
)\IIlil’l (Z afsa/ST> Z )\min (Z a/sasT> Z f(tO)
s=1
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Note that if ¢t > ty + d + 1, then, by construction, we have
t1 to+d+1
Amin (Z asaj> > Amin ( Z Qs )
s=1
to+1
= mm(Zaa +Zaa )

a€Ag

to+1
mln (Z Asg > + )\mln (Z aa )

a€Ag

to+

= Amin ( asasT> + cAO\/E
s=1
to

> Amin asa;r> + C-AO\/E

s=1

> f(tO) + C.AU\/(E'

However, we have

o> (d+ +2) Vi LI 2 Vi = S ea, V2 St d i)
1(d
+

é ) then it holds that ¢; < tg + d + 1. In other words, we have shown
éJr ) +d+ 1, we have

Amin (Za CLT> >ft— —1)

Therefore, if ty >
that for all ¢t > * (

E.2 Proof of Lemmald

Our proof for the tracking lemma is inspired by that of D-tracking for linear bandits by Garivier
and Kaufmann [18]]. We follow similar steps but there are crucial differences. The main one lies
in the fact that we have a sequence that converges to a set C' rather than to a unique point. The
convexity of C'is a crucial point in our analysis as it allows to show that tracking the average of this
converging sequence will eventually allow our empirical allocation to be sufficiently close to the
set C'. Intuitively, the average is a stable point to track. Furthermore, we also highlight the fact that
the sparsity of the average allocations > _, w(s) /¢ is reflected in the error by which (N, (t))ac
approaches the set C'. This is due to the nature of our sampling rule as shall be proven.

Proof. Forallt > 1 denote
t
1
= 2l
s=1
Since C'is non-empty and compact, we may define
W(t) = arg min doo (W(t), w).
wel

Note that by convexity of C, there exists t, > to such that V¢ > t{,
doo((Na(t)/t)aca, C) < doo((Na(t)/t)aca, w(t)) and doo (w(t), w(t)) < 2.

(
To see that, let us define for all t > 1, v(t) = argmin,, ¢ doo (w, w(t)), and observe that for all
a € A, we have

%Zwa(s) — %Z%(S)

| /\

{jm )= v+ 5 D fwa(s) — (o)l

to t—tp
< — .
S t+ . €
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Thus if ¢ > th = ', then doo (W(t), Lv(t)) < 2¢. Finally since 1 3! v(s) € C (by convexity of
(), it follows that

Vet deo(w(t),w(t)) < ( %Zv >g2g.

We further define for all ¢t > 1, g4, = N, (t) — t,(¢). The main step of the proof is to show that
there exists ¢( > t{, such that for all ¢ > ¢{, for all a € A we have

{assr = al C E(t) UE(t) C {eay < bte),

where

Eu(t) = { — argmin (N, (t) - twaa))} ,

a€supp(wy)

Ex(t) = {/\min (Zasa;r> < f(t) and a:Ao(it)}.
s=1

The first inclusion is immediate by construction. Now let ¢ > ¢y, we have:

(Case 1) If {a;+1 = a} C & (t), then we have

€at = Na(t) — tiba(t)
(t) twa( ) + twa(t) - twa(t)
< Na( ) - twa( ) +te (since do (W(t), W(t)) < €)
< min  Ny(t) — tw,(t) + te (since &1 (t) holds)
a€supp(w(t))
< 2te,

where the last inequality holds because

Yo Nat)—twa(t)=— Y Na(t)<0

a€supp(w(t)) a€A\supp(w(t))
thus & (t) C {eq, < 2te}.

(Case 2) If {ar+1 = a} C E5(t), then it must hold that a € Ay. Let us define for al k£ > 1
k
k) = Z 1{ak:aandAm;n( Flasal )< fk—1)}

Z {(Lk aand)\mm( ; la aT)>f(k 1)}

Note that Ny (k) = Ny 1(k)+Ng 2(k) and that N, 1 (k)—1 < minge a4, No (k) < Ng1(k).
The latter property follows from the forced exploration sampling scheme. Now, since the
event & (t) holds, we observe that

t
T
(Na,l( )_ ]-) < L{IEHI}) Nal m1n (Z aa ) < )\min <Zla3(ls> <

a€Ag
and since f(t) = Amin (ZGE.AU aa’) %, we obtain
Na(t) < Vt/Vd+1.

Next, let k& < ¢ be the largest integer such that N, 2(k) = N, 2(k — 1) + 1. Note that at
such k the event £ (k — 1) must hold by definition of N, o(k — 1), and we have

Noo(t) = Nga(k) = Ngo(k—1)4+1 and ar = argmin N, (k—1)—kw,(k—1).
acsupp(w(k—1))
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Now we write
Eat = Na,t - tUA)a(t)
= Ng,1(t) + Ng2(t) — tabg (1)
< VE/VA+ 1+ Nuot) — tig(t).
If k — 1 < t{, then we have N, 2(k) < t{,, otherwise since & (k — 1) holds, we have
Nap2(t) =14 Nga(k—1) = (k — Dawg(k — 1) + (k — 1)da(k — 1)
<142(k—De+ (k—Dwg(k—1).
Thus
ot < VE/VA+ 1+ max{t), 1+ 2(k — 1)e + (k — )i (k — 1) — t (1)},
and since
(= D)ia(k — 1) — ti0a(t) = (k — Vibalk — 1) — (b — )a(k — 1)
+ (k= Dwa(k — 1) — tg(t)
< (k—1Dwa(k—1)— (k= 1)we(k — 1) 4+ tw,(t) — tg(t)
<2(k—1)e + 2te
< 4te,

it follows that
Eait < \/f/\/& + 1 + max{t(, 1 + 6te}.

We conclude that for t > ¢ = max {é, =5 %0 }, it holds that

€a,t < 9te

and consequently that £ (t) C {e,,+ < 9te}. So we have shown that for all ¢ > ¢{], for all
a € A, it holds that

{a41 = a} C {eq < 9te}.

The remaining part of the proof is very similar to that of Lemma 17 in [18]. It can be immediately
shown that for ¢ > ¢/, one has

€a,t < max(ga,t{;a 9te + 1) < max(t87 9te + 1)

Furthermore, note that for all ¢ > 1 we have supp(w(t)) C supp(w(t + 1)) since for all a € A, we
have w, (t) < (t + 1)w,(t + 1). Therefore

Yo ea= 3 tig (£) > 0.
a€supp(w(t))UAo a€A\supp(@(t))UAo
Thus denoting p; = |supp(w(t))|\Ag, we have
Va € supp(w(t)) U Ao, max(ty,9% + 1) >eqt > —(pr +d — 1) max(t;, 9te + 1),
Va € A\supp(w(t)) U Ay, 02>eqt > —te,
which implies that for all ¢ > t{

max leat] < (pe +d — 1) max(ty, 9te + 1) < (pr + d — 1) max(tg, 10).
a€e ’

This finally implies that for ¢; = 1 max{t{, 10}, we have for all t > t1,

doo(2(t), ) < doo((Na(t)/t)aca, 0(t)) = max |No(t) /¢ —a(t)] = max ‘ E‘;’t ’ < (pr+d—1)e.

More precisely, we have

1 1 tole) 10}'

h©) =mx{ g 5
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E.3 Proof of Proposition ]|

Let € > 0. First, by Lemma[2] there exists £(¢) > 0 such that for all " such that ||p — p'|] < &(g), it
holds that max,,c o+ () doo (W, C* (1)) < €/2.

By Lemma we have a sufficient exploration. That is liminf;_, ., t*1/2)\mm(22:1 asal) > 0.
Thus, by Lemma [+ converges almost surely to y with a rate of order o(tl/ 4). Consequently, there
exists tp > 0 such that for all ¢ > ¢, we have ||u — fi|| < &(e).

The lazy condition (7)) states that there exists a sequence (¢(t));>1 of integers such that £(1) = 1,
£(t) < tand limg o £(t) = 00, and lim; oo inf> 4y doo (w(t), C*(fis)) = 0 a.s. This guarantees
that there exists ¢; > 1, there exists a sequence (h(t));>1 of integers such that for all ¢ > ¢, we have
h(t) > £(t) > t and doo (w(t), C* (fin(r))) < €/2. Now for all t > to V 1, we have

Ao (w(t), C* (1)) < oo (w(£), C* () + _max duc(w,C*(1)) < <.

weC* (fin(t))

We have shown that doo(w(t), C*(1)) 2 0 a.s. Next, we recall that by Lemma ,
—00

C*(u) is non empty, compact and convex. Thus, applying Lemma |§| yields immediately that
doo((Na(t)/t)ae_A, C*(M)) tjo Oa.s.. 0
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F Sample complexity

We will use the following technical lemma which can be found for instance in [[18]].
Lemma 8 (Lemma 18 [[18]]). For any two constants c1, ¢y > 0, and ¢3/c; > 1 we have

1
inf {t € N": ¢1t > log(eat)} < — (1og (cze) + log log (Q)) (18)
C1 C1 C1

F.1 Proof of Theorem 2l

The proof of the almost sure sample complexity result follows naturally from the continuity of 1 (see
Lemmal|L)) and of C* (1) (see Lemmal[2).

We start by defining the event

€ = {doc(Na() /)0, C* (1) =2, Oand v 3w}

Observe that £ holds with probability 1. This follows from Lemma[3} Lemma [5]and Proposition I}
Let ¢ > 0. By continuity of v, there exists an open neighborhood V() of {u} x C*(u) such that for
all (', w') € V(e), it holds that

’(/J(,LL/, ’U}/) Z (1 - 5)1/](,”7 w*)7
where w* is some element in C* (). Now, observe that under the event £, there exists tg > 1 such
that for all ¢ > g it holds that (fi;, (Na(t)/t),c 4) € V(€), thus for all £ > ¢y, it follows that

V(i (Na(t) /1) gen) = (1 = e)ib(p, w™).
Since fi; t*> w and a; is unique, there exists t; > 0 such that for all ¢ > ¢1, a, is unique. Thus, by
—00

Lemmal(l] we may write

*

N T 2
a —a
Z(t) = am7£(ilrfl He (t Kt ) —
“t 2(0/:;4 - a)T (Zs:l asa;r) (aﬂt - a)

By Lemma@ there exists to > 1 such that for all ¢ > t5 we have

t
E asa;r = cly.
s=1

Hence, under the event &, for all ¢ > max{tg, t1,t2},

= tw(ﬂt, (Na(t)/t)aeA)'

¢
Z(t) > t(1 —e)y(u,w™) and Zasa;— = cly.

s=1

This implies that

¢
75 = inf {t eN*:Z(t)>B(6,t) and Y a.a] = cld}
s=1
< max{to, 1,2} Vinf{t € N* : (1 — e)tep(u, w*) > B(5,t)}

Cgtv

< max{tg,t1,t2} V inf {t e N*: (1 —e)tp(p, w*) > c1log <>}

o
1 1
S to, t1,ta, —— T, 1 =
Nmax{o, Lite 7 0g<5>},

where ¢1, c2, 7y denote the positive constants independent of § and ¢ that appear in the definition of
B(t,8) (see @)). We used Lemma [8]in the last inequality for & sufficiently small. This shows that
P(75 < 00) = 1 and in particular that

P limsule,ST; =1
6—0 IOg(g)
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F.2 Proof of Theorem[3

Compared to the almost sure result, the expected sample complexity guarantee is more difficult to
prove. We break our analysis into three steps. In the first step, we construct a sequence of events
over which the stopping time that defines our stopping rule is well-behaved. This requires precise
manipulations of the continuity properties of ¢ and C* (1) in combination with the tracking Lemma
[l In the second step, we show indeed that on these events, the stopping time is upper bounded up to
a constant by the optimal sample complexity. In the third step, we show that the probabilities of the
events under which the sample complexity is not well-behaved are negligible. This is guaranteed
thanks to the lazy condition (I0) and the sufficient exploration (ensured by Lemma [5] under our
sampling rule). We finally conclude by giving the upper bound on the expected sample complexity.

Proof. Lete > 0.

Step 1. By continuity of ¢ (see Lemma , there exists & (¢) > 0 such that for all ' € R? and
w €A

{Ilu’ull < &(e)

doo (W', C* (1)) < &1(e)

for any w* € argmin,, e () doo(w', w) (we have w* € C*(u)). Furthermore, by the continuity

properties of the correspondance C* (see Lemma , there exists &2 () > 0 such that for all z/ € R?

= [(p,w*) = (i, w')| < ep(p,w*) =e(Tr)~1 (19)

, 1"k &i(e)
o — || < Ea(e) = wwrenéaf%md(’O(w O () < AK—1)

Let () = min(&;(g),&2(€)). In the following, we construct T, and for each T' > Tj an event Er,
under which for all ¢ > T, it holds

1= fiell < €(e) = doo((Na(t)/t)aca, C* (1)) < &i(e)
Let T' > 1, and define the following events

M el < &)}

Sir =
t=0(T)
_ ~ : * (A~ 51(5)
Ea = (1] |, inf, doo (w(t), C* (1)) < K-
t=T -

<N {33 > 0(t) : doo(w(t), C*(1s)) < &(5)}

t=T
Note that, under the event & 7 N &2 7, we have for all ¢ > T, there exists s > £(t) such that

doo (W(t), C7(1)) < doo(w(t), O (1)) + | max | doo (w', C* (1))
&i(e) SIONENSIO)
< 2(K — 1) +2(K—1) K1

Define 1 = &1 (¢)/(K — 1). By Lemmal6] there exists t1(¢1) > T such that
&i(e
(N0 )oep O (1)) < 1+~ D) < 610)
and more precisely ¢1(e1) = max {1/¢3,1/(¢3d), T /e?,10/e1 } (see the proof of Lemma@) where .

Thus for T’ > max{10?, 1 /d, 1}, we have t;(¢1) = [T/¢}]|. Hence, defining for all T' > ;°, the
event

Er =&y 13 N &y [e317
we have shown that for all T' > T = max(10e3,e1/d, €3, 1/e}), the following holds
V2T, p—fu] <&e) = doo((Na(t)/t)aca, C" (1)) < &1(e). (20)

Finally, combining the implication (20) with the fact that (T9) holds under £ we conclude that for
all T > Tg, under £ we have

P(fe, (Na(t)/t)aca) = (1 =)™ (p). @21
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Step 2: LetT > Ty V T1 where T7 is defined as

t
T, = inf {t € N* : Anin (Z asa;r> - cld} ,
s=1

where we recall that c is the constant chosen in the stopping rule and is independent of §. We note
that by Lemmam for all ¢ > T we have

Z(t) = ty(fur, (Na(t)/t)aca)-
Thus under the event E7, the inequality @) holds, and for all ¢ > T we have
Z(t) > t(l — 5)(T;)_1.

Under the event £, we have

t
T = inf {t e N*: Z(t) > 8(4,t) and Zasaz - cld}

s=1
<inf{t>T:Z() > 351t}
<TVinf {t e N*: t(1 —e)(T})~" > B(6,)}
<TVinf {teN":t(1 - s)(T;)*l > ¢y log(cat?/0)}

where ¢y, co, 7y are the positive constants that appear in the definition of the threshold (4, t) and do
not depend on ¢ nor § and where we have in particular ¢; < o2. Applying Lemma yields

inf {t e N*:¢(1— &:)(T;)f1 > log(c2t7/6)} <13(9),

where T3 (6) = 12T} log(1/6) + o(log(1/4)). This means for 7' > max{Tp, 71, T5 () }, we have
shown that
Er C{r <T} (22)

Define T35 (9) = max{Ty, T1, T3 () }. We may then write for all T' > T5(0)
Ts <15 NT5(0) + 75 VT3(0) < T3(6) + 75 VI5(6).
Taking the expectation of the above inequality, and using the set inclusion (22), we obtain that
E[r] <T5(0) + E[r VT3 (9)]

Now we observe that

E[rvT;(6)] =Y P(rVvT3(5) >T)
T=0

- i P(r v T} (5) > T)

T=T;(8)+1

> P(ER)

T=ToVT

IA

‘We have thus shown that

C1 * - c
Ty log(1/0) + o(log(1/0)) + Ty V T + T:TZVT P(E5). (23)

Elr] <

28



Step 3: We now show that > ;.\, P(€F) < oo and that it can be upper bounded by a
constant independent of §. To ensure this, we shall see that there is a minimal rate by which the
sequence (£(t));>oo must grow. Let T' > Tj VV T3, we have by the union bound

First, using a union bound and the lazy condition (I0), we observe that there exists h (4 (5;( (i)1)> >0
and o > 0 such that

P& ) < D, P (siﬁ(ft) oo ((0), 07 (1)) > 4(2(6)1)>
t=[e3T] N

(i 2n) X

t=[e3T]

51(5) > 1
" (4<K - 1>> /WU pradl

51(6) 1
=h (4<K— 1)) A+ a)([&T] - e’

This clearly shows that 37" 7, 7, P(EY (ap) < 00

IN

IN

Second, we observe, using a union bound, Lemmaﬁ] and LemmaE], that there exists strictly positive
constants cg, ¢4 that are independent of € and 7", and such that

o0

P(E3 rear) < Z P ([|pe — fue|l > &(e))
t=¢([3T7)

o0

S 3t exp(—eat(e) V).

t=(([3T7)

For t large enough, the function ¢ — t%/* exp(—c4&(¢)?v/t) becomes decreasing. Additionally, we
have by assumption that (¢(¢));>1 is a non decreasing and that lim,_,, ¢(t) = oo, thus we may find

T, > Ty V T such that for all T > T, the function ¢ — t%/* exp(—c4&(e)?V/t) is decreasing on
[0(3T) — 1, 00). Hence, for T > Ty, we have

P(E3 reary) < c3 /oo, t4/% exp(—cs€(e)*V) dt.
{([e3T])-1
Furthermore, for some 75 > 75 large enough, we may bound the integral for all 7" > T3 as follows
U([€3T7) — )Y/
E(e)*exp (045(5)2 0([e3T) — 1) .

We spare the details of this derivation as the constants are irrelevant in our analysis. Essentially,
the integral can be expressed through the upper incomplete Gamma function which can be upper
bounded using some classical inequalities [25),26]. We then obtain that for 7" > T3,

(1) — 1)+
&) exp (cat(e) VAT —1)

Now, the lazy condition (T0) ensures that lim;_,, £(¢)/t” > 0 for some v € (0,1) and £(t) < t.
Thus there exists Ty > T3 such that for all T' > T},

(([edr]) — )2 L T
§(e)t exp (645(6)2 U([3T7) - 1) ~ exp (c5(e)T/?)

o0
/ 1/ exp(—eat(2)VE) dt
(<371

P(EQC [e3T ) 5

]P(SQC, ]’s?T"\ ) /S
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This shows that

oo Ty >
> P(E3 reary) = > P(E2reyry) + > P& regr)

T=TyVT, T=ToVT} T=T4+1
Ty 0 d/2+1
T
S Y PES e+ Y, ————
~ 3T 2
T=TovT, 1 5 €XP (c5(e)T/?)
< 0

where the last inequality follows from the fact that we can upper bound the infinite sum by a Gamma
function, which is convergent as long as v > 0.

Finally, we have thus shown that

o0

> P(EF) < . (24)

T=ToVTi+1
We note that this infinite sum depends on (¢(t));>1 and ¢ only.
Last step: Finally, we have shown that for all € > 0

C1

——T}:10g(1/8) + o(log(1/8)) + To v T + > P(Es)
T=ToVT,

Elr] < ¢

where 37 1\ P(EF) < oo and is independent of 6. Hence,

. E[7s] c1
1 < T*.
Va0 log(1/6) = 1—e

2

Letting ¢ tend to 0 and recalling that ¢; < 0, we conclude that

~

. E[Té] 2
1 —— 2 < g7,
0T log(1/6) ~ 7 T
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G Best-arm identification on the unit sphere

This section is devoted to the proofs of the results related to the best-arm identification problem where
the set of arms is the unit sphere S?~1. This set is strictly convex so that for any ;1 € R?\{0}, the

optimal action aj, is unique. We also note that the sphere enjoys the nice following property: for all

p € R4 and forall a € S91,

oyl
pT (@ —a) = Bz — al? (s)

We recall that our study is restricted to models with a parameter 1 in M (gg).

We derive our sample complexity lower bound, presented in Theorem [} in the next subsection. We
then analyze the performance of our stopping rule, and prove Proposition [3] We conclude with the
analysis of the sample complexity of our proposed algorithm, and establish Theorem 5]

G.1 Lower bound - Proof of Theorem 4]

As in the case of a finite set of arms, we can derive a lower bound using a change-of-measure
argument. The lower bound is obtained as the value of a constrained minimization problem. We get
one constraint for each confusing parameter. As it turns out, analyzing the resulting constraints is
challenging.

The proof consists of 4 steps. In the first step, we write the constraints generated by all confusing
parameters. The set of confusing parameters is denoted by B, (). In the second and third steps, we
make successive reductions of the set B. (1), and hence reduce the number of constraints (yielding
looser lower bounds of the sample complexity). At the end of third step, we have restricted our
attention to the set of confusing parameters R.(u), and have provided useful properties of these
parameters. The last step of the proof exploits these properties to derive the lower bound.

Lete € (0,¢0/5),6 € (0,1), and u € M(eo).

Step 1: Change-of-measure argument. We start by a direct consequence of the change-of-
measure argument (see Lemma 19 [20])). For all A € R<,

g AR S0l 0102 g WEE 0.0,

This result was shown by Soare in [17] and we omit its proof here. Now for all u € M(gp), define
the set O, (u) of e-optimal arms associated with the linear bandit problem parameterized by y as

Oc(u)={acA: pn"(a} —a) <e},
and the set B, (1) of confusing or bad parameters for y as
Be(p) = {NeR%: O.(n) NO:(N) =0} .

Note that B.(p) is not empty since € < €p. Now observe that for any (&, 0)-PAC algorithm and for
all A € B.(u), we have

]P)AL(&T € OE(.“)C) <¢ and PA(dT € Oe(,u)c) > P/\(&T € Os(/\)) >1-4.

Since {a, € O-(u)¢)} € F-, by the monotonicity properties of « — kl(z, 1 — x), we may write, for
d€(0,1/2],

sup kI (P, (£),Px (€)) > klI(6,1 —9).

EEF,

If 6 € [1/2,0) we show similarly, using the event {a, € O (1)}, that

sup kI (P, (€),Px (£)) > KI(1 — 6,8) = kI(5,1 — §).
EEF,

Hence, for any (e, 6)-PAC strategy, for all A € B.(u), we have

1 T
§(H—)\) E

> asa;r] (b —\) >kI(8,1—6). (26)
s=1
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Step 2: Reductions of B.(x). Finding the most confusing parameters in B, (1) is challenging. We
restrict our search to a simpler set of confusing parameters at the cost of obtaining a looser bound.
First reduction. Define the set

2

D.(1) & { X € M(ep) :,uT(a; —ay) > <1 + |:l/<:|> €p. 27

We prove that D (1) C B (). First, let us note that D, (1) is non-empty. Indeed, since 1 € M(eg),
the arm —aj, & O.(p) since uT(a; —(—ay,)) > 2e0 > 2e. Consider A = —3u = —3||ul|aj,. The
optimal arm for X is —a? (because A = S*~1), which gives (1 + /[[u[l/[[A][)%e = (16¢/9) < 2e.
Thus, A € D.(u).

Now, let A € D, (1) and let us show that O_(u) N O (A\) = (). Let a € O(u), then

>\ .
s ) = (50—l (using (23))
A
= @ s = agll = lla;, = all| (reverse triangular inequality)
XA [T
= — ~lla¥ —a _ 2 — g
il [V 72 lei = aill =y 75l =l
Al ‘ N = ‘2 .
= [V e —ay) =y u(af —a using
Tl |V 05— 68) = /T = ) (using (3))
2
Al AW |
>l A ) Ve vE (since A € D (1) and a € O, (1))
prnd 6’7

thus a € O.(\). We have shown that
Dc(p) € Be(p). (28)

Second reduction. Next, we further reduce the set to H(u) N D (i), where H(u) is defined below.
Denote by G(S9~1, a%) the tangent space of 5%~ at a;. Define

(a7

H(p) 2 {/\ € M(zo) : 2” c g(sd—l,a;)} . (29)

Note that if A\ € H(u), then ||A|| > ||u||. This is because on the sphere, it also happens that
aj, = p/|pll € H(p) andis the closest point to the origin from H (4. Let us prove that (1) "D (1)
1S not empty.

First, let a € Oy (1), thus g9 < uTa; < pula+4e, thus p'a > g9 — 4e > g9 — 5e > 0, which
further implies that yu" a¥, — 4¢ > " af, — 5¢ > 0. Hence, by continuity of the map b — 1" b on the
sphere, we may find arms b € S9! such that ,uTa; —de>p'b> pTa;‘L — 5e > 0. Thus, for each
of these arms, there exists a parameter A, € H(p1) such that b = Ay /|| A\p|| = arg max,cga—1 A, b. In

addition, we have that, for such arms, 5 > " (a}, — b) > 4e, and since ||Ay|| > ||u||, we obtain
2
be > ! (af —b) > de > <1+ M) e (30)
b

This shows that A\, belongs to D, (p). Hence H () N D () is not empty.

Step 3: Final reduction, and properties. The final reduction stems from the following observation.
From (23), all elements b € 5%, such that 8¢/||u|| < |la}, — b||> < 10e/|| || have their associated
Ay € H(p) N D.(u). We denote by R () the corresponding set of parameters:

Re(p) £ {N e H(p) ND(n) : 4e < p' (a), — a}) < 5e}. 31)
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Note that the span of the set {\ — . : A € R.(u)} is a d — 1-dimensional space.

Next, we establish the following useful property. There are constants c1, co > 0 such that for any
A € Re(p),
crllplle < A = pl* < eallplle.

To this aim, we first establish, using elementary geometry, the following identity for all A € H(u)
e = APl = Aa))? + lulPAa3)? = [lel*llaj, — aXlf? (32)

where A(a) = 1" (a}, — a) denotes the gap between a and the best arm. To show the identity (32),

let us note that g, A and 0 (the center of the sphere S?~!) define a 2-dimensional plane, and that
ay, and a} belong to this plane. Without loss of generality, we may assume that ||u|| = 1 (we can

always renormalize). Since p, A € H(u), and by construction (u/|u]|) T (11— \) = aZT(ﬂ —A)=0.
Thales’ Theorem (the intercept Theorem) guarantees
Ala) o= Al
L Q- Al

where p is the orthogonal projection of a3 on # (). Next, by Pythagoras’ Theorem, we have
liw = pl* + Ala})? = [lay, — a]I*.
By construction, we have ||z — || = ||z — p| + [lp — Al|, and using the above two equations gives

e = AP = Ay a@l))? + Apalal)? = g, — all?,
which gives (32)) by just renormalizing. Now, If follows immediately from (23)) and (32) that

la; — a5]I?
e = Al* = Nl llay, — a3 : :
(2 = llaj, — ax[?)?

Note that on the sphere for A € H (1), we have 0 < ||ay, — aj|| < 1. Hence, we obtain
;HMHQHCLZ —axlP® <l = XI* < 4llpl®lla;, — a3,
or equivalently, using (23), that
Bl (s aj, — aX) < = AlI* < 8llull{p, @, — a3).
Finally let A € R.(u) € H(p) N D (). Since (GI)) holds, it follows that for such A, we have
12]|ulle < A = pll* < 40]|le. (33)

Step 4:  For A € R.(p), combining satisfying (33)) and (26), we obtain
>l [t
s=1
f (u—XNTE sal | (u—X
SR PR Dot [T
1 inf ICTE Zas z| A — pl?
202 zeS(u

20] e Za . ]

kl(6,1 —9) < inf (u—\)'E

1
202 xeB.(u)

| /\

IN

IN

5 inf acTIE
g a:ES

where

qnaf A=m
S0 2 { i+ A< R
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Hence, we have shown that

inf z'E
zeS(p)

2
g
aal | 2> =2 1(5,1 - 6). (34)
Z ] o] )

To complete the derivation, we analyze the right hand side of the lower bound (34). First, define the
set of sampling rules as follows

X2 {(at)¢>1: Vt > 1, a;is Fi_i-measurable}, (35)

and the expected matrix of exploration under a sampling rule (a;);>1 € X as

Gr((ar)e>1) lzas 1

We will show that

sup inf "G, ((ar)i>1)z < Efr] (36)

(a¢)e>1€X TES (1) d—1"

For a given symmetric matrix A € R4*¢, we denote the eigenvalues of A in decreasing order as
A (A), Ao (A), -, Aa(A).

Let (at);>1 € X. We start by noting that G- ((at):>1) is positive semi-definite matrix and that
dim(span(S)) = d — 1, therefore, using the Courant-Fisher min-max theorem, we have

Ai—1 (Gr((at)e>1)) > inf fTGr((at)tzl)x > 0.
z€S(p)

Additionally, we observe that for all ¢ > 1, |la;|| = 1 since a; is taking values in S¢~!. Thus, we

obtain
ZM ((ar)e>1)) =t (Gr((ar)e=1) least = El[7],

where we used the linearity of the trace and of the expectatlon. We conclude from the above that
the value of max-min optimization problem sup(,,,), ., cx inf,c 5, 2 "G, ((at)t>1)x can be upper
bounded by the value of the following optimization problem

max  Ag_1
A1y Ad

d
. t. Z)\k:ET
k=1

AM2>A2>--2> X320

We easily see that the value of this optimization problem is E[7]/(d — 1) (with Ay = 0 and \; =
E[r]/(d — 1) for all ¢ # d). Hence (36) holds.
From (34) and (36), we conclude that
2d—-1
Efr)> 241
40|plle

kl(0,1 — 9).
G.2 Stopping rule — Proof of Proposition

Let us consider the events

£1 = {7 < o0} = {Elt € N* : Z(t) > B(5,1) and Aumin (Z T) = max { m}} ’
s=1 !
& ={u" (@ —a,) >e},

= e\ pltd) S
- ﬂ lfre — pl|? < ( — 1> ! Or A\min Zasas >c
=1 €t Amin (Zizl asaz>
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If there exists ¢ > 1 such that Zi:l asal = 0, we have by Lemma [7| that Z(t) =
Inf(pe aiaT (ar—b)[>e,} Zar b, () Where

(1 (ae —b) +e¢)? '
20 —b)" (Ticyasal) (@)

Zay e () = sgn(fy) (r — b) + )

Thus, we have

EiNéEy = {Ehf e N*: inf Za,b,st (t) > 5(5, t)
{beA:|af (ar—b)|>e}

t
o,t
and Apmin (Z asa;r> > max {c, /|)|,([14t7||2)} and uT(a/j —a,) > 5}
s=1

Now using (23), we have 11" (a}, —b) = @Ha; — al|?. Thus

* ~ AT
a, —ay) > = fi

it

”Nt” T(a* _ dt)

(ar —aj) =
|l

I

Observe that

2
N )
e =l < (£ —1) 22
Amin (251 as a'r
p(tvéf) (

X Al = 1] — pell
2>
Il 2 S ey

) el > el = Nl

I
gﬂ\m/-\ /—\

||Nt|| > |-
Hence, we have
p'(ak —ag) > e ,
t,5 )
=l < (£ -1) 5y = - al) >
||Mt||2 p(t,6¢)

Amin (Xf_; asal)
It then follows that

t
EiN&Nés C {t €N Zaap.e. = B(6,1) and Amin <Z asaz> > cand i} (a; —a n) > at}

s=1
Considering (T3], we have under the event £ N &> N E; that

max T, Aty oo oy T1,Q1) = Jp, \Tt, Aty ..., T1,Q
{/J«':(M’)T(dt*aﬁ)JrEtZO}fH( ty Uty y 11y 1) fut( ty Uty s 11y 1)7

{w:(w)ﬂ%ﬁi*)wgo} fuw(re,ae, .o r,a1) > fulre, ae, ..o r1,a1).
i—ap)+er<

As a consequence, under £ N E; N &3, we have

maxu’:(u’)T(&t—a;)+£t20 fu’ (Tt7at7 EEREN AT al)
Zflmaf“&t (t) = log
MAX,: ()T (ar—a,)+er <0 fu'(Tt7at7~--»7“17a1)
S IOg (fﬂt(rhah CIE ,’I"h(l]))
fu(Tt,at, e ,7'17(11)

-’ (Z asaz> (fir — )
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Hence,

t
* 1 ~
EiNENEC {Elt EN": - el 407 = B(6,1) and Zasaj} .
We further deduce that

t
* . 1 2 2
]P)(gl N &Es ﬂgg) < dt e N* : 5” E aST]S”(EZ:l asal +elg)-1 > 20 Ct)

( | Z“s"s||22f aa] +ela)1 2 202@)

"<

IN

IA
Mg ||M /i
o | S
l\D\oq

~
Il
-

where for the third inequality, we use the result of Proposition[d Using a union bound and Proposition
M) again, we also have

[e'e] 2 t

€ t,o

P <3P -z (Z-1) — 2B Sl
t=1 ct )\min (Zs:l asa;r) s=1

t
: <” > astilitsy_ aar vernr 2 202@)

s=1

s

~
Il

1

L <

N>

IN
hE
NS

t
Finally, we obtain

P(r <oo,u'(a} —ar) >¢e) =P(E1 N &) <P(E1NENE) +P(ES) < 0. (37)
0

1

G.3 Sample complexity — Proof of Theorem 5]

We recall that i = {uy,...,ug} is an orthonormal basis in R%, ¢/ C S?~! and our sampling rule is
At = Ut mod d)

Almost sure guarantees. Observe that for all t>d

{-‘Zuu >Zaa {JZuu - 0. (38)

ueU
Lett > d. We have

Z(t) = inf Loy e, (t
0 (beAi|a] (@—b)|>e.} (1)

2 iIlf (/J’t (at — b) "‘25t m1n Z asa
(be AT (ar—b)[>e}  2[lar — Ol
T ~
: pe (ay —b) Et )
> inf — + min as a
{beA:|AT (ae—b)[>e} < llaw —bll  [lac — bl Z
. [l e | £
inf H b” + mln a
T {bedili] (ai—b)>e} ( 2 T | — | Z <«

. [l e | ) T
> inf — bl + Amin G50
{beA:||m||atb>|2>zet}< g llae = bl as b|| ;

t
Z 25t||ﬂt||)\min (Z asaz>

s=1

Y
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Thus, using (38), we obtain
R t
202 22l |5 (9)

Now, consider the choice
€

e (10m0g (£ 121))

Note that for all ¢; < € and ¢, t—> €. We have
—00

T<d\/inf{t€N*: el m > 40 log (; M)}
t

Now by the force exploration (38)), and using (3), we have that || i | = |lel (a.s.). Define the event
hde el
E = {ull o [lz2]}. On this event, for all £ > 0, there exists to > 0 such that || ;|| > (1 — &)||ul|-
—00
Hence on £, we have

g = (40)

t

7 < max{d, o} V inf {t EN: e(1—O)ull m > 402 log (;t M)} .

Using Lemma 8| and similar arguments as in the analysis of the sample complexity for the case of
finite sets of arms in Appendix F, we obtain that on &,

402d 1 1
7 S max{d,to} + a=olal log (6) +o0 <log <5>)

Thus, we have shown that P (7 < 0o) = 1 and more precisely, letting £ tend to 0, that

T o?d
P ( lim sup < > =1 41
( s—0 1og(1/6) ~ ||

Guarantees in expectation. To obtain an upper bound on the expected sample complexity, we
construct for all T' > 1, the events

Er = (Il = ull < &lul} (42)

t=T

Following the same chain of arguments as in Appendix F.2 (see Step 2), we can show that

do? >
E[r] § o log(1/6) + o(log(1/8)) +d + Y P(E5). 43)
(1= Oellul 2
Then again using the forced exploration (38) and Lemmad] we obtain that for all 7" > 1
P(EF) < D erexp(—ea€?t), (44)
t=T

where ¢y, co are positive constants that only depends on d, i+ and o. Then following similar steps
as in Appendix F.2 (see Step 3), we can show that > 4 P(EF) < oo, from which we may then
conclude that

E[7] do?

lim sup < Tl

s—0 log(1/9)
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