
A Numerical experiments

This section provides additional numerical results, and comparisons of LT&S and RAGE. We actually
present the results of a slightly different version of LT&S than that considered in the main document
(see details below). This new version exhibits much better performance.

A.1 Experimental set-up

The benchmark example. We consider the example proposed by Soare et al. [12] and that has
become a standard benchmark to compare best arm identification algorithms in stochastic linear
bandits [19, 16, 15, 14]. In this example, the action set isA = {e1, e2, . . . , ed, a

′}where {e1, . . . , ed}
correspond to the standard basis in Rd, and a′ = cos(ω)e1 + sin(ω)e2 where the angle ω = 0.1.
The unkown parameter µ = 2e1. For this example, we consider two experiments: (i) we fix
δ = 0.01 and vary the dimension d ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}. (ii) we fix d = 6 and vary δ ∈
{0.5, 0, 1, 0.05, 0, 01, 0.005, 0.001}.
The many arms example. We use the same parameters as those reported in the main document.
Namely, the following toy experiment that corresponds to the many arms example in [16]. d = 2 and
A = {(1, 0), ej3π/4, ej(π/4+φi), i ∈ [n − 2]} ⊂ C where (φi) are i.i.d. ∼ N (0, 0.09). µ = (1, 0).
Experiments are made with the risk δ = 0.05.

Implementation of LT&S. Our implementation for the following results is almost the same as the
one described in Section 5. The only difference lies in the stopping rule: we use improved constants
when defining the threshold (9). The new constant is u = 0.1 (before it was set to 1), and the
threshold is β(δ, t) (before we were using β(δ6/(πt)2, t)). For the benchmark example, we further
consider the following threshold β̃(δ, t) = (1 + u)σ2(log(1/δ) + 0.5 log(t) + d log((u−1 + 1)1/2))
for the stopping rule. This threshold is not theoretically proven, but we conjecture that there exists a
threshold of the form c1 log(t/δ) + c2d with some absolute constants c1, c2 > 0 such that LT&S is
δ-PAC and asymptotically optimal.

All experiments were executed on a stationary desktop computer, featuring an Intel Xeon Silver 4110
CPU, 48GB of RAM. Ubuntu 18.04 was installed on the computer. We set up our experiments using
Python 3.7.7.

A.2 Results

Sample complexity. The results on the sample complexity for the many arms experiment are reported
in Table 2 and those of the benchmark example are reported in Table 5 and 6. For the many arms
experiment, LT&S with and without averaging significantly outperforms RAGE [16] and even the
Oracle [12]. At first, it seems surprising that the Oracle is beaten by LT&S, but this can be explained
as follows. Even if the Oracle is aware, from the beginning, of the optimal sampling rule, its stopping
rule is not efficient and depends on the number of arms K. The threshold β(δ, t) in the stopping
rule of LT&S is independent of K, and indeed, the performance of the algorithm is less sensitive
to the number of arms than that of RAGE or the Oracle. The results also suggest that the LT&S
algorithms with or without averaging perform similarly. For the benchmark example, LT&S is overall
competitive with RAGE and XY-adaptive and performs better than ALBA. The results of experiment
(i) indicate that the sample complexity of LT&S is affected by the increase of the dimension. On the
other hand, LT&S with the modified threshold β̃(δ, t) performs much better than RAGE. The results
of experiment (ii) clearly suggest that the sample complexity of LT&S becomes better as δ → 0 and
is comparable to RAGE and XY-Adaptive in the moderate regimes. Again, LT&S with the modified
threshold is outperforming all the other algorithms. As a final note all algorithms including LT&S
with the modified threshold ended with success in all experiments over all simulations.

Run-time. The run-time of LT&S and RAGE are reported in Table 3 for the many arms experiment.
Overall, both algorithms are efficient. We note that RAGE is slightly faster. However we expect that
for extremely large numbers of arms, LT&S would run faster than RAGE (the sample complexity of
LT&S is more resilient to an increase in the number of arms). In LT&S, we have used the exponential
lazy update scheme with T = {2k : k ∈ N∗}. We believe that by fine-tuning this laziness, we would
be able achieve a better trade-off between computational efficiency and sample complexity.
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Support of Lazy T&S. Finally, we look at the support of the allocation chosen under LT&S. The
expected size of the support of LT&S on a single run is reported in Table 4. Even if the number
of arms K is large (in comparison with the ambient dimension), LT&S only tracks allocations that
are sparse, i.e. using very few arms. We further note that the averaging scheme in the tracking rule
does not really affect the support. This is a nice feature as it could allow for the design of a more
memory-efficient algorithm.

Algorithm LT&S LT&S (No averaging) RAGE Oracle
Sample Complexity Sample Complexity Sample Complexity Sample Complexity

Number of arms Mean (Std) Mean (Std) Mean (Std) Mean (Std)

(K = 1000) 424.5 (29.1) 424.5 (29.1) 1148.45 (49.82) 476.45 (40.7)
(K = 2500) 458.15 (28.1) 455.95 (28.3) 1440.75 (149.24) 492.15 (43.9)
(K = 5000) 434.65 (32.51) 433.6 (32.6) 1540.3 (158.9) 515.6 (47.6)
(K = 7500) 448.0 (36.9) 447.45 (36.8) 1598.0 (164.6) 547.65 (45.8)
(K = 10000) 452.85 (31.6) 452.95 (31.6) 1479.4 (52.0) 564.85 (46.9)

Table 2: Sample complexity. Results for the many arms experiment [16]

Algorithm LT&S LT&S (No averaging) RAGE
Run time (s) Run time (s) Rune time (s)

Number of arms Mean (Std) Mean (Std) Mean (Std)

(K = 1000) 13.62 (0.5) 13.99 (0.5) 34.0 (0.5)
(K = 2500) 90.25 (2.9) 89.41 (3.1) 156.42 (1.1)
(K = 5000) 940.97 (40.4) 948.86 (40.3) 429.67 (7.47)
(K = 7500) 1340.83 (61.5) 1349.90 (61.4) 707.09 (9.47)
(K = 10000) 1893.73 (79.9) 1915.03 (80.3) 1575.30 (12.43)

Table 3: Runtime. Results for the many arms experiment [16]

Algorithm LT&S LT&S (No averaging)
Support size Support size

Number of arms Mean (Std) Mean (Std)

(K = 1000) 5.37 (0.25) 2.04 (0)
(K = 2500) 5.72 (0.20) 2.03 (0)
(K = 5000) 5.41 (0.20) 2.04 (0)
(K = 7500) 5.34 (0.20) 2.03 (0)
(K = 10000) 5.26 (0.21) 2.04 (0)

Table 4: Support size. Results for the many arms experiment [16]. For the standard deviation, we put
(0) when the value is smaller than 10−2.
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Algorithm LT&S LT&S (modified threshold) RAGE Oracle
Sample Complexity Sample Complexity Sample Complexity Sample Complexity

dimension Mean (Std) Mean (Std) Mean (Std) Mean (Std)

(d = 2) 3538.69 (146.9) 2510.50 (106.4) 8185.91 (591.7) 3530.95 (139.8)
(d = 3) 5040.34 (187.5) 3107.43 (134.8) 7743.22 (482.3) 3785.07 (147.3)
(d = 4) 6236.26 (209.9) 3346.29 (125.3) 8033.51 (464.0) 3968.72 (163.9)
(d = 5) 7511.91 (254.1) 3641.21 (114.4) 8796.97 (511.9) 3968.27 (148.9)
(d = 6) 9194.15 (316.8) 4087.21 (136.2) 8734.26 (441.0) 4079.17 (162.8)
(d = 7) 10321.54 (325.1) 4405.74 (143.5) 9675.00 (537.8) 4107.09 (160.6)
(d = 8) 11215.20 (418.1) 4983.38 (179.1) 10025.60 (550.9) 4215.97 (167.5)
(d = 9) 12700.16 (436.4) 5078.80 (169.5) 10475.19 (555.5) 4274.95 (167.9)
(d = 10) 14049.75 (463.1) 5602.55 (180.9) 9780.54 (360.0) 4321.84 (167.8)

Table 5: Sample complexity. Results for experiment (i) of the benchmark example

Algorithm LT&S LT&S (modified threshold) RAGE XY Adaptive ALBA Oracle
Sample Complexity Sample Complexity Sample Complexity Sample Complexity Sample Complexity Sample Complexity

dimension Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std)

(δ = 0.5) 7856.16 (301.7) 3080.56 (119.1) 5840.21 (373.6) 6192.34 (373.8) 20330.67 (837.4) 3016.91 (133.1)
(δ = 0.1) 8408.31 (308.4) 3538.96 (125.4) 7281.7 (408.5) 7785.23 (380.4) 26535.6 (986.4) 3404.78 (140.2)
(δ = 0.05) 8641.79 (322.8) 3699.84 (130.1) 7751.79 (434.2) 8167.51 (368.3) 28201.37 (1047.8) 3610.33 (146.1)
(δ = 0.01) 9194.15 (316.8) 4087.21 (136.1) 8734.26 (441.0) 9255.96 (317.4) 32661.52 (984.0) 4079.17 (162.7)
(δ = 0.005) 9404.55 (315.0) 4297.23 (131.8) 9810.19 (543.8) 9278.82 (315.8) 35335.0 (1148.5) 4219.38 (165.3)
(δ = 0.001) 9583.05 (313.6) 4744.36 (133.3) 9836.42 (378.0) 9897.96 (268.4) 39303.0 (1288.8) 4644.7 (172.9)

Table 6: Sample complexity. Results for experiment (ii) of the benchmark example.

A.3 Additional remarks and implementation details

Frank-Wolfe algorithm. Frank-Wolfe algorithm [21] was used to solve the optimization problem
maxw∈Λ ψ(µ̂t, w) whenever t ∈ T . The algorithm settings were chosen in a similar way as for
RAGE [16]. The step-size was set to 2/(2 + k) for each iteration k. The algorithm stops when the
relative change in w with respect to the 2-norm is lower than 0.01 or if it reaches a maximum of 1000
iterations. The components of w were thresholded to 0 if they were smaller than 10−5 and the w was
rescaled properly so that

∑
a∈A wa = 1. It is worth mentioning that there are no guarantees on the

convergence of this algorithm in our specific setting. This was highlighted by [19]: there, the authors
provided a counter-example for which the algorithm does not converge; they also proposed a new
heuristic that seems to converge. However, in our experiments, the algorithm always converged.

Dependency on K. LT&S does not use explicitally the number K of arms in its stopping rule. More
precisely the exploration threshold β(δ, t) is independent of K. However, in the algorithm, we still
need to allocate data structures with a memory size scaling linearly in K (storing wt and computing
maxw∈Λ ψ(µ̂t, w)). We suspect that using a more efficient implementation, we might be able to
circumvent this limitation. For instance, our experiments suggest that the allocations wt are sparse.
Furthermore, our analysis is asymptotic in δ, and does not reveal the dependency of low order terms
on K in the sample complexity. We conjecture that such dependency is mild and rather negligible if
the minimum gap is relatively large. We leave this question for future work.
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B Properties of ψ

B.1 Proof of Lemma 1

Let (µ,w) ∈ Rd×Λ such that a?µ is unique. For the first part of the claim we refer to the proof of [17,
Theorem 3.1.]. Now let us prove the continuity of ψ at (µ,w). Consider the set of bad parameters
with respect to µ, B(µ) ⊆ Rd

B(µ) =
{
λ : λ ∈ Rd and ∃a ∈ A\{a?µ} λ>(a− a?µ) > 0

}
,

and denote

f(µ, λ,w) =
1

2
(µ− λ)>

(∑
a∈A

waaa
>

)
(µ− λ).

Let (µt, wt)t≥1 be a sequence taking values in Rd × Λ and converging to (µ,w). Let ε < 1 ∧
mina∈A\{a?µ}

〈µ,a∗µ−a〉
‖a?µ−a‖

, and let t1 ≥ 1 such that for all t ≥ t1 we have ‖(µt, wt) − (µ,w)‖ < ε.
Now, by our choice of ε, and uniqueness of a?µ it holds that B(µt) = B(µ). Furthermore, note
that f(µ, λ,w) is a polynomial in µ, λ,w, thus it is in inparticular continuous in µ,w, and there
exists t2 ≥ 1 such that for all t ≥ t2 and for all λ ∈ Rd, it holds that |f(µt, λ, wt)− f(µ, λ, µt)| ≤
εf(µ, λ, µt). Hence, with our choice of ε, we have for all t ≥ t1 ∨ t2

|ψ(µ,w)− ψ(µt, wt)| =
∣∣∣ min
λ∈B(µ)

f(µ, λ,w)− min
λ∈B(µ)

f(µt, λ, wt)
∣∣∣

≤ ε
∣∣∣ min
λ∈B(µ)

f(µ, λ,w)
∣∣∣

≤ ε|ψ(µ,w)|.

This concludes the proof of the continuity of ψ.

Now, we know that w 7→ ψ(µ,w) is continuous on Λ, and by compactness of the simplex, the
maximum is attained at some w?µ ∈ Λ. Furthermore, since A spans Rd, we may construct an
allocation w̃ such that

∑
a∈A w̃aaa

> is a positive definite matrix. In addition, by construction of
B(λ), there exists some M > 0 such that for all λ ∈ B(µ) we have ‖µ− λ‖ > M , which implies
that ψ(µ, w̃) ≥ M2λmin

(∑
a∈A w̃aaa

>) > 0. On the other for any allocation w ∈ Λ such that∑
a∈A waaa

> is rank deficient, we may find a λ ∈ B(µ) where λ − µ is in the null space of∑
a∈A waaa

>. Therefore,
∑
a∈A(w?µ)aaa

> is invertible �

B.2 Proof of Lemma 2

The lemma is a direct consequence of the maximum theorem (a.k.a. Berge’s theorem) [22] and only
requires that ψ is continuous in (µ,w) ∈ Rd × Λ, that Λ is compact, convex and non-empty, and
that ψ is concave in w for each µ′ ∈ Rd in an open neighberhood of µ. These requirements hold
naturally in our setting: (i) by Lemma 1, we have for all µ ∈ Rd such that a?µ is unique and for any
w ∈ Λ, ψ is continuous in (µ,w); (ii) Λ is a non-empty, compact and convex set; (iii) for all µ ∈ Rd,
w 7→ ψ(µ,w) is concave as it can be expressed as the infimum of linear functions in w. Therefore,
the maximum theorem applies and we obtain the desired results. �
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C Least Squares Estimator

In this appendix, we present concentration bounds and convergence statements on the least squares
estimator. We may recall that the least squares estimation error µ̂t − µ can be expressed con-
veniently in the following form2: µ̂t − µ = (

∑t
s=1 asa

>
s )−1(

∑t
s=1 asηs). To make notations

less cluttered, we prefer to express our derivations in matrix form where we define the covari-
ates matrix At = [a1 . . . at]

> and noise vector Et = [η1 . . . ηt]
>. We may then write

µ̂t − µ = (A>t At)
−1(A>t Et). Furthermore, we will reapeatedly use the following decoposition

‖µ̂t − µ‖ = ‖(A>t At)−1(A>t Et)‖ ≤ ‖A>t Et‖(A>t At)−1‖(A>t At)−1/2‖ (13)

where we have ‖x‖A =
√
x>Ax for some semi-definite positive matrix A. The above inequality

follows from Cauchy-Schwarz inequality. We also observe that when A>t At is invertible, we have
‖(A>t At)−1/2‖ = λmin(A>t At)

−1/2.

C.1 Self-Normalized processes

We first present convenient tools from the theory of self-normalized processes [23], namely the
deviation bounds established by Abbasi-Yadkouri et al. in [9].
Proposition 4 (Theorem 1. in [9]). Let (Ft)t≥0 be a filtration. Let {ηt}t≥1 be a real-valued
stochastic process such that for all t ≥ 1, ηt is Ft−1-measurable and satisfies with some postive σ,
the conditional σ-sub-gaussian condition: E [exp(xηt)|Ft−1] ≤ exp

(
−x2σ2/2

)
, for all x ∈ R. Let

(at)t≥1 be an Rd-valued stochastic process adapted to {Ft}t≥0. Furthermore, let V be a positive
definite matrix. Then for all δ ∈ (0, 1) we have

P
(∥∥A>t Et∥∥2

(A>t At+V )−1 ≤ 2σ2 log
(

det
(
(A>t At + V )V −1

) 1
2
/
δ
))
≥ 1− δ.

The following result is a stronger version of Proposition 4 and in fact is behind its proof.
Proposition 5 (Lemma 9. in [9]). With the same assumptions as in the above proposition. Let τ be
any stopping time with respect to the filtration (F)t≥1. Then, for δ > 0, we have

P
(∥∥A>τ Eτ∥∥2

(A>τ Aτ+V )−1 ≤ 2σ2 log
(

det
(
(A>τ Aτ + V )V −1

) 1
2
/
δ
))
≥ 1− δ.

C.2 Proof of Lemma 3

Lemma 3 shows that the convergence rate of the least squares estimator is dictated by the growth rate
of the smallest eigenvalue of the covariates matrx A>t At. Parts of our proof technique are inspired by
recent developments in learning dynamical systems [24].

Proof. Define the event

E =

{
∃c > 0,∃t0 ≥ 0,∀t ≥ t0,

1

tα
λmin(A>t At) > c

}
.

By assumption, E holds with probability 1. Note that the t0, c may be random here. It also holds
on the event E that for all t ≥ t0 we have 2A>t At � A>t At + ctα which implies that 2(A>t At +
ctα)−1 � (A>t At)

−1. This means that on the event E , for all t ≥ t0, we have ‖A>t Et‖2(A>s As)−1 <

2‖A>t Et‖2(AsA>s +ctα)−1 . Then, using the decomposition (13) we obtain

‖µ̂t − µ‖ <
√

2‖A>t Et‖(A>t At+ctα)−1

λmin

(
A>t At

)1/2 <

√
2√

ctα/2
‖A>t Et‖(A>t At+ctα)−1 . (14)

We will show that ‖A>t Et‖(A>t At+ctα)−1 = o(tβ) a.s. for all β > 0. This will ensure immediately
with the upper bound (14) that ‖µ̂t − µ‖ = o(t−β) a.s. for all β ∈ (0, α/2). By Proposition 4, it
holds for all β > 0 and t ≥ 0

P
(

1

tβ
‖A>t Et‖(A>t At+ctα)−1 >

σ

tβ

(
2 log

(
det
(
(A>t At + ctαId)(ct

αId)
−1
) 1

2
/
δ
))1/2

)
≤ δ.

2We mean by A−1 the pseudo-inverse of A when the matrix is not invertible.
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SinceA is finite, we may upper bound det
(
(A>t At + ctαId

)
(ctαId)

−1) ≤ (L2t1−α/c+ 1)d where
L = maxa∈A ‖a‖ and deduce that

P
(

1

tβ
‖A>t Et‖(A>t At+ctα)−1 >

σ

tβ

(
2 log

(
Ldt

(1−α)d
2

/
c
d
2 δ
))1/2

)
≤ δ,

which we may rewrite after substitution as

P
(

1

tβ
‖A>t Et‖(A>t At+ctα)−1 > ε

)
≤ Ld

c
d
2

t
(1−α)d

2 exp

(
−ε

2t2β

2σ2

)
.

For all ε > 0, since
∑∞
t=1 t

(1−α)d
2 exp(− ε

2t2β

2σ2 ) <∞, we have

∞∑
t=1

P
(

1

tβ
‖A>t Et‖(A>t At+ctα)−1 > ε

)
<∞.

Thus, by the first Borell-Cantelli lemma, we have for all ε > 0

P
({

1

tβ
‖A>t Et‖(A>t At+ctα)−1 > ε

}
i.o.

)
= 0.

Thus, we have proved that 1
tβ
‖A>t Et‖(A>t At+ctα)−1 −→

t→∞
0 a.s..

C.3 Proof of Lemma 4

The proof of Lemma 4 is very similar to that of Lemma 3, but in order to obtain a non-asymptotic
concentration bound, a stronger condition is needed, namely a non-asymptotic lower bound for the
rate of growth of the smallest eigenvalue of the covariates matrix A>t At.

Proof. We have by assumption that there are c > 0 and t0 ≥ 0 such that for all t ≥ t0, the event

E =
{
λmin

(
A>t At

)
> ctα

}
holds with probability 1. We can now carry the same derivation as in the proof of Lemma C.2 with
the distinction that c, t0 are deterministic and conclude that for all ε > 0, and t ≥ t0, we have

P

( √
2√
ctβ
‖A>t Et‖(A>t At+ctα)−1 > ε

)
≤ Ld

c
d
2

t
(1−α)d

2 exp

(
−cε

2t2β

4σ2

)
,

with the choice of β = α/2 and using the upper bound (14) which can be shown similarly under the
event E , we have for all ε > 0, and t ≥ t0 that

P (‖µ̂t − µ‖ > ε) ≤ (c−1/2L)dt
(1−α)d

2 exp

(
−ε

2tα

2σ2

)
.
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D Stopping rule

The derivation of our stopping rule is inspired by that of Garivier and Kaufmann [18] for the MAB
setting and relies on the classical generalized log-likelihood ratio (GLLR) test. The main distinction
is that in the linear bandit setting, sampling an arm may provide additional statistical information
about other arms, therefore one has to consider the full history of observations and sampled arms
when comparing arms in the GLLR. We define our GLLR accordingly.

Furthermore, because of the linear structure, we are able to derive an exploration threshold which
does not depend on the number of arms K, but only on the ambient dimension d. Our choice of
threshold relies on the deviation bound presented in Proposition 5 (see Lemma 9 in [9]). But most
importantly, to circumvent a naive union bound over the set of arms A, we analyze the stopping time
by leveraging the GLLR formulation (see Lemma 7) under the event of failure (failure to output the
best arm). The stopping rules derived by Soare et al. [12] follow directly from the deviation bound
in [9], rather than from the GLLR and consequently, they cannot avoid the dependency on K even
for the oracle stopping rule. Most existing algorithms in the literature are phase-based and rely on
elimination criteria to stop [16, 15, 14]. In these algorithms, the phase transition rules and elimination
criteria depend in a way or another on the number of arms K.

D.1 Proof of Lemma 7

Here, we show that the generalized log-likelihood ratio can be expressed in a closed form, one that
resembles the expression of ψ used in the lower bound.

Let us first recall that, under the gaussian noise assumption, the density function of the sample path
r1, a1, . . . , rt, at is

f(r1, a1, . . . , rt, at) ∝ exp

(
−1

2

t∑
s=1

(rs − µ>as)2

)
.

Observe that the maximization problem max{µ:µ>(a−b)≥−ε} fµ(rt, at, . . . , r1, a1) is, by monotonic-
ity of the exponential, equivalent to

min
µ

1

2

t∑
s=1

(rs − µ>as)2

s.t. µ>(a− b) ≥ −ε,

which is a convex program. The optimality conditions give us

λ ≥ 0,

λ(ε+ µ>(a− b)) = 0,

−ε− µ>(a− b) ≤ 0,(
t∑

s=1

asa
>
s

)
µ−

t∑
s=1

asrs + λ(a− b) = 0,

where λ is the Lagrange multiplier associated with the inequality constraint of the problem.
Under the assumption that

∑t
s=1 asa

>
s is invertible, we introduce the least squares estimator

µ̂t =
(∑t

s=1 asa
>
s

)−1 (∑t
s=1 asrs

)
. Then from optimality conditions, it follows that

µ∗1 =

µ̂t if µ̂>t (a− b) ≥ −ε,

µ̂t + (−ε− µ̂>t (a− b)) (
∑t
s=1 asa

>
s )
−1

(a−b)

(a−b)>(
∑t
s=1 asa

>
s )
−1

(a−b)
otherwise.

(15)

Similarly the solution to the maximization problem max{µ:〈µ,a−b〉≤ε} fµ(rt, at, . . . , r1, a1) is

µ∗2 =

µ̂t if µ̂>t (a− b) ≤ −ε,

µ̂t + (−ε− µ̂>t (a− b)) (
∑t
s=1 asa

>
s )
−1

(a−b)

(a−b)>(
∑t
s=1 asa

>
s )
−1

(a−b)
otherwise.

(16)
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Hence, the generalized log likelihood ratio can be expressed as

Za,b,ε(t) =
1

2
(µ∗1 − µ∗2)>

(
t∑

s=1

asa
>
s

)
(2µt − µ∗1 − µ∗2)

= sign(µ>t (a− b) + ε)
(µ̂>t (a− b) + ε)2

2(a− b)>
(∑t

s=1 asa
>
s

)−1

(a− b)
.

�

The following corollary is an immediate consequence of Lemma 7. Let us recall that Za,b(t) =
Za,b,0(t).

Corollary 1. Let t ≥ 0, and assume that
∑t
s=1 asa

>
s � 0. Then for all ât ∈ arg maxa∈A µ̂

>
t a, it

holds

Z(t) = max
a∈A

min
b∈A\{a}

Za,b(t) = min
b∈A\{ât}

Zât,b(t). (17)

Proof. Under the assumption that
∑t
s=1 asa

>
s � 0, by Lemma 7, the sign of Za,b(t) is that of

µ̂>t (a − b). Additionally, since ât ∈ arg maxa∈A µ̂
>
t a, it holds for all b ∈ A\{ât} that µ̂>t (âτ −

b) ≥ 0. Hence it immediately follows that Za,b(t) ≥ 0 if and only if a ∈ arg maxa∈A µ̂
>
t a.

Furthermore, if ât is not unique, then we may find b ∈ arg max µ̂>t b such that ât 6= b, and then by
Lemma 7 obtain Zât,b(t) = 0. Hence, we conclude that regardless of whether ât is unique or not,
Z(t) = minb∈A\{ât} Zât,b(t) .

D.2 Proof of Proposition 2

Let us consider the events

E1 = {τ <∞} =

{
∃t ∈ N∗ : max

a∈A
min

b∈A\{a}
Za,b(t) > β(δ, t) and

t∑
s=1

asa
>
s � cId

}
,

E2 = {µ>(a∗µ − âτ ) > 0}.

Now note that if there exists t ∈ N∗ such that
∑t
s=1 asas � cId and µ>(a∗µ − ât) > 0 then

ât 6= a∗µ. Additionally, from Corollary 1, we know that under E1, that for all t ≥ 1, it holds that
Z(t) = minb∈A\{ât} Zât,b(t). Therefore, we have

E1 ∩ E2 =

{
∃t ∈ N∗ : Z(t) > β(δ, t) and

t∑
s=1

asa
>
s � cId and µ>(a?µ − ât) > 0

}

=

{
∃t ∈ N∗ : min

b∈A\{ât}
Zât,b(t) > β(δ, t) and

t∑
s=1

asa
>
s � cId and µ>(a?µ − ât) > 0

}

⊆

{
∃t ∈ N∗ : Zât,a?µ(t) > β(δ, t) and

t∑
s=1

asa
>
s � cId and µ>(a?µ − ât) > 0

}
.

Since under the event E1∩E2 and by definition of ât, we have µ̂>t (ât−a?µ) ≥ 0, and µ>(a?µ−ât) > 0.
In view of (15), it follows that

max
{µ′:(µ′)>(ât−a?µ)≥0}

fµ′(rt, at, . . . , r1, a1) = fµ̂t(rt, at, . . . , r1, a1),

max
{µ′:(µ′)>(ât−a?µ)≤0}

fµ′(rt, at, . . . , r1, a1) ≥ fµ(rt, at, . . . , r1, a1).
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Thus under E1 ∩ E2 it holds that

Zât,a∗µ(t) = log

(
maxµ′:(µ′)>(ât−a?µ)≥0 fµ′(rt, at, . . . , r1, a1)

maxµ′:(µ′)>(ât−a?µ)≤0 fµ′(rt, at, . . . , r1, a1)

)

≤ log

(
fµ̂t(rt, at, . . . , r1, a1)

fµ(rt, at, . . . , r1, a1)

)
=

1

2
(µ̂t − µ)>

(
t∑

s=1

asa
>
s

)
(µ̂t − µ)

=
1

2
‖µ− µ̂t‖2∑t

s=1 asa
>
s
,

which further implies that

E1 ∩ E2 ⊆
{
∃t ∈ N∗ :

1

2
‖µ− µ̂t‖2∑t

s=1 asa
>
s
≥ β(δ, t) and

t∑
s=1

asa
>
s � cId

and µ>(a∗µ − ât) > 0

}
⊆

{
∃t ∈ N∗ :

1

2
‖µ− µt‖2∑t

s=1 asa
>
s
≥ β(δ, t) and

t∑
s=1

asa
>
s � cId

}
.

We note that when
∑t
s=1 asa

>
s � cId, then for all ρ > 0, (1 +ρ)

∑t
s=1 asa

>
s �

∑t
s=1 asa

>
s +ρcId,

which means that (1 + ρ)(
∑t
s=1 asa

>
s + ρcId)

−1 � (
∑t
s=1 asa

>
s )−1. Thus, we may have

‖µ̂t − µ‖2 =
∥∥∥ t∑
s=1

asηs

∥∥∥2

(
∑t
s=1 asa

>
s )
−1
≤ (1 + ρ)

∥∥∥ t∑
s=1

asηs

∥∥∥2

(
∑t
s=1 asa

>
s +ρcId)

−1
.

This leads to

E1 ∩ E2 ⊆

{
∃t ∈ N∗ :

1

2
(1 + ρ)

∥∥∥ t∑
s=1

asηs

∥∥∥2

(
∑t
s=1 asa

>
s +ρcId)

−1
≥ β(δ, t)

}
,

and with the choice

β(δ, t) = (1 + ρ)σ2 log

(
det((ρc)−1

∑t
s=1 asa

>
s + Id)

1/2

δ

)
,

we write

E1 ∩ E2 ⊆{
∃t ∈ N∗ :

1

2

∥∥∥ t∑
s=1

asηs

∥∥∥2

(
∑t
s=1 asa

>
s +ρcId)

−1
> σ2 log

(
det((ρc)−1

∑t
s=1 asa

>
s + Id)

1/2

δ

)}
.

Finally, it follows immediately from Proposition 5 that

P
(
τ <∞, µ>(a?µ − âτ ) > 0

)
= P(E1 ∩ E2) ≤ δ.

�

Proposition 2 does not yet guarantee that we have a δ-PAC startegy. However, a sufficient condition
for any strategy with the proposed decision rule and stopping rule to be δ-PAC, is to simply ensure
that P(τ <∞) = 1. This condition will have to be satisfied by our sampling rule.
Corollary 2 (δ-PAC guarantee). For any strategy using the proposed decision rule and stopping rule
and such that P(τ <∞), it is guaranteed that P(µ>(a?µ − ât) > 0) ≤ δ.
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E Sampling rule

Our sampling rule as described in Section 3.5 is based on tracking a sequence of allocations that
provably approaches the set of optimal allocations. This set of optimal allocations C?(µ) that is not
necessarily a singleton as in the multi-armed bandit setting [20]. This makes the analysis extremely
challenging. However by crucially leveraging the geometric properties of this set and the continuity
properties of ψ and C?(µ) we are able to prove that tracking is possible.

Additionally, we choose arms from the support (set of non zero elements) of the average allocations
up to the current round. This is motivated by the fact that when K is exceedingly large in comparison
with the dimension d, it is possible to represent any matrix A in the convex hull conv({aa> : a ∈ A})
by an allocation w with support of at most O(d2) such that A =

∑
a∈A waaa

>. This observation
was made by Soare et el. [12] and follows from Caratheorody’s Theorem. A consequence of this
sampling strategy is reflected in Lemma 6.

One further novel part of the analysis is the introduction of laziness, the idea that the algorithm does
not need to perform a computationally demanding task at every round. In the linear bandit setting this
computationally demanding task is the optimization problem maxw∈Λ ψ(µ̂t, w). Existing algorithms
in the literature resort to phase-based schemes such us gap elimination in order to attain efficiency.
However these schemes often fail to fully stitch the statistical information between phases. This can
be seen in the least squares constructions of the algorithms XY-adaptive [12], ALBA [15], RAGE
[16] where the samples from previous phases are discarded. Our tracking rule allows for a natural
flow of information between rounds regardless of the laziness of the algorithm. This is shown by
Proposition 1.

We shall now prove Proposition 1 and all the related lemmas. Lemma 5 shows that we have sufficient
exploration. Lemma 6 is the crucial step in our analysis here. It’s a tracking lemma that formalizes
the idea that we may track a sequence that converges to a set C rather than a point. The proof requires
the convexity of the set C. In the main analysis of the sampling rule C is replaced by C?(µ).

E.1 Proof of Lemma 5

The idea of the proof is to show that if at some time t0 + 1, the condition λmin(
∑t
s=1 asa

>
s ) > f(t)

is violated, then the number of rounds needed to satisfy the condition again cannot exceed d rounds.

First, we note that d = inf{t ≥ 1 : λmin(
∑t
s=1 asa

>
s ) ≥ f(t)}. Indeed, we have by construction that

for all t < d, λmin(
∑t
s=1 asa

>
s ) = 0 and λmin

(∑d
s=1 asa

>
s

)
= λmin

(∑
a∈A0

aa>
)

= f(d). Now,

if there exists t0 ≥ d, such that λmin

(∑t0
s=1 asa

>
s

)
≥ f(t0) and λmin

(∑t0+1
s=1 asa

>
s

)
< f(t0 + 1),

then we may define t1 = inf
{
t > t0 : λmin

(∑t
s=1 asa

>
s

)
≥ f(t)

}
. Let us observe that for all

t0 ≤ t ≤ t1, we have

λmin

(
t∑

s=1

asa
>
s

)
≥ λmin

(
t0∑
s=1

asa
>
s

)
≥ f(t0).

21



Note that if t1 ≥ t0 + d+ 1, then, by construction, we have

λmin

(
t1∑
s=1

asa
>
s

)
≥ λmin

(
t0+d+1∑
s=1

asa
>
s

)

≥ λmin

(
t0+1∑
s=1

asa
>
s +

∑
a∈A0

aa>

)

≥ λmin

(
t0+1∑
s=1

asa
>
s

)
+ λmin

(∑
a∈A0

aa>

)

= λmin

(
t0+1∑
s=1

asa
>
s

)
+ cA0

√
d

≥ λmin

(
t0∑
s=1

asa
>
s

)
+ cA0

√
d

≥ f(t0) + cA0

√
d.

However, we have

t0 ≥
1

4

(
d+

1

d
+ 2

)
=⇒

√
t0 + d+ 1+

√
t0 ≥

√
d+

1√
d

=⇒ f(t0)+cA0

√
d ≥ f(t0+d+1).

Therefore, if t0 ≥ 1
4

(
d+ 1

d + 2
)
, then it holds that t1 ≤ t0 + d+ 1. In other words, we have shown

that for all t ≥ 1
4

(
d+ 1

d + 2
)

+ d+ 1, we have

λmin

(
t∑

s=1

asa
>
s

)
≥ f(t− d− 1).

�

E.2 Proof of Lemma 6

Our proof for the tracking lemma is inspired by that of D-tracking for linear bandits by Garivier
and Kaufmann [18]. We follow similar steps but there are crucial differences. The main one lies
in the fact that we have a sequence that converges to a set C rather than to a unique point. The
convexity of C is a crucial point in our analysis as it allows to show that tracking the average of this
converging sequence will eventually allow our empirical allocation to be sufficiently close to the
set C. Intuitively, the average is a stable point to track. Furthermore, we also highlight the fact that
the sparsity of the average allocations

∑t
s=1 w(s)/t is reflected in the error by which (Na(t))a∈A

approaches the set C. This is due to the nature of our sampling rule as shall be proven.

Proof. For all t ≥ 1 denote

w(t) =
1

t

t∑
s=1

w(s).

Since C is non-empty and compact, we may define
ŵ(t) = arg min

w∈C
d∞(w(t), w).

Note that by convexity of C, there exists t′0 ≥ t0 such that ∀t ≥ t′0,
d∞((Na(t)/t)a∈A, C) ≤ d∞((Na(t)/t)a∈A, ŵ(t)) and d∞(w(t), ŵ(t)) ≤ 2ε.

To see that, let us define for all t ≥ 1, v(t) = arg minw∈C d∞(w,w(t)), and observe that for all
a ∈ A, we have∣∣∣∣∣1t

t∑
s=1

wa(s)− 1

t

t∑
s=1

va(s)

∣∣∣∣∣ ≤ 1

t

t0∑
s=1

|wa(s)− va(s)|+ 1

t

t∑
s=t0+1

|wa(s)− va(s)|

≤ t0
t

+
t− t0
t

ε.
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Thus if t ≥ t′0 = t0
ε , then d∞(w(t), 1

t v(t)) ≤ 2ε. Finally since 1
t

∑t
s=1 v(s) ∈ C (by convexity of

C), it follows that

∀t ≥ t′0 d∞(w(t), ŵ(t)) ≤ d∞

(
w(t),

1

t

t∑
s=1

v(s)

)
≤ 2ε.

We further define for all t ≥ 1, εa,t = Na(t)− tŵa(t). The main step of the proof is to show that
there exists t′′0 ≥ t′0 such that for all t ≥ t′′0 , for all a ∈ A we have

{at+1 = a} ⊆ E1(t) ∪ E2(t) ⊆ {εa,t ≤ 6tε},

where

E1(t) =

{
a = arg min

a∈supp(wt)

(Na(t)− twa(t))

}
,

E2(t) =

{
λmin

(
t∑

s=1

asa
>
s

)
< f(t) and a = A0(it)

}
.

The first inclusion is immediate by construction. Now let t ≥ t0, we have:

(Case 1) If {at+1 = a} ⊆ E1(t), then we have

εa,t = Na(t)− tŵa(t)

= Na(t)− twa(t) + twa(t)− tŵa(t)

≤ Na(t)− twa(t) + tε (since d∞(ŵ(t), w(t)) ≤ ε)
≤ min
a∈supp(w(t))

Na(t)− twa(t) + tε (since E1(t) holds)

≤ 2tε,

where the last inequality holds because∑
a∈supp(w(t))

Na(t)− twa(t) = −
∑

a∈A\supp(w(t))

Na(t) ≤ 0

thus E1(t) ⊆ {εa,t ≤ 2tε}.

(Case 2) If {at+1 = a} ⊆ E2(t), then it must hold that a ∈ A0. Let us define for al k ≥ 1

Na,1(k) =

k∑
s=1

1{ak=a and λmin(
∑k−1
s=1 asa

>
s )<f(k−1)},

Na,2(k) =

k∑
s=1

1{ak=a and λmin(
∑k−1
s=1 asa

>
s )≥f(k−1)}.

Note thatNa(k) = Na,1(k)+Na,2(k) and thatNa,1(k)−1 ≤ mina∈A0
Na,1(k) ≤ Na,1(k).

The latter property follows from the forced exploration sampling scheme. Now, since the
event E2(t) holds, we observe that

(Na,1(t)− 1) ≤ min
a∈A0

Na,1(t)λmin

(∑
a∈A0

aa>

)
≤ λmin

(
t∑

s=1

asa
>
s

)
< f(t)

and since f(t) = λmin

(∑
a∈A0

aa>
) √

t√
d

, we obtain

Na,1(t) ≤
√
t/
√
d+ 1.

Next, let k ≤ t be the largest integer such that Na,2(k) = Na,2(k − 1) + 1. Note that at
such k the event E1(k − 1) must hold by definition of Na,2(k − 1), and we have

Na,2(t) = Na,2(k) = Na,2(k−1)+1 and ak = arg min
a∈supp(w(k−1))

Na(k−1)−kwa(k−1).
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Now we write

εa,t = Na,t − tŵa(t)

= Na,1(t) +Na,2(t)− tŵa(t)

≤
√
t/
√
d+ 1 +Na,2(t)− tŵa(t).

If k − 1 ≤ t′0, then we have Na,2(k) ≤ t′0, otherwise since E1(k − 1) holds, we have

Na,2(t) = 1 +Na,2(k − 1)− (k − 1)ŵa(k − 1) + (k − 1)ŵa(k − 1)

≤ 1 + 2(k − 1)ε+ (k − 1)ŵa(k − 1).

Thus

εa,t ≤
√
t/
√
d+ 1 + max{t′0, 1 + 2(k − 1)ε+ (k − 1)ŵa(k − 1)− tŵa(t)},

and since

(k − 1)ŵa(k − 1)− tŵa(t) = (k − 1)ŵa(k − 1)− (k − 1)wa(k − 1)

+ (k − 1)wa(k − 1)− tŵa(t)

≤ (k − 1)ŵa(k − 1)− (k − 1)wa(k − 1) + twa(t)− tŵa(t)

≤ 2(k − 1)ε+ 2tε

≤ 4tε,

it follows that
εa,t ≤

√
t/
√
d+ 1 + max{t′0, 1 + 6tε}.

We conclude that for t ≥ t′′0 = max
{

1
ε ,

1
ε2d ,

t′0
ε

}
, it holds that

εa,t ≤ 9tε

and consequently that E2(t) ⊆ {εa,t ≤ 9tε}. So we have shown that for all t ≥ t′′0 , for all
a ∈ A, it holds that

{at+1 = a} ⊆ {εa,t ≤ 9tε}.

The remaining part of the proof is very similar to that of Lemma 17 in [18]. It can be immediately
shown that for t ≥ t′′0 , one has

εa,t ≤ max(εa,t′′0 , 9tε+ 1) ≤ max(t′′0 , 9tε+ 1)

Furthermore, note that for all t ≥ 1 we have supp(w(t)) ⊆ supp(w(t+ 1)) since for all a ∈ A, we
have twa(t) ≤ (t+ 1)wa(t+ 1). Therefore∑

a∈supp(w(t))∪A0

εa,t =
∑

a∈A\supp(w(t))∪A0

tŵa(t) ≥ 0.

Thus denoting pt = |supp(w(t))|\A0, we have

∀a ∈ supp(w(t)) ∪ A0, max(t′′0 , 9tε+ 1) ≥ εa,t ≥ −(pt + d− 1) max(t′′0 , 9tε+ 1),

∀a ∈ A\supp(w(t)) ∪ A0, 0 ≥ εa,t ≥ −tε,

which implies that for all t ≥ t′′0
max
a∈A
|εa,t| ≤ (pt + d− 1) max(t′′0 , 9tε+ 1) ≤ (pt + d− 1) max(t′′0 , 10).

This finally implies that for t1 = 1
ε max{t′′0 , 10}, we have for all t ≥ t1,

d∞(x(t), C∗) ≤ d∞((Na(t)/t)a∈A, ŵ(t)) = max
a∈A
|Na(t)/t−ŵa(t)| = max

a∈A

∣∣∣εa,t
t

∣∣∣ ≤ (pt+d−1)ε.

More precisely, we have

t1(ε) = max

{
1

ε2
,

1

ε3d
,
t0(ε)

ε3
,

10

ε

}
.

24



E.3 Proof of Proposition 1

Let ε > 0. First, by Lemma 2, there exists ξ(ε) > 0 such that for all µ′ such that ‖µ− µ′‖ < ξ(ε), it
holds that maxw∈C?(µ′) d∞(w,C?(µ)) < ε/2.

By Lemma 5, we have a sufficient exploration. That is lim inft→∞ t−1/2λmin(
∑t
s=1 asa

>
s ) > 0.

Thus, by Lemma 3, µ̂t converges almost surely to µ with a rate of order o(t1/4). Consequently, there
exists t0 ≥ 0 such that for all t ≥ t0, we have ‖µ− µ̂t‖ ≤ ξ(ε).

The lazy condition (7) states that there exists a sequence (`(t))t≥1 of integers such that `(1) = 1,
`(t) ≤ t and limt→∞ `(t) =∞, and limt→∞ infs≥`(t) d∞(w(t), C?(µ̂s)) = 0 a.s. This guarantees
that there exists t1 ≥ 1, there exists a sequence (h(t))t≥1 of integers such that for all t ≥ t1, we have
h(t) ≥ `(t) ≥ t and d∞(w(t), C?(µ̂h(t))) < ε/2. Now for all t ≥ t0 ∨ t1, we have

d∞(w(t), C?(µ)) ≤ d∞(w(t), C?(µ̂h(t))) + max
w∈C?(µ̂h(t))

d∞(w,C?(µ)) < ε.

We have shown that d∞(w(t), C?(µ)) −→
t→∞

0 a.s. Next, we recall that by Lemma 2,

C?(µ) is non empty, compact and convex. Thus, applying Lemma 6 yields immediately that
d∞((Na(t)/t)a∈A, C

?(µ)) −→
t→∞

0 a.s.. �
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F Sample complexity

We will use the following technical lemma which can be found for instance in [18].
Lemma 8 (Lemma 18 [18]). For any two constants c1, c2 > 0, and c2/c1 > 1 we have

inf {t ∈ N∗ : c1t ≥ log(c2t)} ≤
1

c1

(
log

(
c2e

c1

)
+ log log

(
c2
c1

))
(18)

F.1 Proof of Theorem 2

The proof of the almost sure sample complexity result follows naturally from the continuity of ψ (see
Lemma 1) and of C?(µ) (see Lemma 2).

We start by defining the event

E =
{
d∞((Na(t)/t)a∈A , C

?(µ)) −→
t→∞

0 and µ̂t −→
t→∞

µ
}
.

Observe that E holds with probability 1. This follows from Lemma 3, Lemma 5 and Proposition 1.
Let ε > 0. By continuity of ψ, there exists an open neighborhood V(ε) of {µ} ×C?(µ) such that for
all (µ′, w′) ∈ V(ε), it holds that

ψ(µ′, w′) ≥ (1− ε)ψ(µ,w?),

where w? is some element in C?(µ). Now, observe that under the event E , there exists t0 ≥ 1 such
that for all t ≥ t0 it holds that (µ̂t, (Na(t)/t)a∈A) ∈ V(ε), thus for all t ≥ t0, it follows that

ψ(µ̂t, (Na(t)/t)a∈A) ≥ (1− ε)ψ(µ,w∗).

Since µ̂t −→
t→∞

µ and a?µ is unique, there exists t1 ≥ 0 such that for all t ≥ t1, ât is unique. Thus, by
Lemma 1, we may write

Z(t) = min
a6=a∗µ̂t

µ̂>t (a∗µ̂t − a)2

2(a∗µ̂t − a)>
(∑t

s=1 asa
>
s

)−1

(aµ̂t − a)
= tψ(µ̂t, (Na(t)/t)a∈A).

By Lemma 5, there exists t2 ≥ 1 such that for all t ≥ t2 we have
t∑

s=1

asa
>
s � cId.

Hence, under the event E , for all t ≥ max{t0, t1, t2},

Z(t) ≥ t(1− ε)ψ(µ,w?) and
t∑

s=1

asa
>
s � cId.

This implies that

τδ = inf

{
t ∈ N∗ : Z(t) > β(δ, t) and

t∑
s=1

asa
>
s � cId

}
≤ max{t0, t1, t2} ∨ inf{t ∈ N∗ : (1− ε)tψ(µ,w?) > β(δ, t)}

≤ max{t0, t1, t2} ∨ inf

{
t ∈ N∗ : (1− ε)tψ(µ,w?) > c1 log

(
c2t

γ

δ

)}
. max

{
t0, t1, t2,

1

1− ε
T ∗µ log

(
1

δ

)}
,

where c1, c2, γ denote the positive constants independent of δ and t that appear in the definition of
β(t, δ) (see (9)). We used Lemma 8 in the last inequality for δ sufficiently small. This shows that
P(τδ <∞) = 1 and in particular that

P

(
lim sup
δ→0

τδ

log
(

1
δ

) . T ∗µ
)

= 1.

�
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F.2 Proof of Theorem 3

Compared to the almost sure result, the expected sample complexity guarantee is more difficult to
prove. We break our analysis into three steps. In the first step, we construct a sequence of events
over which the stopping time that defines our stopping rule is well-behaved. This requires precise
manipulations of the continuity properties of ψ and C?(µ) in combination with the tracking Lemma
6. In the second step, we show indeed that on these events, the stopping time is upper bounded up to
a constant by the optimal sample complexity. In the third step, we show that the probabilities of the
events under which the sample complexity is not well-behaved are negligible. This is guaranteed
thanks to the lazy condition (10) and the sufficient exploration (ensured by Lemma 5 under our
sampling rule). We finally conclude by giving the upper bound on the expected sample complexity.

Proof. Let ε > 0.

Step 1. By continuity of ψ (see Lemma 1), there exists ξ1(ε) > 0 such that for all µ′ ∈ Rd and
w′ ∈ Λ{

‖µ′ − µ‖ ≤ ξ1(ε)

d∞(w′, C?(µ)) ≤ ξ1(ε)
=⇒ |ψ(µ,w?)− ψ(µ′, w′)| ≤ εψ(µ,w?) = ε(T ?µ)−1 (19)

for any w? ∈ arg minw∈C?(µ) d∞(w′, w) (we have w? ∈ C?(µ)). Furthermore, by the continuity
properties of the correspondance C? (see Lemma 2), there exists ξ2(ε) > 0 such that for all µ′ ∈ Rd

‖µ− µ′‖ ≤ ξ2(ε) =⇒ max
w′′∈C?(µ′)

d∞(w′′, C?(µ)) <
ξ1(ε)

2(K − 1)

Let ξ(ε) = min(ξ1(ε), ξ2(ε)). In the following, we construct T0, and for each T ≥ T0 an event ET ,
under which for all t ≥ T , it holds

‖µ− µ̂t‖ ≤ ξ(ε) =⇒ d∞((Na(t)/t)a∈A, C
?(µ)) ≤ ξ1(ε)

Let T ≥ 1, and define the following events

E1,T =

∞⋂
t=`(T )

{‖µ− µ̂t‖ ≤ ξ(ε)}

E2,T =

∞⋂
t=T

{
inf
s≥`(t)

d∞(w(t), C?(µ̂s)) ≤
ξ1(ε)

4(K − 1)

}

⊆
∞⋂
t=T

{
∃s ≥ `(t) : d∞(w(t), C?(µ̂s)) ≤

ξ1(ε)

2(K − 1)

}
.

Note that, under the event E1,T ∩ E2,T , we have for all t ≥ T , there exists s ≥ `(t) such that
d∞(w(t), C?(µ)) ≤ d∞(w(t), C?(µ̂s)) + max

w′∈C?(µ̂s)
d∞(w′, C?(µ))

<
ξ1(ε)

2(K − 1)
+

ξ1(ε)

2(K − 1)
=

ξ1(ε)

K − 1

Define ε1 = ξ1(ε)/(K − 1). By Lemma 6, there exists t1(ε1) ≥ T such that

d∞((Na(t)/t)a∈A , C
?(µ)) ≤ (pt + d− 1)

ξ1(ε)

K − 1
≤ ξ1(ε),

and more precisely t1(ε1) = max
{

1/ε3
1, 1/(ε

2
1d), T/ε3

1, 10/ε1

}
(see the proof of Lemma 6) where .

Thus for T ≥ max{10ε2
1, ε1/d, 1}, we have t1(ε1) =

⌈
T/ε3

1

⌉
. Hence, defining for all T ≥ ε−3

1 , the
event

ET = E1,dε31Te ∩ E2,dε31Te,
we have shown that for all T ≥ T0 = max(10ε5

1, ε
4
1/d, ε

3
1, 1/ε

3
1), the following holds

∀t ≥ T, ‖µ− µ̂t‖ ≤ ξ(ε) =⇒ d∞((Na(t)/t)a∈A, C
?(µ)) ≤ ξ1(ε). (20)

Finally, combining the implication (20) with the fact that (19) holds under ET we conclude that for
all T ≥ T0, under ET we have

ψ(µ̂t, (Na(t)/t)a∈A) ≥ (1− ε)ψ?(µ). (21)
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Step 2: Let T ≥ T0 ∨ T1 where T1 is defined as

T1 = inf

{
t ∈ N∗ : λmin

(
t∑

s=1

asa
>
s

)
� cId

}
,

where we recall that c is the constant chosen in the stopping rule and is independent of δ. We note
that by Lemma 7 for all t ≥ T1 we have

Z(t) = tψ(µ̂t, (Na(t)/t)a∈A).

Thus under the event ET , the inequality (21) holds, and for all t ≥ T we have

Z(t) > t(1− ε)(T ?µ)−1.

Under the event ET , we have

τ = inf

{
t ∈ N∗ : Z(t) > β(δ, t) and

t∑
s=1

asa
>
s � cId

}
≤ inf {t ≥ T : Z(t) > β(δ, t)}
≤ T ∨ inf

{
t ∈ N∗ : t(1− ε)(T ?µ)−1 ≥ β(δ, t)

}
≤ T ∨ inf

{
t ∈ N∗ : t(1− ε)(T ?µ)−1 ≥ c1 log(c2t

γ/δ)
}

where c1, c2, γ are the positive constants that appear in the definition of the threshold β(δ, t) and do
not depend on t nor δ and where we have in particular c1 . σ2. Applying Lemma 8 yields

inf
{
t ∈ N∗ : t(1− ε)(T ?µ)−1 ≥ c1 log(c2t

γ/δ)
}
≤ T ?2 (δ),

where T ?2 (δ) = c1
1−εT

?
µ log(1/δ) + o(log(1/δ)). This means for T ≥ max{T0, T1, T

?
2 (δ)}, we have

shown that
ET ⊆ {τ ≤ T} (22)

Define T ?3 (δ) = max{T0, T1, T
?
2 (δ)}. We may then write for all T ≥ T ?3 (δ)

τδ ≤ τδ ∧ T ?3 (δ) + τδ ∨ T ?3 (δ) ≤ T ?3 (δ) + τδ ∨ T ?3 (δ).

Taking the expectation of the above inequality, and using the set inclusion (22), we obtain that

E[τ ] ≤ T ?3 (δ) + E[τ ∨ T ?3 (δ)]

Now we observe that

E[τ ∨ T ?3 (δ)] =

∞∑
T=0

P(τ ∨ T ?3 (δ) > T )

=

∞∑
T=T?3 (δ)+1

P(τ ∨ T ?3 (δ) > T )

=

∞∑
T=T?3 (δ)+1

P(τ > T )

≤
∞∑

T=T?3 (δ)+1

P(EcT )

≤
∞∑

T=T0∨T1

P(EcT )

We have thus shown that

E[τ ] ≤ c1
1− ε

T ?µ log(1/δ) + o(log(1/δ)) + T0 ∨ T1 +

∞∑
T=T0∨T1

P(EcT ). (23)
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Step 3: We now show that
∑∞
T=T0∨T1+1 P(EcT ) < ∞ and that it can be upper bounded by a

constant independent of δ. To ensure this, we shall see that there is a minimal rate by which the
sequence (`(t))t≥∞ must grow. Let T ≥ T0 ∨ T1, we have by the union bound

P(EcT ) ≤ P(Ec1,dε31Te) + P(Ec1,dε31Te).

First, using a union bound and the lazy condition (10), we observe that there exists h
(

ξ1(ε)
4(K−1)

)
> 0

and α > 0 such that

P(Ec1,dε31Te) ≤
∞∑

t=dε31Te

P
(

inf
s≥`(t)

d∞(w(t), C?(µ̂s)) >
ξ1(ε)

4(K − 1)

)

≤ h
(

ξ1(ε)

4(K − 1)

) ∞∑
t=dε31Te

1

t2+α

≤ h
(

ξ1(ε)

4(K − 1)

)∫ ∞
dε31Te−1

1

t2+α
dt

≤ h
(

ξ1(ε)

4(K − 1)

)
1

(1 + α)(dε3
1T e − 1)1+α

.

This clearly shows that
∑∞
T=T0∨T1

P(Ec
1,dε31Te

) <∞.

Second, we observe, using a union bound, Lemma 5 and Lemma 4, that there exists strictly positive
constants c3, c4 that are independent of ε and T , and such that

P(Ec2,dε31Te) ≤
∞∑

t=`(dε31Te)

P (‖µ− µ̂t‖ > ξ(ε))

≤ c3
∞∑

t=`(dε31Te)

td/4 exp(−c4ξ(ε)2
√
t).

For t large enough, the function t 7→ td/4 exp(−c4ξ(ε)2
√
t) becomes decreasing. Additionally, we

have by assumption that (`(t))t≥1 is a non decreasing and that limt→∞ `(t) =∞, thus we may find
T2 > T0 ∨ T1 such that for all T ≥ T2, the function t 7→ td/4 exp(−c4ξ(ε)2

√
t) is decreasing on

[`(ε3
1T )− 1,∞). Hence, for T ≥ T2, we have

P(Ec2,dε31Te) ≤ c3
∫ ∞
`(dε31Te)−1

td/4 exp(−c4ξ(ε)2
√
t) dt.

Furthermore, for some T3 ≥ T2 large enough, we may bound the integral for all T ≥ T3 as follows∫ ∞
`(dε31Te)−1

td/4 exp(−c4ξ(ε)2
√
t) dt .

`((dε3
1T e)− 1)d/2+1

ξ(ε)4 exp
(
c4ξ(ε)2

√
`(dε3

1T e)− 1
) .

We spare the details of this derivation as the constants are irrelevant in our analysis. Essentially,
the integral can be expressed through the upper incomplete Gamma function which can be upper
bounded using some classical inequalities [25, 26]. We then obtain that for T ≥ T3,

P(Ec2,dε31Te) .
`((dε3

1T e)− 1)d/2+1

ξ(ε)4 exp
(
c4ξ(ε)2

√
`(dε3

1T e)− 1
) .

Now, the lazy condition (10) ensures that limt→∞ `(t)/tγ > 0 for some γ ∈ (0, 1) and `(t) ≤ t.
Thus there exists T4 ≥ T3 such that for all T ≥ T4,

P(Ec2,dε31Te) .
`((dε3

1T e)− 1)d/2+1

ξ(ε)4 exp
(
c4ξ(ε)2

√
`(dε3

1T e)− 1
) . T d/2+1

exp
(
c5(ε)T γ/2

) .
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This shows that
∞∑

T=T0∨T1

P(Ec2,dε31Te) =

T4∑
T=T0∨T1

P(Ec2,dε31Te) +

∞∑
T=T4+1

P(Ec2,dε31Te)

.
T4∑

T=T0∨T1

P(Ec2,dε31Te) +

∞∑
T=T4+1

T d/2+1

exp
(
c5(ε)T γ/2

)
<∞

where the last inequality follows from the fact that we can upper bound the infinite sum by a Gamma
function, which is convergent as long as γ > 0.

Finally, we have thus shown that
∞∑

T=T0∨T1+1

P(EcT ) <∞. (24)

We note that this infinite sum depends on (`(t))t≥1 and ε only.

Last step: Finally, we have shown that for all ε > 0

E[τ ] ≤ c1
1− ε

T ?µ log(1/δ) + o(log(1/δ)) + T0 ∨ T1 +

∞∑
T=T0∨T1

P(EcT )

where
∑∞
T=T0∨T1

P(EcT ) <∞ and is independent of δ. Hence,

lim sup
δ→0

E[τδ]

log(1/δ)
≤ c1

1− ε
T ?µ .

Letting ε tend to 0 and recalling that c1 . σ2, we conclude that

lim sup
δ→0

E[τδ]

log(1/δ)
. σ2T ?µ .
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G Best-arm identification on the unit sphere

This section is devoted to the proofs of the results related to the best-arm identification problem where
the set of arms is the unit sphere Sd−1. This set is strictly convex so that for any µ ∈ Rd\{0}, the
optimal action a?µ is unique. We also note that the sphere enjoys the nice following property: for all
µ ∈ Rd and for all a ∈ Sd−1,

µ>(a?µ − a) =
‖µ‖
2
‖a?µ − a‖2 (25)

We recall that our study is restricted to models with a parameter µ inM(ε0).

We derive our sample complexity lower bound, presented in Theorem 4, in the next subsection. We
then analyze the performance of our stopping rule, and prove Proposition 3. We conclude with the
analysis of the sample complexity of our proposed algorithm, and establish Theorem 5.

G.1 Lower bound – Proof of Theorem 4

As in the case of a finite set of arms, we can derive a lower bound using a change-of-measure
argument. The lower bound is obtained as the value of a constrained minimization problem. We get
one constraint for each confusing parameter. As it turns out, analyzing the resulting constraints is
challenging.

The proof consists of 4 steps. In the first step, we write the constraints generated by all confusing
parameters. The set of confusing parameters is denoted by Bε(µ). In the second and third steps, we
make successive reductions of the set Bε(µ), and hence reduce the number of constraints (yielding
looser lower bounds of the sample complexity). At the end of third step, we have restricted our
attention to the set of confusing parameters Rε(µ), and have provided useful properties of these
parameters. The last step of the proof exploits these properties to derive the lower bound.

Let ε ∈ (0, ε0/5), δ ∈ (0, 1), and µ ∈M(ε0).

Step 1: Change-of-measure argument. We start by a direct consequence of the change-of-
measure argument (see Lemma 19 [20]). For all λ ∈ Rd,

1

2σ2
(µ− λ)>E

[
τ∑
s=1

asa
>
s

]
(µ− λ) ≥ sup

E∈Fτ
kl (Pµ (E) ,Pλ (E)) .

This result was shown by Soare in [17] and we omit its proof here. Now for all µ ∈M(ε0), define
the set Oε(µ) of ε-optimal arms associated with the linear bandit problem parameterized by µ as

Oε(µ) =
{
a ∈ A : µ>(a?µ − a) ≤ ε

}
,

and the set Bε(µ) of confusing or bad parameters for µ as

Bε(µ) =
{
λ ∈ Rd : Oε(µ) ∩Oε(λ) = ∅

}
.

Note that Bε(µ) is not empty since ε < ε0. Now observe that for any (ε, δ)-PAC algorithm and for
all λ ∈ Bε(µ), we have

Pµ(âτ ∈ Oε(µ)c) ≤ δ and Pλ(âτ ∈ Oε(µ)c) ≥ Pλ(âτ ∈ Oε(λ)) ≥ 1− δ.
Since {âτ ∈ Oε(µ)c)} ∈ Fτ , by the monotonicity properties of x 7→ kl(x, 1− x), we may write, for
δ ∈ (0, 1/2],

sup
E∈Fτ

kl (Pµ (E) ,Pλ (E)) ≥ kl(δ, 1− δ).

If δ ∈ [1/2, 0) we show similarly, using the event {âτ ∈ Oε(µ)}, that

sup
E∈Fτ

kl (Pµ (E) ,Pλ (E)) ≥ kl(1− δ, δ) = kl(δ, 1− δ).

Hence, for any (ε, δ)-PAC strategy, for all λ ∈ Bε(µ), we have

1

2
(µ− λ)>E

[
τ∑
s=1

asa
>
s

]
(µ− λ) ≥ kl(δ, 1− δ). (26)
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Step 2: Reductions of Bε(µ). Finding the most confusing parameters in Bε(µ) is challenging. We
restrict our search to a simpler set of confusing parameters at the cost of obtaining a looser bound.
First reduction. Define the set

Dε(µ) ,

λ ∈M(ε0) : µ>(a?µ − a?λ) >

(
1 +

√
‖µ‖
‖λ‖

)2

ε

 . (27)

We prove that Dε(µ) ⊆ Bε(µ). First, let us note that Dε(µ) is non-empty. Indeed, since µ ∈M(ε0),
the arm −a?µ 6∈ Oε(µ) since µ>(a?µ − (−a?µ)) > 2ε0 > 2ε. Consider λ = −3µ = −3‖µ‖a?µ. The
optimal arm for λ is −a?µ (because A = Sd−1), which gives (1 +

√
‖µ‖/‖λ‖)2ε = (16ε/9) < 2ε.

Thus, λ ∈ Dε(µ).

Now, let λ ∈ Dε(µ) and let us show that Oε(µ) ∩Oε(λ) = ∅. Let a ∈ Oε(µ), then

〈λ, a∗λ − a〉 =
‖λ‖
2
‖a∗λ − a‖2 (using (25))

≥ ‖λ‖
2

∣∣‖a∗λ − a∗µ‖ − ‖a∗µ − a‖∣∣2 (reverse triangular inequality)

=
‖λ‖
‖µ‖

∣∣∣∣∣
√
‖µ‖
2
‖a∗λ − a∗µ‖ −

√
‖µ‖
2
‖a∗µ − a‖

∣∣∣∣∣
2

=
‖λ‖
‖µ‖

∣∣∣√(µ, a?µ − a?λ)−
√
µ>(a?µ − a)

∣∣∣2 (using (25))

>
‖λ‖
‖µ‖

((
1 +

√
‖µ‖
‖λ‖

)
√
ε−
√
ε

)2

(since λ ∈ Dε(µ) and a ∈ Oε(µ))

= ε,

thus a 6∈ Oε(λ). We have shown that

Dε(µ) ⊆ Bε(µ). (28)

Second reduction. Next, we further reduce the set to H(µ) ∩ Dε(µ), where H(µ) is defined below.
Denote by G(Sd−1, a?µ) the tangent space of Sd−1 at a?µ. Define

H(µ) ,

{
λ ∈M(ε0) :

λ

‖µ‖
∈ G(Sd−1, a?µ)

}
. (29)

Note that if λ ∈ H(µ), then ‖λ‖ ≥ ‖µ‖. This is because on the sphere, it also happens that
a?µ = µ/‖µ‖ ∈ H(µ) and is the closest point to the origin fromH(µ). Let us prove thatH(µ)∩Dε(µ)
is not empty.

First, let a ∈ O4ε(µ), thus ε0 < µ>a?µ ≤ µ>a + 4ε, thus µ>a > ε0 − 4ε > ε0 − 5ε > 0, which
further implies that µ>a?µ − 4ε > µ>a?µ − 5ε > 0. Hence, by continuity of the map b 7→ µ>b on the
sphere, we may find arms b ∈ Sd−1 such that µ>a?µ − 4ε > µ>b > µ>a?µ − 5ε > 0. Thus, for each
of these arms, there exists a parameter λb ∈ H(µ) such that b = λb/‖λb‖ = arg maxb∈Sd−1 λ>b b. In
addition, we have that, for such arms, 5ε > µ>(a?µ − b) > 4ε, and since ‖λb‖ > ‖µ‖, we obtain

5ε > µ>(a?µ − b) > 4ε >

(
1 +

√
‖µ‖
‖λb‖

)2

ε (30)

This shows that λb belongs to Dε(µ). HenceH(µ) ∩ Dε(µ) is not empty.

Step 3: Final reduction, and properties. The final reduction stems from the following observation.
From (25), all elements b ∈ Sd−1, such that 8ε/‖µ‖ < ‖a?µ − b‖2 < 10ε/‖µ‖ have their associated
λb ∈ H(µ) ∩ Dε(µ). We denote byRε(µ) the corresponding set of parameters:

Rε(µ) , {λ ∈ H(µ) ∩ Dε(µ) : 4ε < µ>(a?µ − a?λ) < 5ε}. (31)
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Note that the span of the set {λ− µ : λ ∈ Rε(µ)} is a d− 1-dimensional space.

Next, we establish the following useful property. There are constants c1, c2 > 0 such that for any
λ ∈ Rε(µ),

c1‖µ‖ε ≤ ‖λ− µ‖2 ≤ c2‖µ‖ε.

To this aim, we first establish, using elementary geometry, the following identity for all λ ∈ H(µ)

‖µ− λ‖2(‖µ‖ −∆(a?λ))2 + ‖µ‖2∆(a?λ)2 = ‖µ‖4‖a?µ − a?λ‖2 (32)

where ∆(a) = µ>(a?µ − a) denotes the gap between a and the best arm. To show the identity (32),
let us note that µ, λ and 0 (the center of the sphere Sd−1) define a 2-dimensional plane, and that
a?µ and a?λ belong to this plane. Without loss of generality, we may assume that ‖µ‖ = 1 (we can
always renormalize). Since µ, λ ∈ H(µ), and by construction (µ/‖µ‖)>(µ−λ) = a?µ

>(µ−λ) = 0.
Thales’ Theorem (the intercept Theorem) guarantees

∆(a?µ)

1
=
‖p− λ‖
‖µ− λ‖

,

where p is the orthogonal projection of a?λ onH(µ). Next, by Pythagoras’ Theorem, we have

‖µ− p‖2 + ∆(a?λ)2 = ‖a?µ − a?λ‖2.

By construction, we have ‖µ− λ‖ = ‖µ− p‖+ ‖p− λ‖, and using the above two equations gives

‖µ− λ‖2(1−∆µ,A(a∗λ))2 + ∆µ,A(a∗λ)2 = ‖a∗µ − a∗λ‖2,

which gives (32) by just renormalizing. Now, If follows immediately from (25) and (32) that

‖µ− λ‖2 = ‖µ‖2‖a?µ − a?λ‖2
4− ‖a?µ − a?λ‖2

(2− ‖a?µ − a?λ‖2)2
.

Note that on the sphere for λ ∈ H(µ), we have 0 ≤ ‖a?µ − a?λ‖ ≤ 1. Hence, we obtain

3

2
‖µ‖2‖a?µ − a?λ‖2 ≤ ‖µ− λ‖2 ≤ 4‖µ‖2‖a?µ − a?λ‖2,

or equivalently, using (25), that

3‖µ‖〈µ, a?µ − a?λ〉 ≤ ‖µ− λ‖2 ≤ 8‖µ‖〈µ, a?µ − a?λ〉.

Finally let λ ∈ Rε(µ) ⊆ H(µ) ∩ Dε(µ). Since (31) holds, it follows that for such λ, we have

12‖µ‖ε ≤ ‖λ− µ‖2 ≤ 40‖µ‖ε. (33)

Step 4: For λ ∈ Rε(µ), combining satisfying (33) and (26), we obtain

kl(δ, 1− δ) ≤ 1

2σ2
inf

λ∈Bε(µ)
(µ− λ)>E

[
τ∑
s=1

asa
>
s

]
(µ− λ)

≤ 1

2σ2
inf

λ∈Rε(µ)
(µ− λ)>E

[
τ∑
s=1

asa
>
s

]
(µ− λ)

≤ 1

2σ2
inf

x∈S̄(µ)
x>E

[
τ∑
s=1

asa
>
s

]
x‖λ− µ‖2

≤ 20‖µ‖ε
σ2

inf
x∈S̄(µ)

x>E

[
τ∑
s=1

asa
>
s

]
x,

where

S̄(µ) ,

{
λ− µ
‖λ− µ‖

: λ ∈ Rε(T )

}
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Hence, we have shown that

inf
x∈S̄(µ)

x>E

[
τ∑
s=1

asa
>
s

]
x ≥ σ2

20‖µ‖ε
kl(δ, 1− δ). (34)

To complete the derivation, we analyze the right hand side of the lower bound (34). First, define the
set of sampling rules as follows

X , {(at)t≥1 : ∀t ≥ 1, at is Ft−1-measurable} , (35)

and the expected matrix of exploration under a sampling rule (at)t≥1 ∈ X as

Gτ ((at)t≥1) , E

[
τ∑
s=1

asa
>
s

]
.

We will show that

sup
(at)t≥1∈X

inf
x∈S̄(µ)

x>Gτ ((at)t≥1)x ≤ E[τ ]

d− 1
. (36)

For a given symmetric matrix A ∈ Rd×d, we denote the eigenvalues of A in decreasing order as
λ1(A), λ2(A), . . . , λd(A).

Let (at)t≥1 ∈ X . We start by noting that Gτ ((at)t≥1) is positive semi-definite matrix and that
dim(span(S̄)) = d− 1, therefore, using the Courant-Fisher min-max theorem, we have

λd−1 (Gτ ((at)t≥1)) ≥ inf
x∈S̄(µ)

x>Gτ ((at)t≥1)x ≥ 0.

Additionally, we observe that for all t ≥ 1, ‖at‖ = 1 since at is taking values in Sd−1. Thus, we
obtain

d∑
k=1

λk (Gτ ((at)t≥1)) = tr (Gτ ((at)t≥1)) = E

[
τ∑
s=1

‖as‖2
]

= E[τ ],

where we used the linearity of the trace and of the expectation. We conclude from the above that
the value of max-min optimization problem sup(at)t≥1∈X infx∈S̄(µ) x

>Gτ ((at)t≥1)x can be upper
bounded by the value of the following optimization problem

max
λ1,...,λd

λd−1

s. t.
d∑
k=1

λk = E[τ ]

λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0.

We easily see that the value of this optimization problem is E[τ ]/(d − 1) (with λd = 0 and λi =
E[τ ]/(d− 1) for all i 6= d). Hence (36) holds.

From (34) and (36), we conclude that

E[τ ] ≥ σ2(d− 1)

40‖µ‖ε
kl(δ, 1− δ).

�

G.2 Stopping rule – Proof of Proposition 3

Let us consider the events

E1 = {τ <∞} =

{
∃t ∈ N∗ : Z(t) ≥ β(δ, t) and λmin

(
t∑

s=1

asa
>
s

)
≥ max

{
c,
ρ(δ, t)

‖µ̂t‖2

}}
,

E2 =
{
µ>(a?µ − âτ ) > ε

}
,

E3 =

∞⋂
t=1

‖µ̂t − µ‖2 ≤
(
ε

εt
− 1

)2
ρ(t, δt)

λmin

(∑t
s=1 asa

>
s

) or λmin

(
t∑

s=1

asa
>
s

)
≥ c

 .
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If there exists t ≥ 1 such that
∑t
s=1 asa

>
s � 0, we have by Lemma 7 that Z(t) =

inf{b∈A:|µ̂>t (ât−b)|≥εt} Zât,b,εt(t) where

Zât,b,εt(t) = sgn(µ̂>t (ât − b) + εt)
(µ̂>t (ât − b) + εt)

2

2(ât − b)>
(∑t

s=1 asa
>
s

)−1

(ât − b)
.

Thus, we have

E1 ∩ E2 =

{
∃t ∈ N∗ : inf

{b∈A:|µ̂>t (ât−b)|≥εt}
Za,b,εt(t) ≥ β(δ, t)

and λmin

(
t∑

s=1

asa
>
s

)
≥ max

{
c,
ρ(δ, t)

‖µ̂t‖2

}
and µ>(a?µ − âτ ) > ε

}
Now using (25), we have µ>(a?µ − b) = ‖µ‖

2 ‖a
?
µ − a‖2. Thus

µ>(a?µ − ât) > ε =⇒ µ̂>t (ât − a?µ) =
‖µ̂t‖
‖µ‖

µ>(a?µ − ât) >
‖µ̂t‖
‖µ‖

ε.

Observe that‖µ̂t − µ‖
2 ≤

(
ε
εt
− 1
)2

ρ(t,δt)

λmin(
∑t
s=1 asa

>
s )

‖µ̂t‖2 ≥ ρ(t,δt)

λmin(
∑t
s=1 asa

>
s )

=⇒
(
ε

εt
− 1

)
‖µ̂t‖ ≥ ‖µ̂t − µ‖

=⇒
(
ε

εt
− 1

)
‖µ̂t‖ ≥ |‖µ̂t‖ − ‖µ‖|

=⇒ ε

εt
‖µ̂t‖ ≥ ‖µ‖.

Hence, we have
µ>(a?µ − ât) > ε

‖µ̂t − µ‖2 ≤
(
ε
εt
− 1
)2

ρ(t,δt)

λmin(
∑t
s=1 asa

>
s )

‖µ̂t‖2 ≥ ρ(t,δt)

λmin(
∑t
s=1 asa

>
s )

=⇒ µ̂>t (ât − a?µ) > εt

It then follows that

E1 ∩ E2 ∩ E3 ⊆

{
t ∈ N∗ : Zât,a?µ,εt ≥ β(δ, t) and λmin

(
t∑

s=1

asa
>
s

)
≥ c and µ̂>t (ât − a?µ) > εt

}
.

Considering (15), we have under the event E1 ∩ E2 ∩ E3 that

max
{µ′:(µ′)>(ât−a?µ)+εt≥0}

fµ′(rt, at, . . . , r1, a1) = fµ̂t(rt, at, . . . , r1, a1),

max
{µ′:(µ′)>(ât−a?µ)+εt≤0}

fµ′(rt, at, . . . , r1, a1) ≥ fµ(rt, at, . . . , r1, a1).

As a consequence, under E1 ∩ E2 ∩ E3, we have

Zât,a∗µ,εt(t) = log

(
maxµ′:(µ′)>(ât−a?µ)+εt≥0 fµ′(rt, at, . . . , r1, a1)

maxµ′:(µ′)>(ât−a?µ)+εt≤0 fµ′(rt, at, . . . , r1, a1)

)

≤ log

(
fµ̂t(rt, at, . . . , r1, a1)

fµ(rt, at, . . . , r1, a1)

)
=

1

2
(µ̂t − µ)>

(
t∑

s=1

asa
>
s

)
(µ̂t − µ)

=
1

2
‖µ− µ̂t‖2∑t

s=1 asa
>
s
,
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Hence,

E1 ∩ E2 ∩ E3 ⊆

{
∃t ∈ N∗ :

1

2
‖µ− µ̂t‖2∑t

s=1 asa
>
s
≥ β(δ, t) and

t∑
s=1

asa
>
s

}
.

We further deduce that

P (E1 ∩ E2 ∩ E3) ≤ P

(
∃t ∈ N∗ :

1

2
‖

t∑
s=1

asηs‖2(∑t
s=1 asa

>
s +cId)−1 ≥ 2σ2ζt

)

≤
n∑
t=1

P

(
1

2
‖

t∑
s=1

asηs‖2(∑t
s=1 asa

>
s +cId)−1 ≥ 2σ2ζt

)

≤
∞∑
t=1

δt
2
≤ δ

2
,

where for the third inequality, we use the result of Proposition 4. Using a union bound and Proposition
4 again, we also have

P (Ec3) ≤
∞∑
t=1

P

‖µt − µ‖2 ≥ ( ε

εt
− 1

)2
ρ(t, δt)

λmin

(∑t
s=1 asa

>
s

) , t∑
s=1

asa
>
s � c


≤
∞∑
t=1

P

(
‖

t∑
s=1

asηs‖2(∑t
s=1 asa

>
s +cId)−1 ≥ 2σ2ζt

)

≤
∞∑
t=1

δt
2
≤ δ

2

Finally, we obtain
P
(
τ <∞, µ>(a?µ − âτ ) > ε

)
= P(E1 ∩ E2) ≤ P(E1 ∩ E2 ∩ E3) + P(Ec3) ≤ δ. (37)

�

G.3 Sample complexity – Proof of Theorem 5

We recall that U = {u1, . . . , ud} is an orthonormal basis in Rd, U ⊂ Sd−1 and our sampling rule is
at = u(t mod d)

Almost sure guarantees. Observe that for all t ≥ d⌈
t

d

⌉∑
u∈U

uu> �
t∑

s=1

asa
>
s �

⌊
t

d

⌋∑
u∈U

uu> � 0. (38)

Let t ≥ d. We have
Z(t) = inf

{b∈A:|µ̂>t (ât−b)|≥εt}
Zât,b,εt(t)

≥ inf
{b∈A:|µ̂>(ât−b)|≥εt}

(µ̂>t (ât − b) + εt)
2

2‖ât − b‖2
λmin

(
t∑

s=1

asa
>
s

)

≥ inf
{b∈A:|µ̂>t (ât−b)|≥εt}

(
µ>t (ât − b)
‖ât − b‖

+
εt

‖ât − b‖

)2

λmin

(
t∑

s=1

asa
>
s

)

≥ inf
{b∈A:|µ̂>t (ât−b)|≥εt}

(
‖µt‖

2
‖ât − b‖+

εt
‖ât − b‖

)2

λmin

(
t∑

s=1

asa
>
s

)

≥ inf
{b∈A:‖|µ̂t‖‖ât−b)‖2≥2εt}

(
‖µt‖

2
‖ât − b‖+

εt
‖ât − b‖

)2

λmin

(
t∑

s=1

asa
>
s

)

≥ 2εt‖µ̂t‖λmin

(
t∑

s=1

asa
>
s

)
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Thus, using (38), we obtain

Z(t) ≥ 2εt‖µ̂t‖
⌊
t

d

⌋
. (39)

Now, consider the choice

εt =
ε

1 + ε
(

4σ2 log
(

4
δt

⌈
t
d

⌉))−1/2
. (40)

Note that for all εt < ε and εt −→
t→∞

ε. We have

τ ≤ d ∨ inf

{
t ∈ N∗ : ε‖µt‖

⌊
t

d

⌋
≥ 4σ2 log

(
4

δt

⌈
t

d

⌉)}
Now by the force exploration (38), and using (3), we have that ‖µ̂t‖ −→

t→∞
‖µ‖ (a.s.). Define the event

E = {µ̂t‖ −→
t→∞

‖µ‖}. On this event, for all ξ > 0, there exists t0 > 0 such that ‖µ̂t‖ > (1− ξ)‖µ‖.
Hence on E , we have

τ ≤ max{d, t0} ∨ inf

{
t ∈ N∗ : ε(1− ξ)‖µ‖

⌊
t

d

⌋
≥ 4σ2 log

(
4

δt

⌈
t

d

⌉)}
.

Using Lemma 8 and similar arguments as in the analysis of the sample complexity for the case of
finite sets of arms in Appendix F, we obtain that on E ,

τ . max{d, t0}+
4σ2d

(1− ξ)‖µ‖
log

(
1

δ

)
+ o

(
log

(
1

δ

))
Thus, we have shown that P (τ <∞) = 1 and more precisely, letting ξ tend to 0, that

P
(

lim sup
δ→0

τ

log(1/δ)
.

σ2d

ε‖µ‖

)
= 1 (41)

Guarantees in expectation. To obtain an upper bound on the expected sample complexity, we
construct for all T ≥ 1, the events

ET =

∞⋂
t=T

{‖µ̂t − µ‖ ≤ ξ‖µ‖} (42)

Following the same chain of arguments as in Appendix F.2 (see Step 2), we can show that

E[τ ] .
dσ2

(1− ξ)ε‖µ‖
log(1/δ) + o(log(1/δ)) + d+

∞∑
T=d

P(EcT ). (43)

Then again using the forced exploration (38) and Lemma 4, we obtain that for all T ≥ 1

P(EcT ) ≤
∞∑
t=T

c1 exp(−c2ξ2‖t), (44)

where c1, c2 are positive constants that only depends on d, µ and σ. Then following similar steps
as in Appendix F.2 (see Step 3), we can show that

∑∞
T=d P(EcT ) < ∞, from which we may then

conclude that

lim sup
δ→0

E[τ ]

log(1/δ)
.

dσ2

‖µ‖ε
.

�
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