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In Appendix, we first provide details and ablations about the regularization terms we employed
in training our DEFTET in Sec. 1. Details about the network architecture we used in different
applications are provided in Sec. 2. We show additional experimental details and results in Sec. 3.

1 Explanations and Ablations of Loss Functions

In this section, we first provide explanations about different regularizers we employed in the main
paper, and we provide ablation studies of different regularization terms. The notation follows the
main paper.

1.1 Explanations

The Laplacian loss, Llap, penalizes the change in relative positions of neighboring vertices to encour-
age the deformed tetrahedron to keep the initial regularity:

Llap =
1

N

N∑
i=1

∣∣∣∆vi −
1

|N (vi)|
∑

v′∈N (vi)

∆v′

∣∣∣2, (1)

where N (vi) denotes the neighbors of vertex vi, and ∆vi = [∆xi,∆yi,∆zi]
T .

The Delta Loss, Ldel, encourages the deformation to be local by penalizing large deformation for
each of the vertices:

Ldel =
1

N

N∑
i=1

|∆vi |2. (2)

We want the tetrahedral mesh to remain as regular as possible.

The EquiVolume loss, Lvol, encourages each deformed tetrahedrons to have similar volume and
avoids flipped tetrahedrons, whose volume is negative, by penalizing the differences in volume for
each tetrahedron:

Lvol =
1

K

K∑
k=1

|Vk − V |4, (3)

where Vk is the volume of tetrahedron Tk and V is the average volume. We empirically find the
power of 4 works best.

The AMIPS Loss [8], Lamips, penalizes the distortion of each tetrahedron to obtain more regular
tetrahedrons and avoid needle-like predictions. We follow Tetwild [11] in defining this loss:

Lamips =
1

K

K∑
k=1

tr(JT
k Jk)

det(Jk)
2
3

, (4)
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GT Lrecons +Llap +Ldel +Lvol + Lamips + Lsm

Figure 1: Ablation study on regularization terms. We sequentially add regularizations from left to right.

Llap Ldel Lvol Lamips Lsm Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean
7 7 7 7 7 68.93 60.43 84.50 87.02 69.61 72.15 47.28 85.45 55.91 83.92 63.75 85.00 71.97 71.99

7 7 7 7 51.01 41.03 80.52 80.23 65.39 62.75 37.97 82.18 42.61 76.02 51.62 83.92 59.52 62.67
7 7 7 49.20 48.14 84.14 80.10 66.41 74.18 40.34 85.22 41.53 83.02 64.57 85.88 58.75 66.27

7 7 73.10 63.64 85.53 88.45 72.59 76.38 50.92 86.70 55.73 85.58 69.56 87.13 74.89 74.63
7 74.52 63.53 85.78 89.06 72.79 76.42 50.97 86.60 58.44 85.96 70.36 89.28 75.17 75.30

Table 1: Ablation study on Point Cloud reconstruction. We report 3D IOU (higher is better).

Llap Ldel Lvol Lamips Lsm Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean
7 7 7 7 7 0.68 0.63 0.61 0.57 0.82 0.82 2.57 0.80 0.76 0.63 0.83 0.46 0.87 0.85

7 7 7 7 0.62 0.58 0.54 0.56 0.71 0.71 1.70 0.73 0.61 0.56 0.68 0.40 0.75 0.70
7 7 7 0.65 0.61 0.54 0.55 0.70 0.71 1.80 0.72 0.68 0.56 0.70 0.40 0.77 0.72

7 7 0.60 0.58 0.58 0.52 0.72 0.71 1.82 0.74 0.74 0.58 0.71 0.42 0.75 0.73
7 0.56 0.58 0.57 0.51 0.71 0.72 1.82 0.74 0.75 0.56 0.70 0.38 0.73 0.72

Table 2: Ablation study on Point Cloud reconstruction. We report Chamfer Distance (lower is better).

where Jk is the Jacobian of the 3D deformation that transforms the deformed tetrahedron Tk into a
regular tetrahedron, tr() denotes the trace of a matrix, and det() denotes the matrix determinant.

Smoothness loss [3], Lsm, encourages the mesh surface to be smooth by penalizing the difference in
normals for neighboring faces. This loss is applied only when 3D ground-truth is available. Let E be
the set of all edges in F , which denotes the set of all triangular faces whose Ps(v) equals to one, and
θi be the angle between two neighboring faces, which share the edge ei:

Lsm =
1

|E|
∑
ei∈E

(− cos(θi) + 1)2. (5)

We want the neighbouring boundary faces to be approximately parallel.

We find that all of these regularizations are necessary to obtain non-degenerated and smooth predic-
tions, as shown next.

1.2 Ablation Study

We first provide a qualitative ablation study for different terms by optimizing DEFTET to ground
truth shape in Fig. 1. We also provide a quantitative evaluation for the task of Point Cloud 3D
Reconstruction in Table 1 and 2. We sequentially add regularizations in both experiments. If we only
use Lrecons loss without any regularizations, the predicted shapes have many flipped and degenerated
triangles, and achieve the worst performance in terms of Chamfer Distance. Llap helps maintain the
regularity from the initial tetrahedron. However, although it gives the best performance in terms of
Chamfer Distance, the 3D IOU becomes worst. We suspect the reason might because the relatively
large deformation of each tetrahedron makes the occupancy prediction harder. Ldel encourages local
deformation and further helps to maintain the regularity, making the 3D IOU performance better.
Lvol helps avoid flipped tetrahedrons, and Lamips helps avoid needle-like predictions. These two
regularizations are the main terms to avoid the degenerations in the output and produce results with
much better performance in terms of 3D IOU and comparable performance in terms of Chamfer
Distance. Lsm further helps to smooth the prediction and make the output look visually better.

2 Network Architecture

In this section, we provide details about the network architecture for each of the applications.

Point Cloud 3D Reconstruction: For the point cloud encoder, we adopt PVCNN [16], which
outputs multi-scale feature maps of size: C1 × 32× 32× 32, C2 × 16× 16× 16, C3 × 8× 8× 8,
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respectively, where C1, C2, C3 are the number of channels and set to C1 = 64, C2 = 256, C3 = 512.
We have two encoders: one encoder provides a feature map for the Pos-Decoder, which predicts
the deformation for each vertex. The second encoder provides a separate feature map for the Occ-
Decoder, which predicts the occupancy for each tetrahedron. The Pos-Decoder is composed of 2
Graph-Convolutional-Layers [15] (GCN), followed by 2 Multi-Layer-Perceptron (MLP) layers. Each
GCN layer has 256/128 hidden neurons, respectively, and each MLP layer has 128/64 hidden neurons,
respectively. The Occ-Decoder comprises of four MLP layers, with hidden neurons being 256, 256,
128, and 64, respectively.

Single Image 3D Reconstruction using 3D Supervision: We adopt the network architecture from
DISN [25]. In particular, we have two VGG16 [22] image encoders, one is for the prediction of
occupancy of each tetrahedron, and the other is for the prediction of deformation of each vertex.
For each encoder, we have a corresponding decoder to predict the occupancy and deformation,
respectively. For the deformation prediction decoder, we simply change the output dimension from
one to three. We refer to the original DISN [25] paper for more details about the architecture.

Single Image 3D Reconstruction using 2D Supervision: For a fair comparison, we adopt the
network architecture from DVR [20] but change the output of the last layer to accommodate the
tetrahedron shape. We use 40× 40× 40 resolution in 2D supervision training as we find it is enough
to provide a high-quality reconstruction with relatively low memory cost. Note that higher resolution
could further improve the results.

Laplacian Layer: The Laplacian Layer is a differentiable layer, where the position of each vertex
computes the average of its neighboring boundary vertices. Specifically, for the boundary vertex vi in
the prediction:

vi =
1

|N ′|
∑

v′∈N ′(vi)

v′, (6)

where N ′ denotes all the vertices that are both on the predicted boundary surface and neighbouring
to vi. To train the model with a Laplacian layer, we first pre-train the occupancy and deformation
prediction, and have an additional Def-Decoder to predict a new position offset for each vertex. The
Laplacian layer is applied after this prediction, and the loss function is applied to the smoothed
vertices. Since the layer is differentiable, we can back-propagate the gradient to the network to learn
to adapt to the Laplacian Smoothing. Another approach to incorporate laplacian smoothing is through
the loss function, where

Llap-sm =
1

N

N∑
i=1

wi

∣∣∣vi − 1

|N ′|
∑

v′∈N ′(vi)

v′
∣∣∣, (7)

We filter all the vertices that are far away from the predicted boundary surface by setting wi = 0, and
wi = 1 if the vertex is on the boundary. We then penalize the difference between its position to the
average of the positions of its neighbour boundary vertices. We encourage the position of vi to lie in
the center of its neighbouring boundary vertices.

Novel view synthesis and Multi-view 3D Reconstruction: In this application, we directly opti-
mize the position offset, occupancy, and RGB color for each vertex. Introducing neural networks to
further regularize the vertex color, position or occupancy would be an interesting direction, but we
leave it for future work.

3 Experimental Details and Additional Results

We first describe the pipeline to prepare the ShapeNet [2] dataset for training in Sec. 3.1, and report
experimental details and additional results for each application in the following sections.

3.1 Data Preparation

Since many ShapeNet objects [2] are not watertight, we follow the pipeline in Kaolin [13] to convert
all the objects to a watertight surface mesh. Note that other methods [12] for this procedure can be
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Category Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean↓ Time(ms)↓
3D-R2N2 [4] 0.89 0.96 0.92 0.89 1.02 1.13 2.99 1.02 0.85 0.93 1.14 0.93 1.17 1.14 174.49
DeepMCube [14] 1.60 1.48 1.21 1.33 1.68 1.77 2.74 1.71 1.31 1.53 1.65 0.89 1.87 1.60 349.83
Pixel2mesh [24] 0.48 0.67 0.66 0.55 0.93 0.72 1.29 0.79 0.45 0.58 1.05 0.37 0.62 0.71 30.31
OccNet [18] 1.15 1.34 1.09 1.16 2.10 1.25 3.34 1.54 1.17 1.19 1.55 0.76 1.90 1.51 728.36
OccNet - Our Arch 0.51 0.56 0.50 0.46 0.77 0.84 3.06 0.76 0.67 0.53 0.85 0.37 0.77 0.83 866.54
MeshRCNN [9] 0.56 0.61 0.62 0.53 0.76 0.89 2.01 1.17 0.61 0.68 0.96 0.43 0.82 0.82 228.46
FIXEDTET 0.70 0.72 0.72 0.66 1.03 1.01 3.64 0.99 0.91 0.76 1.07 0.56 1.05 1.07 43.52
DEFTET 0.55 0.54 0.52 0.48 0.69 0.66 2.08 0.75 0.80 0.49 0.65 0.32 0.78 0.72 61.39

Table 3: Results on Point Cloud Reconstruction. We report Chamfer Distance (e-2), lower is better.

Category Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean↓ Time(ms)↓
3D-R2N2 [4] 2.34 2.45 2.37 2.34 2.68 2.84 7.90 2.67 2.15 2.40 2.91 2.29 2.97 2.95 174.49
DeepMCube [14] 4.30 3.80 3.03 3.52 4.40 4.44 7.57 4.38 3.42 3.91 4.13 2.28 4.93 4.16 349.83
Pixel2mesh [24] 1.35 1.84 1.80 1.55 2.53 1.97 3.65 2.21 1.26 1.62 2.76 1.06 1.75 1.95 30.31
OccNet [18] 3.13 3.51 2.75 3.06 5.54 3.25 9.17 3.98 3.09 3.09 3.95 2.01 4.98 3.9 728.36
OccNet - Our Arch 1.44 1.57 1.43 1.33 2.16 2.28 8.48 2.12 1.79 1.48 2.28 1.06 2.13 2.27 866.54
MeshRCNN [9] 1.54 1.65 1.69 1.47 2.07 2.32 5.44 3.02 1.62 1.82 2.47 1.19 2.19 2.19 228.46
FIXEDTET 1.96 2.00 2.00 1.88 2.86 2.62 7.01 2.73 2.44 2.11 2.87 1.54 2.90 2.69 43.52
DEFTET 1.56 1.50 1.46 1.37 1.95 1.82 5.81 2.10 2.15 1.41 1.81 0.92 2.16 2.00 61.39

Table 4: Results on Point Cloud Reconstruction. We report Chamfer L1 (e-2), lower is better.

also employed, and we choose Kaolin for its simplicity. In particular, each object is first voxelized to
a high-resolution voxel representation (in our case, 100× 100× 100), and the surface mesh is then
obtained via the Marching Cube algotrithm [17], followed by Laplacian Smoothing [10].

3.2 Point Cloud 3D Reconstruction

Experimental Details: To prepare the input for point cloud 3D reconstruction, we randomly sample
5000 points from the object’s surface and add Gaussian noise, whose variance is set to 0.5% of the
unit cube length. For each category, we randomly select 70% shapes to train the network, 5% for
validation, and remaining 25% for testing. The hyper-parameters we used in the loss function are:
λrecon = 1, λsurf = 10, λvol = 1, λlap = 1e− 3, λsm = 1e− 2, λdel = 1e− 3, λamips = 1e− 5.

To evaluate different methods, we have several metrics: 3D Intersection-Over-Union (IOU), Chamfer
Distance and Chamfer-L1. For 3D IOU, we follow OccNet [18] and randomly sample 100k points in
3D space to evaluate ground truth occupancies and check whether the points are inside or outside of
the predicted mesh. The definition of Chamfer and Chamfer-L1 Distance is:

Chamfer(FPred,FGT) =
1

2|∂FPred|
∑

p∈∂FPred

min
q∈∂FGT

||p− q||2 +
1

2|∂FGT|
∑

p∈∂FGT

min
q∈∂FPred

||p− q||2, (8)

Chamfer-L1(FPred,FGT) =
1

|∂FPred|
∑

p∈∂FPred

min
q∈∂FGT

||p− q||1 +
1

|∂FGT|
∑

p∈∂FGT

min
q∈∂FPred

||p− q||1, (9)

where FGT,FPred denote all the faces in the ground truth and prediction, respectively, and
∂FGT, ∂FPred denote the set of sampled points in the ground truth, and prediction, respectively.
Since Chamfer Distance and Chamfer-L1 lead to noisy estimates when sampling on the surface,
we further introduce a more accurate distance metric: Hausdorff-Avg Distance, an extension of the
Hausdorff Distance [5, 1, 23] from Computer Graphics to compute the shape similarity:

Hausdorff-Avg(FPred,FGT) =
1

2|∂FPred|
∑

p∈∂FPred

min
f∈FGT

distf (p, f) +
1

2|∂FGT|
∑

p∈∂FGT

min
f∈FPred

distf (p, f), (10)

where distf (p, f) is the point-surface distance from point p to face f .

Additional Experimental Results: Table 3, 4, and 5 show the quantitative results in terms of
Chamfer Distance, Chamfer-L1, and Hausdorff-Avg, respectively. We also provide additional
qualitative examples in Fig. 2 and 3. We achieve better performance compared with voxel-based
and occupancy-based representations, and Deep Marching Cubes [14]. Compared to a mesh-based
representation, we perform significantly better in the shape categories that have holes, such as Chair
and Table, while the average accuracies over all the categories are similar.
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Category Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean↓ Time(ms)↓
3D-R2N2 [4] 0.86 0.92 0.86 0.85 0.96 1.08 2.96 0.95 0.83 0.87 1.09 0.89 1.14 1.09 174.49
DeepMCube [14] 1.58 1.45 1.15 1.29 1.64 1.73 2.72 1.64 1.30 1.49 1.61 0.85 1.85 1.56 349.83
Pixel2mesh [24] 0.44 0.62 0.58 0.49 0.86 0.65 1.25 0.71 0.43 0.51 0.99 0.31 0.59 0.65 30.31
OccNet [18] 1.13 1.30 1.02 1.13 2.06 1.20 3.32 1.47 1.16 1.14 1.49 0.73 1.89 1.46 728.36
OccNet - Our Arch 0.47 0.51 0.41 0.40 0.70 0.77 3.01 0.68 0.66 0.45 0.78 0.30 0.73 0.76 866.54
MeshRCNN [9] 0.53 0.56 0.53 0.46 0.70 0.83 1.97 1.08 0.59 0.61 0.89 0.37 0.79 0.76 228.46
FIXEDTET 0.66 0.66 0.63 0.60 0.95 0.89 2.45 0.90 0.89 0.68 0.99 0.50 1.02 0.91 43.52
DEFTET 0.52 0.48 0.41 0.41 0.61 0.58 2.04 0.65 0.78 0.41 0.56 0.24 0.74 0.65 61.39

Table 5: Results on Point Cloud Reconstruction. We report Hausdorff-Avg (e-2), lower is better.

3.3 Single Image 3D Reconstruction using 3D Supervision

Experimental Settings: We use the same dataset as in DVR [20], and use the same training,
validation, and testing split. For the ground truth 3D shape, we use the same as described in Sec. 3.1.
We train one network on all 13 ShapeNet core categories. We compare DEFTET with voxel-based
representation [4], mesh-based representation [24], and implicit function representations [25]. We
additionally compare with Deep Marching Cubes [14]. For 3DR2N2 [4], Pixel2Mesh [24] and Deep
Marching Cube [14], we use the official codebase1. We reimplemented DISN [25] in PyTorch. The
hyperparameters for DEFTET follow those in Point Cloud 3D Reconstruction. We evaluate all these
methods using 3D IOU, Chamfer, Chamfer-L1 and Hausdorff-Avg Distance.

Experimental Results: Table 6, 7, 8, and 9 show quantitative results in terms of 3D IOU, Chamfer
Distance, Chamfer-L1, and Hausdorff-Avg, respectively. We also provide qualitative examples in
Fig. 4 and 5. We achieve similar performance compared to the implicit-function-based representation
in terms of 3D IOU, and significantly outperform other representations in terms of other metrics,
since we explicitly deform the vertices to better align with the surface. Compared to a mesh-based
representation, we perform significantly better in the shape categories that have holes, such as Chair
and Table.

Category Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean Time(ms)↓
3D-R2N2 [4] 39.99 32.68 66.13 67.82 39.41 39.90 32.92 63.23 28.37 57.93 43.56 61.47 41.37 47.29 13.41
DeepMCube [14] 19.06 10.17 44.79 40.91 19.28 26.15 19.73 47.77 19.61 30.81 18.38 26.10 26.30 26.85 329.29
Pixel2mesh [24] 49.84 31.89 66.18 73.53 36.61 42.68 31.64 65.67 27.37 62.88 38.34 61.91 45.48 48.77 25.85
DISN [25] 56.31 36.12 71.72 76.67 47.57 47.62 40.55 71.82 34.30 68.39 52.07 64.93 50.82 55.30 1363.58
DEFTET 55.44 36.40 73.46 77.38 47.51 47.48 37.94 73.48 31.20 69.33 53.11 66.89 48.44 55.24 200.63

Table 6: Results on Single Image 3D Reconstruction with 3D supervision. We report 3D IOU.

Category Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean Time(ms)↓
3D-R2N2 [4] 2.26 2.00 2.02 1.80 2.83 3.01 4.33 2.94 2.26 2.38 2.17 1.78 2.69 2.50 13.41
DeepMCube [14] 4.80 7.58 5.50 5.79 7.01 6.78 6.39 6.73 3.62 7.40 6.10 6.48 5.23 6.11 329.29
Pixel2mesh [24] 1.52 1.62 1.85 1.30 2.64 2.56 2.91 2.67 1.82 1.90 2.20 1.59 2.01 2.04 25.85
DISN [25] 1.52 1.96 1.61 1.28 2.51 2.48 3.49 2.21 2.15 1.66 1.78 1.55 2.29 2.04 1363.58
DEFTET 1.49 1.77 1.44 1.18 2.39 2.52 3.53 2.03 2.13 1.58 1.68 1.34 2.26 1.95 200.63

Table 7: Results on Single Image 3D Reconstruction with 3D supervision. We report Chamfer Distance.

Category Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean Time(ms)↓
3D-R2N2 [4] 6.01 5.03 4.85 4.66 7.30 7.47 11.61 7.37 5.68 5.93 5.41 4.44 6.94 6.366 13.41
DeepMCube [14] 13.15 18.92 12.98 14.79 17.96 16.44 17.40 16.40 9.33 18.25 15.07 15.17 13.78 15.36 329.29
Pixel2mesh [24] 4.23 4.24 4.60 3.52 6.95 6.49 8.15 6.85 4.83 4.85 5.61 4.01 5.49 5.37 25.85
DISN [25] 4.19 5.20 4.06 3.38 6.66 6.32 9.63 5.66 5.63 4.29 4.55 3.90 6.07 5.35 1363.58
DEFTET 4.11 4.70 3.69 3.16 6.38 6.40 9.85 5.31 5.44 4.09 4.35 3.42 6.06 5.15 200.63

Table 8: Results on Single Image 3D Reconstruction with 3D supervision. We report Chamfer L1.

Category Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean Time(ms)↓
3D-R2N2 [4] 2.24 1.97 1.97 1.77 2.79 2.97 4.29 2.88 2.25 2.34 2.12 1.75 2.67 2.46 13.41
DeepMCube [14] 4.78 7.56 5.47 5.77 6.99 6.76 6.37 6.70 3.62 7.37 6.08 6.47 5.22 6.09 329.29
Pixel2mesh [24] 1.49 1.59 1.80 1.26 2.60 2.52 2.87 2.62 1.80 1.86 2.16 1.56 1.98 2.01 25.85
DISN [25] 1.50 1.93 1.56 1.25 2.48 2.45 3.46 2.15 2.14 1.62 1.73 1.52 2.28 2.01 1363.58
DEFTET 1.46 1.74 1.38 1.14 2.35 2.48 3.51 1.96 2.12 1.54 1.63 1.31 2.24 1.91 200.63

Table 9: Results on Single Image 3D Reconstruction with 3D supervision. We report Mean Hausdorff.

1https://github.com/autonomousvision/occupancy_networks
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Input PC 3DR2N2 [4] Pix2Mesh [24] DMC [14] OccNet [18]∗ OccNet [18] MeshRCNN [9] FIXEDTET DEFTET

Figure 2: Qualitative results on Point Cloud 3D Reconstruction. ∗ denotes original OccNet [18] architecture.
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3.4 Single Image 3D Reconstruction using 2D Supervision

Experimental Settings: We set the hyper-parameters as folows: λrecon = 2, λlap = 1e− 3, λdel =
1e − 3, λsm2D = 1, λvol = 0, λamips = 0. In 2D case, we empirically find that Lvol and Lamips does
not influence the performance due to our multiple-stage training policy. During training, we first fix
the grid, and only predict the occupancy and color. After it starts converging (usually 24 hours), we
also predict deformation, occupancy and color for each vertex. The second fine-tuning takes another
24 hours. Finally, we add Llap-sm to smooth the surface, which takes 10 hours. The total training costs
around 60 hours on a RTX 2080 GPU.

Marching-Tet Layer: In this task, due to the lack of 3D supervision, we find that applying
Marching Tet [6] to extract ISO surface will improve the performance. While Marching Tet has
been developed for more than 20 years, we reproduce it in PyTorch and make it differentiable with
respect to vertex position and color. Specifically, we adaptively subdivide a tetrahedron based on
its occupancy with a given threshold. If the tetrahedron lies across the surface, we cut the edge
based on the given threshold to make sure the subdivided tetrahedrons perfectly fit the surface. If
the tetrahedron lies inside or outside, we cut the edge in the middle point. Compared to traditional
Matching-Tet functions, our implemented Marching-Tet layer takes a tetrahedral mesh as input and
returns a subdivided tetrahedral mesh and is fully differentiable, while the traditional Marching
Tet [6] returns a triangular mesh and is not differentiable. Moreover, we could also interpolate other
vertex attributes like vertex colors.

Additional Experimental Results: We show additional qualitative results in Fig. 6 and 7. Com-
pared to DIBR [3], a mesh-based representation, we reconstruct shapes with arbitrary topology.
Compared to DVR, an implicit-function-based representation, our shapes are more aligned with the
input image. Applying Marching-Tet as a post-processing step shrinks the shape, but the overall
structure is similar.

3.5 Tetrahedral Meshing

Additional Distortion Metrics: We show all distortion metrics in Fig. 8. We achieve comparable
performance compared to Quartet [7], and outperform TetWild [11] and TetGen [21] in terms of
distortion metrics.

Additional Examples: We show additional qualitative results in Fig. 9. Our method reaches com-
parable tetrahedral meshing quality compared to TetWild [11] and TetGen [21], and is significantly
better than QuarTet [7].

3.6 Novel View Synthesis and Multi-view 3D Reconstruction

Experimental Settings: Since the scenes in the Nerf [19]’s dataset have more significant geometry
and texture variations than those in ShapNet [2], we apply subdivision and use higher resolution
tetrahedral meshes to represent the complex objects in the Nerf dataset. To be specific, we start with
a 40× 40× 40 resolution and subdivide the tetrahedral mesh twice, resulting in a 160× 160× 160
resolution in the final stage of optimization. Since there is no need to subdivide the transparent
tetrahedrons, we first delete tetrahedrons whose occupancy is less than a threshold (0.001 in our
experiments) before applying subdivision. We find that mask loss is optional in multi-view 3D
reconstruction and ablate its use.

Additional Experimental Results: We provide additional results in Fig. 10 and Fig. 11. Compared
to Nerf [19], we get smooth novel view rendering effects, due to the use of simple vertex colors and
not considering light variations. However, our explicit representation allows us to directly export
meshes with materials, which can be further applied to other downstream tasks and edited by the
users. We also remind the reader that our method is significantly faster than Nerf.

We ablate the difference of adding mask loss in Fig. 10. While their synthesized images are similar,
masks help in predicting much clean geometries.
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Figure 3: Qualitative results on Point Cloud 3D Reconstruction. The first column shows input point cloud.
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Input Img 3DR2N2 [4] Pix2Mesh [24] DMC [14] OccNet [18] DEFTET

Figure 4: Qualitative results on Single Image 3D Reconstruction using 3D supervision.
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Figure 5: Qualitative results on Single Image 3D Reconstruction using 3D supervision. The first column
shows input image.
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INPUT DVR [20] DIBR [3] FIXEDTET DEFTET DEFTET+MTet

Figure 6: Qualitative results on Single Image Reconstruction with 2D supervision. Please zoom in to see
details. 11



Figure 7: Qualitative results on Single Image 2D Reconstruction using 3D supervision. First column shows
input image.
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Figure 8: Comparison on tetrahedral meshing in terms of distortion metrics. We show the oracle performance
in the last row. Results that are closer to the last row indicate less distortion and better performance.

13
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Figure 9: Qualitative results on tetrahedral meshing. Please zoom in to see details.

14
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Figure 10: The columns 1-2 show the novel view synthesis results on test view. The columns 3-5 show the
reconstructed geometry from Nerf [19], DEFTET, and the reconstructed color of DEFTET. The columns 6-7
show the reconstructed geometry from DEFTET, and the reconstructed color of DEFTET when having access to
ground truth mask.

2 4 6 8 10 12
Log Time (Sec)

10

15

20

25

30

PS
NR

DefTet PSNR
Nerf PSNR

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ch
am

fe
r

DefTet Chamfer
Nerf Chamfer

Figure 11: Novel view synthesis and Multi-view 3D Reconstruction: We compare DEFTET with Nerf [19] for
the Chair scene in terms of PSNR and Chamfer Distance. DEFTET converges much faster than Nerf.
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