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Abstract

We present novel information-theoretic limits on detecting sparse changes in Ising
models, a problem that arises in many applications where network changes can
occur due to some external stimuli. We show that the sample complexity for
detecting sparse changes, in a minimax sense, is no better than learning the entire
model even in settings with local sparsity. This is a surprising fact in light of prior
work rooted in sparse recovery methods, which suggest that sample complexity
in this context scales only with the number of network changes. To shed light on
when change detection is easier than structured learning, we consider testing of
edge deletion in forest-structured graphs, and high-temperature ferromagnets as
case studies. We show for these that testing of small changes is similarly hard, but
testing of large changes is well-separated from structure learning. These results
imply that testing of graphical models may not be amenable to concepts such as
restricted strong convexity leveraged for sparsity pattern recovery, and algorithm
development instead should be directed towards detection of large changes.

1 Introduction

Recent technological advances have lead to the emergence of high-dimensional datasets in a wide
range of scientific disciplines [YY17; Cos+10; PF95; Brel5; Lok+18; WSD19; Ban18], where the
observations are modeled as arising from a probabilistic graphical model (GM), and the goal is to
recover the network [Orl+15]. While full network recovery is sometimes useful, and there has been a
flurry of activity [DM17; SW12] in this context, we are often interested in changes in network struc-
ture in response to external stimuli, such as changes in protein-protein interactions across different
disease states [IK12] or changes in neuronal connectivity as a subject learns a task [Moh+16].

A baseline approach is to estimate the network at each stage, and then compare the differences.
However, such observations exhibit significant variability, and the amount of data available may be
too small for this approach to yield meaningful results. On the other hand, reliably recovering net-
work changes should be easier than full reconstruction. While prior works have proposed inference
algorithms to explore this possibility [ZCL14; XCC15; FB16; BVB16; BZN18; Zha+19; Cai+19],
we do not have a good mathematical understanding of when this is indeed easier.

To shed light on this question, we propose to derive information-theoretic limits for two structural
inference problems over degree-bounded Ising models. The first is goodness-of-fit testing (GOI).
Let G(P) be the network structure (see §2) of an Ising model P. GOF is posed as follows.

GQOF : Given an Ising model P and i.i.d. samples from another Ising model Q,
determine if P = Q or if G(P) and G(Q) differ in at least s edges.

The second is a related estimation problem, termed error-of-fit (EQF), that demands localising dif-
ferences in G(P) and G(Q) (if distinct).

EQF: Given an Ising model P and i.i.d. samples from another Ising model Q) that
is either equal to P, or has a network structure that differs from that of P in s
edges or more, determine the edges where G(P) and G(Q) differ.
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Notice that the above problems are restricted to models that are either identical, or significantly
different. ‘Tolerant’ versions (separating small changes from large) are not pursued here. The main
question of interest is: For what classes of Ising models is the sample complexity of the above
inference problems significantly smaller than that of recovering the underlying graph directly?

Contribution. We prove the following surprising fact: up to relatively large values of s, the sam-
ple complexities of GOF and EQF are not appreciably separated from that of structure learning
(SL). Our bound is surprising in light of the fact that prior works [Liu+14; Liu+17; FB16; KLK19;
Cai+19] propose algorithms for GOF and EQF, and claim recovery of sparse changes is possi-
ble with sample complexity much smaller than SL. Concretely, for models with p nodes, degrees
bounded by d, and non-zero edge weights satisfying v < |0;;| < /3 (see §2), the sample complexity
of SL is bounded as O(e?#?a~21og p). We show that if s < /D, then the sample complexity of

GOF is at least e?84=00oe(d) o, =2 og p, and that if s < p, then the sample complexity of EQF has
the same lower bound. We further show that the same effect occurs in the restricted setting of detect-
ing edge deletions in forest-structured Ising models, and, to some extent, in detecting edge deletions
in high-temperature ferromagnets. In the case of forests, we tightly characterise this behaviour of
GQOF, showing that for s < /p, GOF has sample complexity comparable to SL of forests, while
for s > /p, itis vanishingly small relative to SIL. For high-temperature ferromagnets, we show that

detecting changes is easier than SL if s > /pd, while this does not occur if s < /pd. These are
the first structural testing results for edge edits in natural classes of Ising models that show a clear
separation from SL in sample complexity.

Technical Novelty. The lower bounds are shown by constructing explicit and flexible obstructions,
utilising Le Cam’s method and x2-based Fano bounds. The combinatorial challenges arising in
directly showing obstructions on large graphs are avoided by constructing obstructions with well-
controlled x2-divergence on small graphs, and then lifting these to p nodes via tensorisation in a
process that efficiently deals with combinatorial terms. The main challenge is obtaining precise
control on the y2-divergence between graphs based on cliques, which is attained by an elementary
but careful analysis that exploits the symmetries inherent in Ising models on cliques. The most
striking instance of this is the ‘Emmentaler clique’ (Fig. 2), which is constructed by removing ©(d?)
edges from a d-clique in a structured way. Despite this large edit, we show that it is exponentially
hard (in low temperatures) to distinguish this clique with large holes from a full clique.

1.1 Related Work

Statistical Divergence Based Testing. Related to our problem, but different from our setup, GOF
of Ising models has been studied under various statistical metrics such as the symmetrised KL di-
vergence [DDK19] and total variation [Bez+19]. More refined results and extensions have appeared
in [GLP18; DDK17; Can+17; Ach+18]. These are tests that certify whether or not a particular
statistical distance between two distribution is larger than some threshold. In contrast, our focus is
on structural testing and estimation, namely, whether or not the change in the network is a result
of edge-deletions or edge-additions. As such, statistically-based GOF tests do not have a direct
bearing on structural testing. Divergences can be large in structurally irrelevant ways, e.g., if a few
isolated nodes in a large graph become strongly interacting, a large KL divergence is induced, but
this is not a significant change in the network on the whole (Also see §E.1). In light of applications
which demand structure testing as a means to interpret phenomena, and this misalignment of goals,
testing in the parameter space is compelling, and testing the network is the simplest instance of this.

Sparse-Recovery-Based Structural Testing Methods. More directly related to our work, are those
that are based on direct change estimation (DCE) [FB16; Liu+14; Liu+17; LFS17; KLK19], which
attempt to directly characterize the difference of parameters 6* = 0p — 6o by leveraging sparsity
of §*. These works leverage the ‘KL Importance Estimation Procedure’ (KLIEP), the key insight of
which is that the log-likelihood ratios can be written in a form that is suggestive of expressions from
sparse-pattern recovery methods, to define the empirical loss function

L(8) = —(5,Eq[XXT]) +log Eplexp (XT6X)],

where [E denotes an empirical mean, and § is sparse. The second term, which is the only non-linear
term, is reminiscent of normalization factors in graphical models. In this context, it is useful to recall
the key ideas from high-dimensional sparse estimation theory (see [Neg+12]), which has served as
a powerful generic tool. At a high-level, these results show that for a loss function £(§) paired with



a decomposable regulariser (such as an ¢; norm on J), if the loss function satisfies restricted strong
convexity, namely, strong convexity only in a suitable descent error set, as characterised by the
regulariser and the optimal value 6*, minimising the penalised empirical loss leads to a non-trivial
estimation error bound. Leveraging these concepts of high-dimensional estimation, and exploiting
sparsity, the sparse DCE works show that testing can be done in O(poly(s) log p) samples (for any
P, Q"), which is further much smaller than the number needed for SL, a result which contradicts
bounds we derive in this paper. The situation warrants further discussion.

From a technical perspective, the sample complexity gains of these methods arise from assuming
law-dependent quantities to be constants. For example, [Liu+14; Liu+17] require that for |ju| <
|61, VEL(6* + u) < A1, and that for S the support of §*, the submatrix (V2L£(6*))s.s = Ao,
where A1, Ao are constants independent of P, (). [FB16] removes the second condition, and shows
that £ has the A5-RSC property, where A, is claimed to be independent of P, (). In each case, sample
costs increase with A; and A5 ! However, the assertion that A, A, are independent of (P, Q) cannot

hold in general — the only non-linear part in £ is log Ep[exp (X Tsx )]7 which clearly depends on
P! This dependence also occurs if P is known. Thus, the ‘constants’ A1, Ay are affected by the
properties of P. More generically, the efficacy of sparse recovery techniques is questionable in this
scenario. Since the data is essentially distinct across samples, and internally dependent, and since
the sparse changes, 6*, and the underlying distributions interact, it is unclear if meaningful notions
of design matrix that allow testing with sub-recovery sample costs can be developed.

Nevertheless, it is an interesting question to understand what additional assumptions on P, ) or
topological restrictions are useful in terms of benefiting from sparsity. Our results suggest that these
conditions are stronger than typical incoherence conditions such as high temperatures, and further
that the topological restrictions demand more than just ‘simplicity’ of the graphs.

Other Methods.[Cai+19] propose a method, whereby the parameters 6p and 6 are only crudely
estimated, and then tests using the biggest (normalised) deviations in the estimates as a statistic. The
claims made in this paper are more modest, and do not show sample complexity below ngr,. We
point out, however, that d-dependent terms are treated as constants in this as well.

Much of the structural testing work studies Gaussian GMs instead of Ising (see the recent survey
[Sho20]). We do not discuss these, but encourage the same careful examination of their assumptions.

Other Information-Theoretic Approaches. We adopted a similar information-theoretic viewpoint
in our earlier work [GNS17; GNS18]. Of these, the former only considers the restricted case of
s = 1 (very sparse changes), and the bounds in the latter are very inefficient. As such, the present
paper is a significant extension and generalization of this perspective. Our bounds further improve
the approximate recovery lower bounds of [SC16].

Structural Testing Extensions. A number of structural testing problems other than GOF have been
pursued. For instance, [BN18] tests if the model is mean field or supported on a structured graph
(sparse, etc.), [BN19] tests mean-field models against those on an expander, [CNL18] tests indepen-
dence against presence of structure in high temperatures, [NL19] tests combinatorial properties of
the underlying graph such as whether it has cycles, or the largest clique it contains (also see §E.2).

2 Problem Definitions and Notation

The zero external field Ising Model specifies a law on a p-dimensional random vector X =
(X1,...,Xp) € {£1}, parametrised by a symmetric matrix 6 with O diagonal, of the form

exp (Zi<j Gijxixj)

Py(X =x) = 70) ;

where Z(0) is called the partition function. Notice that given X; for all j € 0i := {j : 0;; # 0},
X is conditionally independent of X[;.,)_ti3—a;- Thus, the 6 determine the local interactions of
the model. With this intuition, one defines a simple, undirected graph G(FPp) = ([1 : pl, E(Ps))
with E(Pyp) = {(4,) : 6;; # 0}. This graph is called the Markov network structure of the Ising
model, and 6 can serves as a weighted adjacency matrix of G(Fy). We often describe models by an
unweighted graph, keeping weights implicit until required.



The model above can display very rich behaviour as 6 changes, and this strongly affects all inference
problems on Ising models. With this in mind, we make two explicit parametrisations to help us
track how 0 affects the sample complexity of various inference problems. The first of these is degree
control - we assume that the degree of every node is G(P), G(Q) is at most d. The second is weight
control - we assume that if 6;; # 0, then o < |60;;] < 3.

These are natural conditions: small weights are naturally difficult to detect, while large weights mask
the nearby small-weight edges; degree control further sets up a local sparsity that tempers network
effects in the models. The class of laws so obtained is denoted Z;(«x, 3). We will usually work with a
subclass Z C Z,; which has unique network structures (i.e., for P,Q € Z,G(P) # G(Q)). Note that
we do not restrict «, 3, d to have a particular behaviour - these are instead used as parametrisation
to study how weights and degree affects sample complexity. In particular, they may vary with p and
each other. We do demand that d < p'—¢ for some constant ¢ > 0, and that p is large > 1).

We let G be the set of all graphs on p nodes, and G; C G be those with degree at most d. The
symmetric difference of two graphs G, H is denoted GA H, which is a graph with edge set consisting
of those edges that appear in exactly one of G and H.

Lastly, we say that two Ising models are s-separated if their networks differ in at least s edges. The
‘anti-ball’ A4(P) :={Q € T : |G(Q)AG(P)| > s} is the set of Q) € T s-separated from P.

2.1 Problem Definitions

Below we define three structural inference problems: goodness-of-fit testing, error-of-fit identifica-
tion, and approximate structure learning.

Goodness-of-Fit Testing Given P and the dataset X" ~ Q®™ where Q € {P} U As(P), we wish
to distinguish between the case where the model is unchanged, () = P, and the case where the
network structure of the model differs in at least s edges, @ € As(P). A goodness-of-fit test is a
map WG . T x x™ — {0, 1}. The n-sample risk is defined as

RYF(n,s,T):= inf sup {P®"(\I/G°F(P, X" =1)+ sup Q®"(WEF(p XM :0)}.
WGoF peT QeA(P)

Error-of-Fit Recovery Given P and the dataset X" ~ Q®" where Q € {P} U A4(P) we wish to
identify where the structures of P and () differ, if they do. The error-of-fit learner is a graph-valued
map WFOF . 7 x X" — G. The n-sample risk is defined as

REF(n, s, 7) := inf sup sup Qe (|\I'E°F(P7 X"A(GP)AGQ))| = (s—1)/2).
WEF PeT Qe{P}UA(P)

In words, UE°F attempts to recover G(P)AG(Q), and the risk penalises answers that get more than
(s — 1)/2 of the edges of this difference wrong. This problem is very similar to the following.

s-Approximate Structure Learning Given the dataset X™ ~ Q®" we wish to determine the net-
work structure of (), with at most s errors in the recovered structure. A structure learner is a graph-
valued map USL : X" — G, and the risk of structure learning is

RSY(n, s,T) := inf sup Q®"(|USH(X™)AG(P)| > s).
TSL QeT

The sample complexity of the above problems is defined as the smallest n necessary for the corre-
sponding risk to be bounded above by 1/4, i.e.

ngor(s,Z) := inf{n : RG’OF(n7 s,T) <1/4},
and similarly ng,r and ngy, but with the risk lower bound of 1/8.!

The above problems are listed in increasing order of difficulty, in that methods for SL yield methods
for EOF, which in turn solve GOF. This is captured by the following statement, proved in §A.1.

Proposition 1. ng,((s — 1)/2,Z) > ngor(s,Z) > ngor(s,I).

'1/4 is convenient for bounds for GOF, but any risk smaller than 1 is of interest, and can be boosted to
arbitrary accuracy by repeating trials and majority. For EOF, SL we use 1/8 for ease of showing Prop. 1.



Our main point of comparison with the literature on SL is the following result, which (mildly)
extends [SW12, Thm 3a)] due to Santhanam & Wainwright. We leave the proof of this to Appx. A.2.

Theorem 2. If T C Zy(«, 3) has unique network structures, then for s < pd/2,3C < 64 such that
de?Pd

1) < C—F5——
nsL(s,1) < sinh?(a/4)

(1162 010,

3 Lower Bounds for GOF and EOF over Z,(«, 3)

This section states our results, and discusses our proof strategy, but proofs for all statements are
left to §B. The bound are generally stated in a weaker form to ease presentation, but the complete
results are described in §B. We begin by stating lower bounds for the case of s = O(p). Throughout
500 > K > 1is a constant independent of all parameters.

Theorem 3. If20 < d < s < p/K, then there exists a C > 0 independent of (s, p,d, «, ) such that

, 2B 026(d—3) | p
o ) > ) . 1 *>
NGor (8 )_Cmax{tanh2a d2m1n(1,a2d4)} og( +C’S2
28 026(d—3)
(

p
< £
ngor (s,Z) > C'max { tanh® o’ d2 min(1, a?d*) } log (CS>

This statement is enough to make our generic point - for small s (i.e., if s < p”/>~¢ in GOF and
if s < p'~¢ in EOF), the above bounds are uniformly within a O(poly(d)) factor of the the upper
bound on ngy, in Theorem 2. Notice also that the max-terms are uniformly 2(d?) in the above - if
Bd > 2log d, then the second term in the max is 2(d?), while if smaller, the first term is Q((4/10g 4)?)
because o < B. Thus, over Z;, the best possible sample complexity of GOF and EOF scales as
Q(d?log p), and in particular cannot be generally d-independent.

Of course, graphs in G4 have upto ~ pd edges, and so many more changes can be made. Towards
this, we provide the following bound for GOF. A similar result for EOF is discussed in §B.

Theorem 4. If for some ¢ > 0,5 < pd'~¢/K, and d > 10, then there exists a constant C > 0
independent of (s, p, d, «, B8) such that
1 pd3—3¢
pPECT) log (1 +C =2 )
e28d(1—-d™¢)

d? min(1, a2d*)

1. Ifad'=¢ < 1/32 then ngor > C

log (1+ dezjc ).

2. If Bd > 4log(d — 4) then ngor > C

Thm. 4 leaves a (small) gap, since as ( — 0, ad'~¢ < 1 and 3d > 4log(d) do not completely
cover all possibilities. Barring this gap, we again notice that for s < /pd!—¢, ngor is separated
from ngr, by at most a poly(d) factor. The first part of the above statement is derived using results
of [CNL18]. For the limiting case of ( = 0, i.e. when s is linear in pd, we recover similar bounds,
but with the distinction that the 2/3d in the exponent is replaced by a Sd. See §B.

Finally, since often the interest in DCE lies in very sparse changes, we present the following -

Theorem 5. If s < d, then there exists a C > 0 independent of (s, p,d, «, 3) such that

625 eQB(d_l_Q\/g) p p
7)> 1 1 EyNE
nGoF(Sv )—Cmax{ ) Og( +C(S2/\ ))

tanh? o d sinh?(ay/s d

e28 e28(d—1-2/5) P
nEor(s,Z) > C max > — log (Cf)
tanh” a" d sinh® (/) d
Structure of the Bounds Each of the bounds above can be viewed as of the form (SNR) ™! log(1 +
f(p,s,d)), where we call the premultiplying terms SNR since they naturally capture how much
signal about the network structure of a law relative to its fluctuations is present in the samples. This
SNR term in Thms. 3 and 5 is developed as a max of two terms. The first of these is effective in the



high temperature regime (where 3d is small), while the second takes over in the low temperature
regime of large Jd. Similarly, the first and second parts of Thm. 4 are high and low temperature
settings, respectively, and have different SNR terms. The SNR in all of the above is within a
poly(d) factor of the corresponding term in the upper bound for ngr,.

The term f(p, d, s) thus captures the hardness of testing/error localisation. For EOQF, as long as s is
small, this term takes the form p© for some c. Thus, generically, localising sparse changes is nearly
as hard as approximate recovery. This is to be expected from the form of the EOF problem itself.
More interestingly, for GOF, these take the form pd®/ s2. When s < /pd®, this continues to look
polynomial in p, and thus GOF is as hard as recovery. On the other hand, for s much larger than
this, f becomes o(1) as p grows, and so log(1 + f) = f itself and the resulting bounds look like
(SNR)~!pd¢/s%. In the setting of low temperatures with non-trivially large degree, these can still
be super-polynomial in p, but relative to n they are essentially vanishing.

Notice that in high temperatures (5d < 1), the bounds of Thms. 3 and 5 are only O(d) away from
ngr, for small s, fortifying our claim that GOF and EOF are not separated from SL in this setting.

Counterpoint to Sparse DCE efforts The above bounds, especially Thm. 5, show that for small s
GOF and EQF are as hard as recovery of G(Q) itself. A possible critique of these bounds when
considering DCE is that the DCE schemes demand that the changes are smaller than s, while our
formulations only require the changes to have size at least s. To counter this, we point out that the
constructions for Thms. 3, 4, and 5 make at most 2s changes when computing bounds for any s
(in fact, smaller edits lead to stronger bounds). Thus, the above results catergorically contradict the
claim that a generic O(poly(s)logp) bound that is d independent and much smaller than ngy, can
hold for DCE methods on Z;. Since «, 3, d are only parameters, and are not restricted in any way,
this shows that the assumptions made for DCE cannot be reduced to some conditions on only «, 3, d,
and further topological conditions must be implicit. In particular, these are stronger than typical
incoherence conditions such as Dobrushin/high-temperature (5d < 1;e.g.,[DDK17; GLP18]).

3.1 Proof Technique

The above bounds are shown via Le Cam’s method with control on the y2-divergence of a mixture
of alternatives for GOF, and via a Fano-type inequality for the y2-divergence, due to Guntuboyina
[Gunl1] for EOF. These methods allow us to argue the bounds above by explicit construction of
distributions that are hard to distinguish. We briefly describe the technique used for GOF below.
Definition A s-change ensemble in T is a distribution P and a set of distributions Q, denoted (P, Q),
such that P € T,Q C Z, and for every Q € Q, it holds that |G(P)AG(Q)| > s.

Each of the testing bounds we show will involve a mixture of n-fold distributions over a class of
distributions. For succinctness, we define the following symbol for a set of distibutions Q

1
@) = Y Qo
1€l 5%
Le Cam’s method (see e.g. [Yu97; IS12]) shows that if (P, Q) is a s-change ensemble in Z, then

RO (n,5.7) 21— Lioa(1 2@ 1Pomy).

As a consequence, if we find a change ensemble and an n such that 1 + x?({Q®") | P®") < 3, then
we would have established that ngor(s,Z) > n. So, our task is set up as constructing appropriate
change ensembles for which the y2-divergence is controllable.

Directly constructing such ensembles is difficult, essentially due to the combinatorial athletics in-
volved in controlling the divergence. We instead proceed by constructing a pair of separated distri-
butions (Pp, Qo) on a small number of nodes, and then ‘lifting’ the resulting bounds to the p nodes
via tensorisation - P is contructed by collecting disconnected copies of Py, while Q is constructed
by changing some of the Py copies to (Jg. The process is summarised as follows.

Lemma 6. (Lifting) Let Py and Qo be Ising models with degree < d on v < p/2 nodes such that
|G(Py) AG(Qo)| = o, and x2(Q5™ | PS™) < a,,. Let m = |p/v|. Fort < m/16e, there exists a
to-change ensemble (P, Q) over p nodes such that |Q| = ('}') and

2
1+ x2((Q5™) | P#") < exp (fn) .



A similar argument is used for the EOF bounds, along with a similar lifting trick, discussed in §B.
Due to the tensorisation of the X2—divergence, we obtain results of the form a,, < (1 + &)™ — 1,
where  depends on (P, Qo) but not n. Plugging this into the above with ¢ = [s/o] yields

1 po?
)y > ——1 1+—=.
nGor(s,1) = log(1 + k) og( * 8u52>

Notice that this x is an SNR term, while log(1 + po? /8vs?) captures combinatorial effects.

The procedure thus calls for strong x? bounds for
various choices of small graphs, or ‘widgets’. We
use two varieties of these - the first, ‘star-type’ wid-
gets, are variations on a star graph. These allow di-
rect calculations in general, and provide bounds that
extend to the high-temperature regime. The second
variety is the ‘clique-type’ widgets, that are varia-
tions on a clique, and provide low-temperature ob-
structions. Classical Curie-Weiss analysis shows that
cliques tend to ‘freeze’ - for Ising models on a k-
clique with uniform weight A, the probability mass
concentrates on the set {(1)®*, (—1)®*} w.p. roughly
1 — e~ ©(k)_ The clique-type obstructions implicitly
argue that this effect is very robust.

Figure 1: Graphs used to construct high-
temperature obstructions. Labels indicate
edge-weight, and the red edge is added in

2

The particular graphs used to argue the high temper-
ature bounds in Thms. 3,5 are a “V’ versus a triangle
as seen in Fig. 1, while in Thm. 4 the empty graph
is compared to a d'~¢-clique. The low temperature
obstructions of Thms. 3,4 compare a full d 4 1-clique
as Py to an ‘Emmentaler’ clique (Fig. 2). These are
constructed by dividing the d 4+ 1 nodes into groups
of size £+ 1, and removing the £+ 1-subclique within 1,d+1/¢+1 = 10); Right: Emmentaler as the
each group. The graph can thus be seen either as a raph K d=70=1)
clique with many large ‘holes’ - corresponding to the ETAPA Bl 1,41, b1 ’ '
deleted subcliques - which inspires the name, or as the complete d+1/¢+1-partite graph on d + 1
nodes. Notice that in the Emmentaler clique we have deleted ~ ¢/2 edges. We will show in §D that
this is still hard to distinguish from the full clique for £ ~ d/10 - a deletion of Q(d?) edges!

On Tightness Prima facie the above bounds suggest that one may find sample efficient schemes in,
say, GOF for s > 1/pd. However, it is our opinion that these bounds are actually loose. Particularly,
while the SNR terms are relatively tight, the behaviour of f(p,d, s) is not. To justify this opinion,
consider the setting of forest-structured graphs. By the same techniques, we show a similar bound
with f = p/s? for GOF in forests in §4.1 - this is the best possible by the methods employed. For
s> /P, the resulting overall lower bound is the trivial n > 1 unless o < (p/s%)'/2. On the other
hand, [DDK19, Thm. 14] can be adapted to show a lower bound for forests of Q(a=2 A a=%/p)
for the particular case of s = p/2, which is non-trivial for all & < p~'/%. Our results trivialise for
o > p~ /2 for this case, demonstrating looseness.

The reason for this gap lies in the lifting trick used to show these bounds. The tensorisation step
involved in this constricts the set of ‘alternates’ one can consider, thus diminishing f. More con-
cretely - there are about »°—rd/2 potential ways to add an edge (and O(pd) to delete an edge), while
the lifting process as implemented here restricts these to at most O(pd). It is important to recognize
this lossiness, particularly since most lower bounds, for both testing and recovery, proceed via a
similar trick, e.g. [SW12; Tan+14; SC16; GNS17; NL19; CNL18]. [DDK19, Thm. 14] is the only
exception we know of. We conjecture that for GOF in Z,, f should behave like p?/s?, while for
EQF, it should behave like p?/s. Note that for GOF, since s can be as big as pd, this indicates that
one should look for sample-efficient achievability schema in the setting of s > pd°.

However, for simpler settings this technique can recover tight bounds. For instance, §4.1 presents a
matching upper bound for testing of edge-deletion in a forest. Notice that in this case there are only
O(p) possible ways to edit. This raises the further question of if the same effect extends to Zy, i.e.,
can deletion of edges in Z, be tested with O(1 V e?/?a~2(pd/s?)) samples when s > /pd? §4.2
offers initial results in this direction in the high temperature regime.

v

Figure 2: Two views of Emmentaler cliques.
Left: the base clique is the large grey cir-
cle, uncoloured circles represent the groups
with no edges within (this is d,¢ >



4 Testing Edge Deletions

Continuing on the theme that concluded our discussion of the tightness of our lower bounds, we
study the testing of edge deletions in two classes of Ising models - forests, and high-temperature
ferromagnets - with the aim demonstrating natural settings in which the sample complexity of GOF
testing of Ising models is provably separated from that of the corresponding recovery problem.

In the deletion setting, we consider the same problems as in §2, but with the additional constraint
that if @ # P, then G(Q) C G(P), that is, the network structures of alternates can be obtained by
dropping some edges in that of the null. For a class of Ising models 7, we thus define
REoFdel(yy s F) = inf sup PE"(U(P,X")=1)+ sup Q%"(¥(P,X")=1),
v PeJ QEA(P)NT
G(Q)CG(P)
and, analogously define Rgor ge1, and the sample complexities ngor,del (s, J) and ngor el (s, J)-

We will look at testing deletions for two choices of 7 which both have uniform edge weights

* Forest-Structured Models (F(«)) are Ising models with uniform weight o such that their net-
work structure is a forest (i.e., has no cycles).

* High-Temperature Ferromagnets (%) («)) are models with max degree at most d, uniform pos-
itive edge weights o, and further such that there is an 7 < 1 such that ad < 7.

We note that while our motivation for the study of the above is technical, both of these subclasses of
models have been utilised in practice, and indeed are the subclasses of Z; that are best understood.

4.1 Testing Deletions in Forests

Forest-structured Ising models are known to be tractable, and have thus long served as the first
setting to explore when trying to establish achievability statements. We show a tight characterisation
of the sample complexity of testing deletions in forests for large changes, and also demonstrate the
separation from the corresponding EOF (and thus also SL) problem. In addition, we also show
that for the restricted subclass of trees, essentially the same characterisation follows for arbitrary
changes (i.e., not just deletions), and that the methods support some amount of tolerance directly.
We begin with the main result for testing deletions in forests (all proofs are in §C.1).

Theorem 7. There exists a constant C' independent of (s, p, «) such that the sample complexity of
GQF testing of forest-structured Ising models against deletions is bounded as

1 p
nGor,del (8, F () maX{ sinh?(a) 52 }

Conversely, for s < P/32¢, there exists a constant C' independent of (s, p, &), such that

1 1 p
nGoF,del(Sv‘F(a)) Z max {1, am log (1 + Cl52>} )

1 P
0. € ) Z 71 .
nmor dei (3, F()) C’ sinh? o 8 (C’s)

The upper bound is constructed by using the simple global statistic Jp = Z(i_ Hea(p) X: X,
averaged across the samples. Again, the behaviour of the lower bound shifts as s crosses ,/p - for

larger s, it scales as 1\ sinh ™2 («/)p/s, while for much smaller s it is 1 VV sinh~% () log p. Further,
for large changes, the lower bound is matched, up to constants, by the achievability statement above.
For the smaller case, the same holds in the restricted setting of @ < 1, since exact recovery in
F(c) only needs tanh™ (o) log p samples (Chow-Liu algorithm, as analysed in [BK16]).> Finally,
the EOF lower bound (which is also tight for & < 1, show that the sample complexity of GOF is
separated from error of fit (and thus SLL) for large changes.

Fig. 3 illustrates Thm. 7 via a simulation for testing deletions in a binary tree (for p = 127, o = 0.1),
showing excellent agreement. In particular, observe the sharp drop in samples needed at s = 21 ~
2,/p versus at s < /p ~ 11. We note that SIL-based testing fails for all s < 60 for this setting even
with 1500 samples (Fig. 4 in §C.3), which is far beyond the scale of Fig. 3. See §C.3 for details.

*While the o < 1 regime is certainly more relevant in practice, it is an open question whether for larger «,
and for small s, the correct SNR behaviour is sinh ~2 or tanh 2 in testing.



Performance of our GoF test

Testing arbitrary changes in trees The statistic .7 is good
at detecting deletions in edges, but is insensitive to edge ad-
ditions, which prevents it from being effective in general for
forests. However, if the forest-models P and () are restricted
to have the same number of edges, then .7 should retain power,
since any change of s edges must delete s/2 edges. This, of
course, naturally occurs for trees! Let 7 (a) C F(«) denote
tree-structured Ising models.

Theorem 8. There exists a C independent of (p, s, ) s.t.

h Sizzc/. of :hang(‘s (s) ’
1 D ) Figure 3: Testing deletions in binary

— 3 1.2 2 |+ treesforp = 127, = 0.1. Entries are
(1 — tanh(a))?sinh™(a) 5 coloured black if risk is > 0.35, white

. . . if < 0.15, and orange otherwise.
Tolerant Testing The achievability results of Thm.s 7,8 can

be made ‘tolerant’ without much effort (see §C.1.3). “Tolerance’ here refers to updating the task to
separate models that are £s-close to P from those that are s-far from it. The key point here is that
for 7 = tanh(«), changing s edges reduces the mean of Jp by at most es7 in both cases, while
changing > s edges reduces it by at least s7 for forest deletion, and s7(1—7)/2 for arbitrary changes
in trees. Thus, tolerant testing has a blow up in sample costs of (1 — &) =2 for forest deletions, and of
O((1 —2e — 7)72) for trees (if ¢ < 1-7/2). This should be contrasted with statistical distance based
formulations of testing, for which tolerant testing is a subtle question, and, at least in unstructured
settings, requires using different divergences to define closeness and farness in order to show gains
beyond learning [DKW18].

ngor (s, T(a)) < C'max (1,

4.2 Testing Deletions in High-Temperature Ferromagnets

Testing deletions in ferromagnets is amenable due to two technical properties of the statistic 7p =
Z( i J)EG(P) X;X;. The first of these is that due to the ferromagneticity, deleting an edge can only
reduce the correlations between the values that the variables take. Coupling this fact with a structural
result that is derived using [SW12, Lemma 6] yields that if G(Q) C G(P) and |G(P)AG(Q)| > s,
then Ep[7p| — Eq[Jp] 2 sa. The second technical property is that bilinear functions of the
variables, such as Zp, exhibit concentration in high-temperature Ising models. In particular, using
the Hoeffding-type concentration of [Ada+19, Ex. 2.5], 9p concentrates at the scale O(+/pd) around
its mean for all high-temperature ferromagnets. With means separated, and variances controlled, we
can offer the following upper bound on the sample complexity, while the converse is derived using
techniques of previous sections. See §C.2 for proofs.

Theorem 9. There exists a constant C,, depending only on 1) and not on (s, p,d, o) such that

d
naGor del (sH () < O (03252 Vv 1) :

Conversely, there exists a ¢ < 1 independent of (s, p,d, ) such that if n < 1/16, s < cpd then

c epd? c cpd
NGor,del (8, Hy(a)) > SR log (1 + 2 ) & nEor,del(s, H () > S log (1 + ;Z)

52

Unlike in Thm. 7, the lower bounds above are not very clean, and so our characterisation of the
sample complexity is not tight. Nevertheless, we once again observe a clear separation between
sample complexities of GOF and of EOQF and a fortiori that of SL. Concretely, our achievability
upper bound and the EOF lower bound show that for s > /pd3, the sample complexity of testing
deletions is far below that of structure learning in this class. Further, our testing lower bound tightly

characterises the sample complexity for s > \/ﬁ .

As an aside, note that unlike in the forest setting, it is not clear if 7 is generically sensitive to
edge deletions, since network effects due to cycles in a graph can bump up correlation even for
deleted edges. However, we strongly suspect that a similar effect does hold in this setting, raising
another open question - can testing of changes in the subclass of #|] with a fixed number of edges
be performed with O(a~2pd/s?) samples for large s? A similar open question arises for tolerant
testing, which requires us to show that small changes do not alter the mean of .7 too much.



Broader Impact Our work is theoretical. It primarily investigates the limits of finding changes in
network structure in settings that are amenable to graphical models. Secondarily, it identifies regimes
in which to focus algorithmic design of tests of network structure, and gaps in the characterisation
of existing algorithmic approaches to the same. As such, the immediate impact it has is only on
theoretical explorations.
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