
Our thanks to each of the reviewers for their work and their suggestions. We discuss their questions below, and we will1

include such discussions in a final version of the paper.2

Generalisations beyond the Ising Model (Reviewer 1) While the generic techniques of Le Cam’s method, and in our3

case the lifting trick of §3.1 should naturally extend to any graphical model, most of the calculations that offer specific4

control on χ2-divergences are strongly affected by the law of the graphical model under consideration. It is, of course,5

for this reason that most papers in this space commit to studying either Ising models or Gaussian MRFs (GMRFs),6

in that these are both natural models with relatively tractable calculations. For the particular choice of GMRFs, we7

feel that the same constructions should extend naturally to show similar results w.r.t. the separation of the sample8

complexity of recovery and testing. This is due to the (non-rigorous) intuition that the pairwise properties of GMRFs9

behave similarly to high-temp Ising models (with obvious caveats), where we have established these effects.10

Experimental Validation in the Tree Setting (Reviewers 2 and 3) This is a very valid point, and should be tractable. We11

will include such an experiment in a final version of the paper.12

Elaboration of Proposition 1 (Reviewer 2) The main thing that allows comparison is that risks for SL and EOF are13

defined in terms of the probability of an error event. The intended reductions are as follows.14

1. Suppose we have a bs/2c-approximate structure learner with risk δ. Then we can construct the following EOF15

estimator with the same sample costs: Take a sample from Q, and pass it to the structure learner. With probability16

at least 1 − δ, this gives a graph Ĝ that is at most bs/2c-separated from G(Q). Now compute G(P )4Ĝ (G(P ) is17

determined because P is given to the EOF tester). By the triangle inequality applied to the adjacency matrices of the18

graphs under the Hamming metric, this identifies G(P )4G(Q) up to an error of bs/2c.19

2. For GOF, we can use a scheme for EOF as follows: take enough samples so that EOF can be solved with risk at most20

δ/2. Take the samples from Q and pass them to the EOF solver. With probability at least 1− δ/2, if G(P ) = G(Q),21

then this solver must output a graph with at most s/2 edges, which if they are separated, this must output a graph with22

at least s/2 edges. So, thresholding the number of edges in this output yields a GOF tester. Net risk is δ/2 for size and23

for power, giving sum risk δ.24

We must thank you for bringing this up, because writing out this proof shows that there are small bookkeeping errors in25

the definitions (the complexities of SL and EOF should be defined as the level needed to get error 1/8 and not 1/4,26

since going from EOF to GOF is doubling the risk in the above, and the EOF risk should penalise errors of at least27

s/2 − 1 instead of s/2 to make the thresholding work out correctly). These do not affect the results besides small28

constant corrections, but are important to get right.29


