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A Matrix-variate Posterior Distribution Induced by WHVI

We derive the parameters of the matrix-variate distribution q(W ) =MN (M ,U ,V ) of the weight
matrix W̃ ∈ RD×D given by WHVI,

W̃ = S1Hdiag(g̃)HS2 with g̃ ∼ N (µ,Σ). (1)
The mean M = S1Hdiag(µ)HS2 derives from the linearity of the expectation. The covariance
matrices U and V are non-identifiable: for any scale factor s > 0, we haveMN (M ,U ,V ) equals
MN (M , sU , 1sV ). Therefore, we constrain the parameters such that Tr(V ) = 1. The covariance
matrices verify (see e.g. Section 1 in the supplement of [1])

U = E
[
(W −M)(W −M)>

]
V =

1

Tr(U)
E
[
(W −M)>(W −M)

]
.

The Walsh-Hadamard matrix H is symmetric. Denoting by Σ1/2 a root of Σ and considering
ε ∼ N (0, I), we have

U = E
[
S1Hdiag(Σ1/2ε)HS2

2Hdiag(Σ1/2ε)HS1

]
. (2)

If we define the matrix T2 ∈ RD×D2

where the ith row is the column-wise vectorization of the matrix
(Σ

1/2
i,j (HS2)i,j′)j,j′≤D. We have

(T2T
>
2 )i,i′ =

D∑
j,j′=1

Σ
1/2
i,j Σ

1/2
i′,j (HS2)i,j′(HS2)i′,j′

=

D∑
j,j′,j′′=1

Σ
1/2
i,j (HS2)i,j′E[εjεj′′ ]Σ1/2

i′,j′′(HS2)i′,j′

=

D∑
j′=1

E

 D∑
j=1

εjΣ
1/2
i,j (HS2)i,j′

  D∑
j′′=1

εj′′Σ
1/2
i′,j′′(HS2)i′,j′


= E

[(
diag(Σ1/2ε)HS2

2Hdiag(Σ1/2ε)
)
i,i′

]
.
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Using (2), a root of U = U1/2U1/2> can be found:

U1/2 = S1HT2. (3)

Similarly for V , we have

V 1/2 =
1√

Tr(U)
S2HT1,

with T1 =


vect

(
Σ1,: (HS1)

>
1,:

)>
...

vect
(
ΣD,: (HS1)

>
d,:

)>
 . (4)

B Geometric Interpretation of WHVI

The matrixA in Section 2.2 expresses the linear relationship between the weightsW = S1HGHS2

and the variational random vector g, i.e. vect(W ) = Ag. Recall the definition of

A =

S1Hdiag(v1)
...

S1Hdiag(vD)

 , with vi = (S2)i,i(H):,i. (5)

We show that a LQ-decomposition ofA can be explicitly formulated.

Proposition. Let A be a D2 ×D matrix such that vect(W ) = Ag, where W is given by W =
S1Hdiag(g)HS2. Then a LQ-decomposition ofA can be formulated as

vect(W ) = [s
(2)
i S1Hdiag(hi)]i=1,...,D g

= LQg, (6)

where hi is the ith column of H , L = diag((s
(2)
i s)i=1,...,D), diag(s(1)) = S1, diag(s(2)) = S2,

andQ = [Hdiag(hi)]i=1,...,D.

Proof. Equation (6) derives directly from block ma-
trix and vector operations. As L is clearly lower tri-
angular (even diagonal), let us proof that Q has or-
thogonal columns. Defining the d × d matrix Q(i) =
Hdiag(hi), we have:

Q>Q =

D∑
i=1

Q(i)>Q(i)

=

D∑
i=1

diag(hi)H
>Hdiag(hi)

=

D∑
i=1

diag(h2
i ) =

D∑
i=1

1

D
I = I.

Figure 1: Diagrammatic representation of WHVI.
The cube represent the high dimensional parameter
space. The variational posterior (mean in orange)
evolves during optimization in the (blue) subspace
whose orientation (red) is controlled by S1 and
S2.

This decomposition gives direct insight on the role of the Walsh-Hadamard transforms: with com-
plexity D log(D), they perform fast rotations Q of vectors living in a space of dimension D (the
plane in Fig. 1) into a space of dimension D2 (the cube in Figure 1). Treated as parameters gathered
in L, S1 and S2 control the orientation of the subspace by distortion of the canonical axes.

We empirically evaluate the minimum RMSE, as a proxy for some measure of average distance,
betweenW and any given point Γ. More precisely, we compute for Γ ∈ RD×D,

min
s1,s2,g∈RD

1

D
||Γ− diag(s1)Hdiag(g)Hdiag(s2)||Frob. (7)
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Fig. 2 shows this quantity evaluated for Γ sampled with i.i.d U(−1, 1) with increasing value of D.
The bounded behavior suggests that WHVI can approximate any given matrices with a precision that
does not increase with the dimension.
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Figure 2: Distribution of the minimum RMSE between S1HGHS2 and a sample matrix with i.i.d. U(−1, 1)
entries. For each dimension, the orange dots represent 20 repetitions. The median distance is displayed in black.
Few outliers (with distance greater than 3.0) appeared, possibly due to imperfect numerical optimization. They
were kept for the calculation of the median but not displayed.

C Additional Details on Normalizing Flows

In the general setting, given a probabilistic model with observations x, latent variables z and model
parameters θ, by introducing an approximate posterior distribution qφ(z) with parameters φ, the
variational lower bound to the log-marginal likelihood is defined as

KL{qφ(z)||p(z|x)} = Eqφ(z) [log qφ(z)− log p(z|x)]
= Eqφ(z) [log qφ(z)− log pθ(x, z)− log p(x)]

≤ −Eqφ(z) [log pθ(x|z)− log qφ(z) + log p(z)] (8)

where pθ(x|z) is the likelihood function with θ model parameters and p(z) is the prior on the latents.
The objective is then to minimize the negative variational bound (NELBO):

L(θ, φ) = −Eqφ(z) log pθ(x|z) + KL{qφ (z)||p(z))} . (9)

Consider an invertible, continuous and differentiable function f : RD → RD. Given z̃0 ∼ q(z0),
then z̃1 = f(z̃0) follows q(z1) defined as

q(z1) = q(z0)

∣∣∣∣det ∂f∂z0

∣∣∣∣−1 . (10)

As a consequence, after K transformations the log-density of the final distribution is

log q(zK) = log q(z0)−
K∑
k=1

log

∣∣∣∣det ∂fk−1∂zk−1

∣∣∣∣ . (11)

We shall define fk(zk−1;λk) the kth transformation which takes input from the previous flow zk−1
and has parameters λk. The final variational objective is

L(θ, φ) = −Eqφ(z)[log pθ(x|z)] + KL{qφ (z)||p(z)})
= Eqφ(z|x)[− log pθ(x|z)− log p(z) + log qφ(z)]

= Eq0(z0)[− log pθ(x|zK)− log p(zK) + log qK(zK)]

= Eq0(z0) [− log pθ(x|zK)− log p(zK) + log q0(z0)

−
K∑
k=1

log

∣∣∣∣det ∂fk(zk−1;λk)∂zk−1

∣∣∣∣
]

= −Eq0(z0) log pθ(x|z) + KL{q0(z0)||p(zK)}
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− Eq0(z0)

K∑
k=1

log

∣∣∣∣det ∂fk(zk−1;λk)∂zk−1

∣∣∣∣ . (12)

Setting the initial distribution q0 to a fully factorized GaussianN (z0|µ,σI) and assuming a Gaussian
prior on the generated zK , the KL term is analytically tractable. A possible family of transformation
is the planar flow [10]. For the planar flow, f is defined as

f(z) = z + uh(w>z + b) , (13)

where λ = [u ∈ RD, w ∈ RD, b ∈ R] and h(·) = tanh(·). This is equivalent to a residual layer
with single neuron MLP – as argued by Kingma et al. [5]. The log-determinant of the Jacobian of f is

log

∣∣∣∣det ∂f∂z

∣∣∣∣ = ∣∣det(I + u[h′(w>z + b)w]>)
∣∣

=
∣∣1 + u>wh′(w>z + b)

∣∣ . (14)

Although this is a simple flow parameterization, a planar flow requires onlyO(D) parameters and thus
it does not increase the time/space complexity of WHVI. Alternatives can be found in [10, 13, 5, 8].

D Additional Results

D.1 Experimental Setup for Bayesian DNN

The experiments on Bayesian DNN are run
with the following setup. For WHVI, we
used a zero-mean prior over g with fully
factorized covariance λI; λ = 10−5 was
chosen to obtain sensible variances in the
output layer. It is possible to design a
prior over g such that the prior onW has
constant marginal variance and low cor-
relations although empirical evaluations
showed not to yield a significant improve-
ment compared to the previous (simpler)
choice. In the final implementation of
WHVI that we used in all experiments, S1

and S2 are optimized. The dropout rate
of MCD is set to 0.005. We used classic
Gaussian likelihood with optimized noise
variance for regression and softmax likeli-
hood for classification.

Table 1: List of dataset used in the experiments

NAME TASK N. D-IN D-OUT

EEG CLASS. 14980 14 2
MAGIC CLASS. 19020 10 2

MINIBOO CLASS. 130064 50 2
LETTER CLASS. 20000 16 26

DRIVE CLASS. 58509 48 11
MOCAP CLASS. 78095 37 5

CIFAR10 CLASS. 60000 3 × 28 × 28 10

BOSTON REGR. 506 13 1
CONCRETE REGR. 1030 8 1

ENERGY REGR. 768 8 2
KIN8NM REGR. 8192 8 1

NAVAL REGR. 11934 16 2
POWERPLANT REGR. 9568 4 1

PROTEIN REGR. 45730 9 1
YACHT REGR. 308 6 1

BOREHOL REGR. 200000 8 1
HARTMAN6 REGR. 30000 6 1

RASTRIGIN5 REGR. 10000 5 1
ROBOT REGR. 150000 8 1

OTLCIRCUIT REGR. 20000 6 1

Training is performed for 500 steps with fixed noise variance and for other 50000 steps with optimized
noise variance. Batch size is fixed to 64 and for the estimation of the expected loglikelihood we used
1 Monte Carlo sample at train-time and 64 Monte Carlo samples at test-time. We choose the Adam
optimizer [4] with exponential learning rate decay λt+1 = λ0(1 + γt)−p, with λ0 = 0.001, p = 0.3,
γ = 0.0005 and t being the current iteration.

Similar setup was also used for the Bayesian CNN experiment. The only differences are the batch
size – increased to 256 – and the optimizer, which is run without learning rate decay.
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D.2 Regression Experiments on Shallow Models

For a complete experimental evaluation of WHVI, we also use the experimental setup proposed by
Hernandez-Lobato and Adams [3] and adopted in several other works [2, 7, 14]. In this configuration,
we use one hidden layer with 50 hidden units for all datasets with the exception of PROTEIN where
the number of units is increased to 100. Results are reported in Table 2.

Table 2: Test RMSE and test MNLL for regression datasets following the setup in [3].

TEST ERROR TEST MNLL
MODEL MCD MFG NNG WHVI MCD MFG NNG WHVI
DATASET

BOSTON 3.40 (0.66) 3.04 (0.64) 2.74 (0.12) 2.56 (0.15) 5.04 (1.76) 3.19 (0.89) 2.45 (0.03) 2.55 (0.15)

CONCRETE 4.60 (0.53) 5.24 (0.53) 5.02 (0.12) 5.01 (0.25) 2.96 (0.23) 3.03 (0.15) 3.04 (0.02) 2.95 (0.06)

ENERGY 1.18 (0.03) 1.52 (0.09) 0.48 (0.02) 1.20 (0.07) 3.00 (0.07) 3.49 (0.11) 1.42 (0.00) 3.01 (0.12)

KIN8NM 0.09 (0.00) 0.10 (0.00) 0.08 (0.00) 0.12 (0.01) −1.09 (0.04) −1.01 (0.04) −1.15 (0.00) −0.78 (0.10)

NAVAL 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.01 (0.00) −9.93 (0.01) −6.48 (0.02) −7.08 (0.03) −6.25 (0.01)

POWERPLANT 4.20 (0.12) 4.23 (0.13) 3.89 (0.04) 4.11 (0.12) 2.76 (0.03) 2.77 (0.03) 2.78 (0.01) 2.74 (0.03)

PROTEIN 4.35 (0.04) 4.74 (0.05) 4.10 (0.00) 4.64 (0.07) 2.80 (0.01) 2.89 (0.01) 2.84 (0.00) 2.86 (0.01)

YACHT 1.72 (0.32) 1.78 (0.45) 0.98 (0.08) 0.96 (0.20) 2.73 (0.74) 2.02 (0.46) 2.32 (0.00) 1.28 (0.22)

D.3 ConvNets architectures
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Figure 3: Architecture layout of RESNET 18.

For the experiments on Bayesian convolutional neural networks, we used architectures adapted to
CIFAR10 (see Tables 3, 4 and 5).

Table 3: ALEXNET

LAYER DIMENSIONS

CONV 64× 3× 3× 3
MAXPOOL

CONV 192× 64× 3× 3
MAXPOOL

CONV 384× 192× 3× 3
CONV 256× 384× 3× 3
CONV 256× 256× 3× 3

MAXPOOL

LINEAR 4096× 4096
LINEAR 4096× 4096
LINEAR 10× 4096

Table 4: VGG16

LAYER DIMENSIONS

CONV 32× 3× 3× 3
CONV 32× 32× 3× 3

MAXPOOL

CONV 64× 32× 3× 3
CONV 64× 64× 3× 3

MAXPOOL

CONV 128× 64× 3× 3
CONV 128× 128× 3× 3
CONV 128× 128× 3× 3

MAXPOOL

CONV 256× 128× 3× 3
CONV 256× 256× 3× 3
CONV 256× 256× 3× 3

MAXPOOL

CONV 256× 256× 3× 3
CONV 256× 256× 3× 3
CONV 256× 256× 3× 3

MAXPOOL

LINEAR 10× 256

Table 5: RESNET 18

LAYER DIMENSIONS

RESNET BLOCK

[
3× 3, 64
3× 3, 64

]
× 2

RESNET BLOCK

[
3× 3, 128
3× 3, 128

]
× 2

RESNET BLOCK

[
3× 3, 256
3× 3, 256

]
× 2

RESNET BLOCK

[
3× 3, 512
3× 3, 512

]
× 2

AVGPOOL
LINEAR 10× 512
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Table 6: Complexity table for GPs with random feature and inducing points approximations. In the case of
random features, we include both the complexity of computing random features and the complexity of treating
the linear combination of the weights variationally (using VI and WHVI).

COMPLEXITY
SPACE TIME

MEAN FIELD - RF O(DINNRF) +O(NRFDOUT) O(DINNRF) +O(NRFDOUT)
WHVI - RF O(DINNRF) +O(

√
NRFDOUT) O(DINNRF) +O(DOUT logNRF)

INDUCING POINTS O(M) O(M3)

Note: M is the number of pseudo-data/inducing points andNRF is the number of random features used in the kernel approximation.

D.4 Results - Gaussian Processes with Random Feature Expansion

We test WHVI for scalable GP inference, by focusing on GPs with random feature expansions [6]. In
GP models, latent variables f are given a prior p(f) = N (0|K); the assumption of zero mean can be
easily relaxed. Given a random feature expansion of the kernel martix, say K ≈ ΦΦ>, the latent
variables can be rewritten as:

f = Φw (15)

with w ∼ N (0, I). The random features Φ are constructed by randomly projecting the input matrix
X using a Gaussian random matrix Ω and applying a nonlinear transformation, which depends on the
choice of the kernel function. The resulting model is now linear, and considering regression problems
such that y = f + ε with ε ∼ N (0, σ2I), solving GPs for regression becomes equivalent to solving
standard linear regression problems. For a given set of random features, we treat the weights of the
resulting linear layer variationally and evaluate the performance of WHVI.

By reshaping the vector of parameters w of the linear model into a D ×D matrix, WHVI allows for
the linearized GP model to reduce the number of parameters to optimize (see Table 6). We compare
WHVI with two alternatives; one is VI of the Fourier features GP expansion that uses less random
features to match the number of parameters used in WHVI, and another is the sparse Gaussian process
implementation of GPFLOW [9] with a number of inducing points (rounded up) to match the number
of parameters used in WHVI.

We report the results on five datasets (10000 ≤ N ≤ 200000, 5 ≤ D ≤ 8, see Table 1). The data
sets are generated from space-filling evaluations of well known functions in analysis of computer
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Figure 4: Comparison of test error w.r.t. the number model parameters (top: mean field, bottom: full covariance).
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experiments (see e.g. [12]). Dataset splitting in training and testing points is random uniform, 20%
versus 80 %. The input variables are rescaled between 0 and 1. The output values are standardized
for training. All GPs have the same prior (centered GP with RBF covariance), initialized with equal
hyperparameter values: each of the D lengthscale to

√
D/2, the GP variance to 1, the Gaussian

likelihood standard deviation to 0.02 (prior observation noise). The training is performed with 12000
steps of Adam optimizer. The observation noise is fixed for the first 10000 steps. Learning rate is
6× 10−4, except for the dataset HARTMAN6 with a learning rate of 5× 10−3. Sparse GPs are run
with whitened representation of the inducing points.

The results are shown in Fig. 4 with diagonal covariance for the three variational posteriors and
with full covariance. In both mean field and full covariance settings, this variant of WHVI using the
reshaping of W into a column largely outperforms the direct VI of Fourier features. However, it
appears that this improvement of the random feature inference for GPs is not enough to reach the
performance of VI using inducing points. Inducing point approximations are based on the Nystroöm
approximation of kernel matrices, which are known to lead to lower approximation error on the
elements on the kernel matrix compared to random features approximations. This is the reason we
attribute to the lower performance of WHVI compared to inducing points approximations in this
experiment.

D.5 Extended results - DNNs

Being able to increase width and depth of a model without drastically increasing the number of
variational parameters is one of the competitive advantages of WHVI. Fig. 5 shows the behavior of
WHVI for different network configurations. At test time, increasing the number of hidden layers
and the numbers of hidden features allow the model to avoid overfitting while delivering better
performance. This evidence is also supported by the analysis of the test MNLL during optimization of
the ELBO, as showed in Fig. 6.

Thanks to WHVI structure of the weights matrices, expanding and deepening the model is beneficial
not only at convergence but during the entire learning procedure as well. Furthermore, the derived
NELBO is still a valid lower bound of the true marginal likelihood and, therefore, a suitable objective
function for model selection. Differently from the issue addressed in [11], during our experiments
we didn’t experience problems regarding initialization of variational parameters. We claim that this
is possible thanks to both the reduced number of parameters and the effect of the Walsh-Hadamard
transform.

Timing profiling of the Fast Walsh-Hadamard transform Key to the log-linear time complexity
is the Fast Walsh-Hadamard transform, which allows to perform the operationHx in O(D logD)
time without requiring to generate and storeH . For our experimental evaluation, we implemented
a FWHT operation in PYTORCH (v. 0.4.1) in C++ and CUDA to leverage the full computational
capabilities of modern GPUs. Fig. 8 presents a timing profiling of our implementation versus the
naive matmul (batch size of 512 samples and profiling repeated 1000 times). The breakeven point for
the CPU implementation is in the neighborhood of 512/1024 features, while on GPU we see FWHT is
consistently faster.
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