A Wall-clock Time and Scaling Analysis

Figure 5: Graph-Q-SAT's MRIR improvement (10 model calls) results in the wall clock time reduction. The curves show the averaged performance across five runs with the shade denoting the worst and the best runs.

Figure 5 demonstrates that reduction in the number of iterations together with limiting the number of model calls results in wall clock time improvements for the datasets where the number of saved iterations is large enough to tolerate the network inference timings.

More generally, we can anticipate the settings in which Graph-Q-SAT will yield an improvement in wall clock time over VSIDS by analyzing the factors contributing to their runtime performance. Assuming VSIDS's computational cost is negligible, we can compute the wall clock time of MiniSat with VSIDS as follows: $W_{VSIDS} = \sum_{t=1}^{T} P(t)$, where P(t) is the unit propagation time (a procedure of formula simplification after the branching decision is made). Similarly, Graph-Q-SAT saves some fraction of iterations at the cost of added neural network inference time: $W_{\text{Graph-Q-SAT}} =$ $\sum_{t=1}^{T/S} P(t) + \sum_{t=1}^{K} I(t)$, where S is the reduction of the number of iterations, K is the number of our model forward passes ($K \ll T$ for larger problems), and I(t) is the network inference time. Thus, Graph-Q-SAT leads to wall clock speed ups when the total inference time stays below the time spent on propagation for the reduced number of VSIDS decisions. This seems plausible assuming that T's growth is unbounded, $K \ll T$ and linear dependence of I(t) on the number of vertices. To check the linear dependence, we generated 10⁵ graphs with characteristics similar to random 3-SAT problems (bipartite graph, each variable is connected to 13 clauses, and clause/variable ratio is 4). Figure 6 confirms that the dependence is linear.

B Propagations per step

Figure 8 shows that on average using Graph-Q-SAT leads to more propagations per step than VSIDS.

C Reproducibility

We implement our models using Pytorch [3] and Pytorch Geometric [2].

C.1 Model architecture

We use Encoder-Process-Decode architecture from [1]. Encoder and decoder are independent graph networks, i.e. MLPs taking whole vertex or edge feature matrix as a batch without message passing. We call the middle part 'the core'. The output of the core is concatenated with the output of the encoder and gets fed to the core again. We describe all the hyperparameters in Appendix C.3. We also plan to release the experimental code and the modified version of MiniSat to use as a gym environment.

Figure 6: Graph-Q-SAT inference time linearly depends on the number of vertices in the graph.

Figure 7: Encode-Process-Decode architecture. Encoder and Decoder are independent graph networks, i.e. MLPs taking whole vertex/edge data array as a batch. k is the index of a message passing iteration. When concatenating for the first time, encoder output is concatenated with zeros.

C.2 Dataset

We split SAT-50-218 into three subsets: 800 training problems, 100 validation and 100 test problems. For generalization experiments, we use 100 problems from all the other benchmarks.

For graph colouring experiments, we train our models using all problems from flat-75-180 dataset. We select a model, given the performance on all 100 problems from flat-100-239. So, evaluation on these two datasets should not be used to judge the performance of the method, and they are shown separately in Table 4. All the data from the second part of the table was not seen by the model during training (flat-30-60, flat-50-115, flat-125-301, flat-150-360, flat-175-417, flat-200-479).

C.3 Hyperparameters

Table 5 contains all the hyperparameters necessary to replicate our results.

C.4 Graph-Q-SAT pseudocode

Figure 8: Average number of variable assignments change per step for (un)SAT-50-218 and (un)SAT-100-430.

Algorithm 1 Graph-Q-SAT Action Selection
Input: graph network GN_{θ} , state graph $G_s := (V, E, U)$, with vertex features $V = [V_{vars}, V_{clauses}]$, edge features E , and a global component U .

 $\overline{V', E', U' = GN(V, E, U);}$ VarIndex, VarPolarity = $\arg \max_{ij} V'_{vars};$ **Return** VarIndex, VarPolarity;

Hyperparameter	Value	Comment
DQN		
– Batch updates	50 000	
– Learning rate	0.00002	
– Batch size	64	
 Memory replay size 	20 000	
– Initial exploration ϵ	1.0	
– Final exploration ϵ	0.01	
 Exploration decay 	30 000	Environment steps.
 Initial exploration steps 	5000	Environment steps, filling the buffer, no training.
– Discounting γ	0.99	
 Update frequency 	4	Every 4th environment step.
 Target update frequency 	10	
 Max decisions allowed for training 	500	Used a safety against being stuck at the episode.
- Max decisions allowed for testing	500	Varied among [0, 10, 50, 100, 300, 500, 1000] for the experiment on Figure 3.
– Step penalty size p	-0.1	1 0
Optimization		
– Optimizer	Adam	
– Adam betas	0.9, 0.999	Pytorch default.
– Adam eps	1e-08	Pytorch default.
 Gradient clipping 	1.0	0.1 for training on the graph coloring dataset.
 Gradient clipping norm 	L_2	
– Evaluation frequency	1000	
Graph Network		
 Message passing iterations 	4	
 Number of hidden layers for GN core 	1	
 Number of units in GN core 	64	
 Encoder output dimensions 	32	For vertex, edge and global updater.
 Core output dimensions 	64,64,32	For vertex, edge and global respectively.
 Decoder output dimensions 	32	For vertex updater, since only Q values are used,
		no need for edge/global updater.
 Activation function 	ReLU	For everything but the output transformation.
– Edge to vertex aggregator $\rho_{e \rightarrow v}$	sum	
– Variable to global aggregator $\rho_{v \to u}$	average	
– Edge to global aggregator $\rho_{e \rightarrow u}$	average	
– Normalization	Layer Normalization	After each GN updater

Table 5: Graph-Q-SAT hyperparameters.

Algorithm 2 Graph-Q-SAT Training Procedure

```
Input: Set of tasks S \sim \mathcal{D}(\phi, (un)SAT, n_{vars}, n_{clauses}) split into \{S_{train}, S_{validation}, S_{test}\}, \phi
is the task family (e.g. random 3-SAT, graph coloring). All hyperparameters are from Table 5.
Randomly Initialize Q-network GN_{\theta};
updates = 0;
totalEnvSteps = 0;
repeat
   repeat
      Sample a SAT problem p \sim S_{train};
     Initialize the environment env = SatEnv(p);
     Reset the environment s = env.reset();
     take action
     a = \begin{cases} random(\mathcal{A}), \text{ with probability } \epsilon \\ selectAction(s), \text{ with probability } 1 - \epsilon \end{cases}
     Take env step s', r, done = env.step(a);
     totalEnvSteps + = 1;
     dump experience buffer.add(s, s', r, done, a);
     if totalEnvSteps \mod updateFreq == 0; then
        Do a DQN update;
      end if
     if totalEnvSteps \mod validateFreq == 0; then
        Evaluate GN_{\theta} on S_{validation};
      end if
  until Proved SAT/unSAT (done is True)
until updates == totalBatchUpdates
Pick the best model GN_{\theta} given validation scores;
Test the model GN_{\theta} on S_{test};
```

References

- [1] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, Ç. Gülçehre, H. F. Song, A. J. Ballard, J. Gilmer, G. E. Dahl, A. Vaswani, K. R. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu. Relational inductive biases, deep learning, and graph networks. *CoRR*, abs/1806.01261, 2018. URL http://arxiv.org/abs/ 1806.01261.
- [2] M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric. *CoRR*, abs/1903.02428, 2019. URL http://arxiv.org/abs/1903.02428.
- [3] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pages 8024–8035, 2019. URL http://papers.nips.cc/paper/ 9015-pytorch-an-imperative-style-high-performance-deep-learning-library.