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Figure 5: Graph-Q-SAT’s MRIR improvement (10 model calls) results in the wall clock time
reduction. The curves show the averaged performance across five runs with the shade denoting the
worst and the best runs.

Figure 5 demonstrates that reduction in the number of iterations together with limiting the number
of model calls results in wall clock time improvements for the datasets where the number of saved
iterations is large enough to tolerate the network inference timings.

More generally, we can anticipate the settings in which Graph-Q-SAT will yield an improvement
in wall clock time over VSIDS by analyzing the factors contributing to their runtime performance.
Assuming VSIDS’s computational cost is negligible, we can compute the wall clock time of MiniSat
with VSIDS as follows: WV SIDS =

∑T
t=1 P (t), where P (t) is the unit propagation time (a

procedure of formula simplification after the branching decision is made). Similarly, Graph-Q-SAT
saves some fraction of iterations at the cost of added neural network inference time: WGraph-Q-SAT =∑T/S
t=1 P (t) +

∑K
t=1 I(t), where S is the reduction of the number of iterations, K is the number of

our model forward passes (K << T for larger problems), and I(t) is the network inference time.
Thus, Graph-Q-SAT leads to wall clock speed ups when the total inference time stays below the time
spent on propagation for the reduced number of VSIDS decisions. This seems plausible assuming
that T ’s growth is unbounded, K << T and linear dependence of I(t) on the number of vertices. To
check the linear dependence, we generated 105 graphs with characteristics similar to random 3-SAT
problems (bipartite graph, each variable is connected to 13 clauses, and clause/variable ratio is 4).
Figure 6 confirms that the dependence is linear.

B Propagations per step

Figure 8 shows that on average using Graph-Q-SAT leads to more propagations per step than VSIDS.

C Reproducibility

We implement our models using Pytorch [3] and Pytorch Geometric [2].

C.1 Model architecture

We use Encoder-Process-Decode architecture from [1]. Encoder and decoder are independent graph
networks, i.e. MLPs taking whole vertex or edge feature matrix as a batch without message passing.
We call the middle part ’the core’. The output of the core is concatenated with the output of the
encoder and gets fed to the core again. We describe all the hyperparameters in Appendix C.3. We
also plan to release the experimental code and the modified version of MiniSat to use as a gym
environment.
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Figure 6: Graph-Q-SAT inference time linearly depends on the number of vertices in the graph.
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Figure 7: Encode-Process-Decode architecture. Encoder and Decoder are independent graph net-
works, i.e. MLPs taking whole vertex/edge data array as a batch. k is the index of a message passing
iteration. When concatenating for the first time, encoder output is concatenated with zeros.

C.2 Dataset

We split SAT-50-218 into three subsets: 800 training problems, 100 validation and 100 test problems.
For generalization experiments, we use 100 problems from all the other benchmarks.

For graph colouring experiments, we train our models using all problems from flat-75-180 dataset.
We select a model, given the performance on all 100 problems from flat-100-239. So, evaluation on
these two datasets should not be used to judge the performance of the method, and they are shown
separately in Table 4. All the data from the second part of the table was not seen by the model during
training (flat-30-60, flat-50-115, flat-125-301, flat-150-360, flat-175-417, flat-200-479).

C.3 Hyperparameters

Table 5 contains all the hyperparameters necessary to replicate our results.

C.4 Graph-Q-SAT pseudocode
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(c) SAT 100-430
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Figure 8: Average number of variable assignments change per step for (un)SAT-50-218 and (un)SAT-
100-430.

Algorithm 1 Graph-Q-SAT Action Selection
Input: graph network GNθ, state graph Gs := (V,E,U),
with vertex features V = [Vvars, Vclauses], edge features E, and a global compontent U .

V ′, E′, U ′ = GN(V,E,U);
V arIndex, V arPolarity = argmaxij V

′
vars;

Return V arIndex, V arPolarity;
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Table 5: Graph-Q-SAT hyperparameters.
Hyperparameter Value Comment
DQN

– Batch updates 50 000
– Learning rate 0.00002
– Batch size 64
– Memory replay size 20 000
– Initial exploration ε 1.0
– Final exploration ε 0.01
– Exploration decay 30 000 Environment steps.
– Initial exploration steps 5000 Environment steps, filling the buffer, no training.
– Discounting γ 0.99
– Update frequency 4 Every 4th environment step.
– Target update frequency 10
– Max decisions allowed for training 500 Used a safety against being stuck at the episode.
– Max decisions allowed for testing 500 Varied among [0, 10, 50, 100, 300, 500, 1000]

for the experiment on Figure 3.
– Step penalty size p -0.1

Optimization

– Optimizer Adam
– Adam betas 0.9, 0.999 Pytorch default.
– Adam eps 1e-08 Pytorch default.
– Gradient clipping 1.0 0.1 for training on the graph coloring dataset.
– Gradient clipping norm L2

– Evaluation frequency 1000

Graph Network

– Message passing iterations 4
– Number of hidden layers for GN core 1
– Number of units in GN core 64
– Encoder output dimensions 32 For vertex, edge and global updater.
– Core output dimensions 64,64,32 For vertex, edge and global respectively.
– Decoder output dimensions 32 For vertex updater, since only Q values are used,

no need for edge/global updater.
– Activation function ReLU For everything but the output transformation.
– Edge to vertex aggregator ρe→v sum
– Variable to global aggregator ρv→u average
– Edge to global aggregator ρe→u average
– Normalization Layer Normalization After each GN updater
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Algorithm 2 Graph-Q-SAT Training Procedure
Input: Set of tasks S ∼ D(φ, (un)SAT, nvars,nclauses) split into {Strain,Svalidation,Stest}, φ
is the task family (e.g. random 3-SAT, graph coloring). All hyperparameters are from Table 5.
Randomly Initialize Q-network GNθ;
updates = 0;
totalEnvSteps = 0;
repeat

repeat
Sample a SAT problem p ∼ Strain;
Initialize the environment env = SatEnv(p);
Reset the environment s = env.reset();
take action

a =

{
random(A),with probability ε
selectAction(s),with probability 1− ε

Take env step s′, r, done = env.step(a);
totalEnvSteps+ = 1;
dump experience buffer.add(s, s′, r, done, a);
if totalEnvSteps mod updateFreq == 0; then

Do a DQN update;
end if
if totalEnvSteps mod validateFreq == 0; then

Evaluate GNθ on Svalidation;
end if

until Proved SAT/unSAT (done is True)
until updates == totalBatchUpdates
Pick the best model GNθ given validation scores;
Test the model GNθ on Stest;
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