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Abstract

We present Graph-Q-SAT, a branching heuristic for a Boolean SAT solver trained
with value-based reinforcement learning (RL) using Graph Neural Networks for
function approximation. Solvers using Graph-Q-SAT are complete SAT solvers
that either provide a satisfying assignment or proof of unsatisfiability, which is
required for many SAT applications. The branching heuristics commonly used in
SAT solvers make poor decisions during their warm-up period, whereas Graph-
Q-SAT is trained to examine the structure of the particular problem instance to
make better decisions early in the search. Training Graph-Q-SAT is data efficient
and does not require elaborate dataset preparation or feature engineering. We train
Graph-Q-SAT using RL interfacing with MiniSat solver and show that Graph-
Q-SAT can reduce the number of iterations required to solve SAT problems by
2-3X. Furthermore, it generalizes to unsatisfiable SAT instances, as well as to
problems with 5X more variables than it was trained on. We show that for larger
problems, reductions in the number of iterations lead to wall clock time reductions,
the ultimate goal when designing heuristics. We also show positive zero-shot
transfer behavior when testing Graph-Q-SAT on a task family different from that
used for training. While more work is needed to apply Graph-Q-SAT to reduce
wall clock time in modern SAT solving settings, it is a compelling proof-of-concept
showing that RL equipped with Graph Neural Networks can learn a generalizable
branching heuristic for SAT search.

1 Introduction

Boolean satisfiability (SAT) is an important problem for both industry and academia that impacts
various fields, including circuit design, computer security, artificial intelligence and automatic theorem
proving. As a result, modern SAT solvers are well crafted, sophisticated, reliable pieces of software
that can scale to problems with hundreds of thousands of variables [33].
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SAT is known to be NP-complete [22], and most state-of-the-art open-source and commercial solvers
rely on multiple heuristics to speed up the exhaustive search, which is otherwise intractable. These
heuristics are usually meticulously crafted using expert domain knowledge and are often iteratively
refined via trial and error. In this paper, we investigate how we can use machine learning to improve
upon an existing branching heuristic without leveraging domain expertise.

We present Graph-Q-SAT, a branching heuristic in a Conflict Driven Clause Learning [40, 21, CDCL]
SAT solver trained with value-based reinforcement learning (RL), based on deep Q-networks [30,
DQN]. Graph-Q-SAT uses a graph representation of SAT problems similar to Selsam et al. [39]
which provides permutation and variable relabeling invariance. Graph-Q-SAT uses a Graph Neural
Network [13, 4, GNN] as a function approximator to provide generalization as well as support for a
dynamic state-action space. Graph-Q-SAT uses a simple state representation and a binary reward that
requires no feature engineering or problem domain knowledge. Graph-Q-SAT modifies only part of
the CDCL based solver, keeping it complete, i.e., always yielding a correct solution.

We demonstrate that Graph-Q-SAT outperforms Variable State Independent Decaying Sum [31,
VSIDS], the most frequently used CDCL branching heuristic, reducing the number of iterations
required to solve SAT problems by 2-3X. Graph-Q-SAT is trained to examine the structure of the
particular problem instance to make better decisions at the beginning of the search, whereas the
VSIDS heuristic suffers from poor decisions during the warm-up period.

Our work primarily focuses on the machine learning perspective and thus more work would be
required to apply Graph-Q-SAT in industrial-scale SAT settings. However, Graph-Q-SAT exhibits
intriguing properties which might eventually be useful for practical applications. We show that our
method generalizes to problems five times larger than those it was trained on. We also show that
Graph-Q-SAT generalizes across problem types from satisfiable (SAT) to unsatisfiable instances
(unSAT). We show that reducing the number of iterations, in turn, could reduce wall clock time,
the ultimate goal when designing heuristics. We also show positive zero-shot transfer properties of
Graph-Q-SAT when the testing task family is different from the training one. Finally, we show that
some of these improvements are achieved even when training is limited to a single SAT problem,
demonstrating data efficiency.

2 Background

2.1 SAT problem

A SAT problem involves finding variable assignments such that a propositional logic formula is
satisfied or showing that such an assignment does not exist. A propositional formula is a Boolean
expression, including Boolean variables, ANDs, ORs and negations. The term literal is used to refer
to a variable or its negation. It is convenient to represent Boolean formulas in conjunctive normal
form (CNF), i.e., conjunctions (AND) of clauses, where a clause is a disjunction (OR) of literals. An
example of a CNF is (x1∨¬x2)∧(x2∨¬x3), where ∧,∨,¬ are AND, OR, and negation respectively.
This CNF formula has two clauses: (x1 ∨ ¬x2) and (x2 ∨ ¬x3). In this work, we use SAT to denote
both the Boolean Satisfiability problem and a satisfiable instance, which should be clear from the
context. We use unSAT to denote unsatisfiable instances.

There are many types of SAT solvers. We focus on CDCL solvers, MiniSat [10] in particular, because
it is an open-source, minimal, but powerful implementation. A CDCL solver repeats the following
steps: every iteration it chooses a variable and assigns it a binary value. This is called a decision.
Then, the solver simplifies the formula building an implication graph and checks whether a conflict
emerged. Given a conflict, the solver can infer (learn) new clauses and backtrack to the variable
assignments where the newly learned clause becomes unit (consisting of a single literal). Learnt
clauses force a variable assignment which avoids the previous conflict. Sometimes, CDCL solver
undoes all the variable assignments keeping the learned clauses to escape futile regions of the search
space. This is called a restart.

We focus on the branching heuristic because it is one of the most heavily used during the solution
procedure. The branching heuristic is responsible for picking the variable and assigning some value to
it. VSIDS [31] is one of the most used CDCL branching heuristics. It is a counter-based heuristic that
keeps a scalar value for each literal or variable (MiniSat uses the latter). These values are increased
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every time a variable is involved in a conflict. The algorithm behaves greedily with respect to these
values called activities. Activities are usually initialized with zeroes [27].

2.2 Reinforcement Learning

We formulate the RL problem as a Markov decision process (MDP). An MDP is a tuple
〈S,A,R, T , γ, ρ〉with a set of states S , a set of actionsA, a reward functionR(s, a, s′) and the transi-
tion function T (s, a, s′) = p(s, a, s′), where p(s, a, s′) is a probability distribution, s, s′ ∈ S, a ∈ A.
Discount factor γ ∈ [0, 1) weights preferences for immediate reward relative to future reward. The
last element of the tuple ρ is the probability distribution over initial states. In the case of episodic
tasks, the state space is split into the set of non-terminal states and the terminal state S+. To solve
an MDP means to find an optimal policy, a mapping that outputs an action or distribution over
actions given a state and which maximizes the expected discounted return R = E[

∑∞
t=0 γ

trt], where
rt = R(st, at, st+1) is the reward for the transition from st to st+1. In Section 3 we apply DQN, a
value-based RL algorithm that approximates an optimal Q-function, an action-value function that
estimates the sum of future rewards after taking an action a in state s and following an optimal
policy π thereafter: Q∗(s, a) = Eπ,T ,ρ[R(s, a, s′) + γmaxa′ Q

∗(s′, a′)]. A mean squared temporal
difference (TD) error is used to make an update step: L(θ) = (Qθ(s, a)− r − γmaxa′ Qθ̄(s

′, a′))2,
where θ parametrizes the Q-function. Target network [30] Qθ̄ is used to stabilize DQN. Its weights
are copied from the main network Qθ after each k minibatch updates.

2.3 Graph Neural Networks

Boolean formulas can be of arbitrary size. Moreover, during the solution procedure, some parts
of the formula are eliminated and new clauses are added. We need a network architecture which
does not assume the input to be of fixed size. Moreover, a Boolean formula should be invariant to
the permutation of the clauses, variables and their renaming. To accommodate these requirements
and also to take the problem structure into account, we use Graph Neural Networks [13, GNN] to
approximate our Q-function. We use the formalism of Battaglia et al. [4], which unifies most existing
GNN approaches. Under this formalism, GNN is a set of functions that take an annotated graph as
input and output a graph with modified annotations but the same topology.

Here, a graph is a directed graph 〈V,E,U〉, where V is the set of vertices, E is the set of directed
edges with eij = (i, j) ∈ E, vi, vj ∈ V , and U is a global attribute which contains the information
relevant to the whole graph. We call vertices, edges, and the global attribute entities. Each entity has
an associated annotation: eij ∈ Re, vi ∈ Rv or u ∈ Ru. A GNN changes these annotations as a
result of its operations.

A GNN is as a set of six functions: update functions φe, φv, φu and aggregation functions
ρe→v, ρe→u, ρv→u. The information propagates between vertices along graph edges. Update func-
tions compute new entity annotations. Aggregation functions enable GNN to process graphs of
arbitrary topology, compressing multiple entities features into vectors of fixed size. Summation,
averaging, taking max or min are popular choices of aggregation functions.

More formally, within one iteration, a GNN does the following computations (in order):

e′ij = φe(u, e,vi,vj) ∀eij ∈ E
v′i = φv

[
u,vi, ρe→v({eki | ∀eki ∈ E})

]
∀vi ∈ V

u′ = φu
[
u, ρe→u({eij | ∀eij ∈ E}), ρv→u({vi | ∀vi ∈ V })

]
.

A GNN performs multiple iterations to further propagate information in the graph. Neural networks
that represent update functions, can be optimised end-to-end using backpropagation.

3 Graph-Q-SAT

As noted in Section 2.2, we use the MDP formalism for our purposes. Each SAT problem is an MDP
sampled from a distribution of SAT problems of a specific family (e.g., random 3-SAT or graph
coloring). Moreover, each problem is either satisfiable or unsatisfiable. Hence, a task is defined as
follows: τ ∼ D(φ, (un)SAT, nvars, nclauses), where D is the distribution of SAT problems with
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Figure 1: Bipartite graph representation of the
Boolean formula (x1 ∨ x2) ∧ (¬x2 ∨ x3). The
numbers next to the vertices distinguish variables
and clauses. Edge labels encode literal polarities.
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Figure 2: Q-function values for setting variables
to true and false respectively. Taking argmax
across all Q-values of variable nodes gives an
action.

φ defining the task family, the second argument defining the problem satisfiability and nvars and
nclauses are the number of variables and clauses respectively. Each state of the MDP consists of
unassigned variables and unsatisfied clauses containing these variables. The MDP is episodic, and
a terminal state is reached when a satisfying assignment is found, or the all possible options have
been exhausted, proving unSAT. The action space includes two actions for each unassigned variable:
assigning it to true or false. We build upon the MiniSat-based environment of [44]. We modified
it to support arbitrary SAT problems and generate a graph representation of the state. It takes the
actions, modifies its implication graph internally and returns a new state containing newly learned
clauses and without the variables removed during propagation. Strictly speaking, this state is not
fully observable. In the case of a conflict, the solver undoes the assignments for variables that are not
observed by the agent. However, in practice, this should not inhibit the goal of quickly pruning the
search tree: the information in the state is enough to pick a variable that leads to more propagation in
the remaining formula. We use a simple reward function: the agent gets a negative reward of p for
each non-terminal transition and 0 for reaching the terminal state. This reward encourages an agent
to finish an episode as quickly as possible and does not require elaborate reward shaping.

SAT is an appealing problem from the RL perspective. It has the features that are hard to find in
conventional RL environments. First, elements of the state/action set are of different dimensions,
which is a challenging case for conventional function approximation techniques. Second, the state-
space has a structured, object-oriented representation. Third, SAT allows to vary problem sizes
without changing the task family, and to change the task family without changing problem sizes.
Lastly, with Hoos and Stützle [18] benchmarks we use, experiments do not take weeks and are easy
to iterate on.

3.1 State Representation

We represent a SAT problem as a graph similar to Selsam et al. [39]. We make it more compact,
using vertices to denote variables instead of literals. We use vertices to encode clauses as well. As
Figure 1 shows, our state representation is simple and does not require feature engineering. An edge
(xi, ci) means that a clause ci contains literal xi. If a literal contains a negation, a corresponding edge
has a [1, 0] label and [0, 1] otherwise. GNNs process directed graphs, so we create two directed edges
with the same labels: from a variable to a clause and vice-versa. Vertex features are two-dimensional
one-hot vectors, denoting either a variable or a clause. We do not provide any other information to
the model. The global attribute input is empty and is only used for message passing.

3.2 Q-Function Representation

We use the encode-process-decode architecture [4], which we discuss in more detail in Appendix C.1.
Similarly to Bapst et al. [3], our GNN labels variable vertices with Q-values. Each variable vertex
has two actions: set the variable to true or false as shown on Figure 2. We choose the action that gives
the maximal Q-value across all variable vertices. The graph contains only unassigned variables, so
all actions are valid. We use DQN with common techniques such as memory replay, target network,
and ε-greedy exploration. To expose the agent to more episodes and prevent it from getting stuck, we
cap the maximum number of actions per episode similarly to the episode length parameter in gym [6].
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Table 1: Number of MiniSat iterations (no
restarts) to solve random 3-SAT instances.

dataset median mean

SAT 50-218 38 42
SAT 100-430 232 286
SAT 250-1065 62 192 76 120

unSAT 50-218 68 68
unSAT 100-430 587 596
unSAT 250-1065 178 956 182 799

Table 2: Graph-Q-SAT MRIR trained on SAT-50-218.
SAT-50-218 results are for a separate validation set.

dataset mean min max

SAT 50-218 2.46 2.26 2.72
SAT 100-430 3.94 3.53 4.41
SAT 250-1065 3.91 2.88 5.22

unSAT 50-218 2.34 2.07 2.51
unSAT 100-430 2.24 1.85 2.66
unSAT 250-1065 1.54 1.30 1.64

3.3 Training and Evaluation

We train our agent using Random 3-SAT instances from the SATLIB benchmark [18]. To measure
generalization, we split these data into training, validation, and test sets. To illustrate the problem
complexities, Table 1 provides the number of steps it takes MiniSat to solve the problem. Each
random 3-SAT problem is denoted as SAT-X-Y or unSAT-X-Y, where SAT means that all problems
are satisfiable, unSAT means all problems are unsatisfiable. X and Y stand for the number of variables
and clauses in the initial formula. We provide more details about the datasets in Appendix C.2.

While random 3-SAT problems have relatively few variables and clauses, they have an interesting
property that makes them more challenging for a solver. For this dataset, the ratio of clauses to
variables is close to 4.3 to 1 which is near the phase transition at which it is hard to say whether the
problem is SAT or unSAT [9]. In 3-SAT problems, each clause has exactly 3 variables. However,
learned clauses might be of arbitrary size.

We use Median Relative Iteration Reduction (MRIR) w.r.t. MiniSat as our main performance metric:
the number of iterations it takes MiniSat to solve a problem divided by Graph-Q-SAT’s number of
iterations. Similarly to the median human normalized score adopted in the Atari domain [16], we use
the median instead of the mean to avoid skew from outliers. By one iteration we mean one decision,
i.e., choosing a variable and setting it to a value. We compare ourselves with the best MiniSat results
having run MiniSat with and without restarts. We cap the number of decisions our method takes at
the beginning of the solution procedure and then we give control to MiniSat.

We are not interested in the absolute number of iterations per se or the total ratio between VSIDS and
Graph-Q-SAT. We use these numbers as a common scale to show the generalisation, transfer and data
efficiency properties of our approach.

When training, we evaluate the model every 1000 batch updates on the validation instances and pick
the model with the best validation results. After that, we evaluate this model on the test set and
report the results. For each model we do 5 training runs and report the average MRIR results, the
maximum, and the minimum. We provide all the hyperparameters needed to reproduce our results
in Appendix C. Our experimental code as well as the MiniSat gym environment can be found at
https://github.com/NVIDIA/GraphQSat.

4 Experimental Results

In this section, we present empirical results for Graph-Q-SAT.

4.1 Improving upon VSIDS

In our first experiment, we consider whether it is possible to improve upon VSIDS using no domain
knowledge, a simple state representation, and a simple reward function. The first row in Table 2 gives
a positive answer to that question. DQN equipped with a GNN solves the problems in fewer than
half the iterations of MiniSat. Graph-Q-SAT makes decisions resulting in more propagations, i.e.,
inferring variable values based on other variable assignments and clauses. This helps Graph-Q-SAT
prune the search tree faster. For SAT-50-218, Graph-Q-SAT does on average 2.44 more propagations
than MiniSat (6.62 versus 4.18). We plot the average number of variable assignments for each
problem individually in the Appendix B.
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These results raise the question: Why does Graph-Q-SAT outperform VSIDS? VSIDS is a counter-
based heuristic that takes time to warm up. Our model, on the other hand, perceives the whole
problem structure and can make more informed decisions from the beginning. To test this hypothesis,
we vary the number of decisions our model makes at the beginning of the solution procedure before
we hand the control back to VSIDS. The results in Figure 3 support this hypothesis. Even if our
model is used for only the first ten iterations, it still improves performance over VSIDS.

One strength of Graph-Q-SAT is that VSIDS keeps being updated while the decisions are made
with Graph-Q-SAT. We believe that Graph-Q-SAT complements VSIDS by providing better quality
decisions in the initial phase while VSIDS is warming up. Capping the number of model calls
also significantly reduces the main bottleneck of our approach – wall clock time spent on model
evaluation.

4.2 Generalization Properties of Graph-Q-SAT

Next, we consider Graph-Q-SAT’s generalization properties.

4.2.1 Generalization across Problem Sizes

Table 2 shows that Graph-Q-SAT has no difficulty generalizing to larger problems, showing almost
4X improvement in iterations for a dataset 5 times bigger than the training set. Graph-Q-SAT on
average leads to more variable assignments changes per step, e.g., 7.58 vs 5.89 on SAT-100-430
(refer to Appendix B for detailed plots). It might seem surprising that the model performs better for
larger problems. However, an increase in score for different problem sizes might also mean that the
base solver scales worse than our method does for this benchmark.

4.2.2 Generalization from SAT to unSAT

An important characteristic of Graph-Q-SAT is that the problem formulation and representation
makes it possible to solve unSAT problems when training only on SAT, which is problematic for some
existing approaches [39]. The performance is, however, worse than the performance on satisfiable
problems. On the one hand, SAT and unSAT problems are different. When the solver finds one
satisfying assignment, the problem is solved. For unSAT, the algorithm needs to exhaust all possible
options to prove that there is no such assignment. On the other hand, there is one important similarity
between the two: an algorithm has to prune the search tree as fast as possible. Our measurements of
the average number of propagations per step demonstrate that Graph-Q-SAT learns how to prune the
tree more efficiently than VSIDS (6.36 vs 4.17 for unSAT-50-218, detailed plots are in Appendix B).

4.2.3 Transfer across Task Families

So far, we have examined the generalization properties of Graph-Q-SAT varying only the last three
arguments of the task distribution defined in Section 3 (D(φ, (un)SAT, nvars, nclauses). In this
section we go one step further and study Graph-Q-SAT’s zero-shot transfer to a new task family φ.

This is a challenging problem. SAT problems have distinct structures, e.g., the graph representation
of a random 3-SAT problem looks different than that of a graph coloring problem. GNNs learn graph
local properties, i.e. how neighbouring entities’ features have a global implication on Q-values. It
is reasonable to expect a performance drop when changing the task family φ, but the magnitude of
the drop gives some indication of the method’s ability to transfer across task families. Therefore, we
evaluate a model trained on SAT-50-218 on the flat graph coloring benchmark from SATLIB [18].
All the problems in the benchmark are satisfiable. Table 3 shows positive transfer for Graph-Q-SAT
on the graph coloring benchmark, with MRIR above 1 in five out of eight cases. As expected, MRIR
is lower if than in Table 2, where the model was evaluated on the tasks sampled from the same
distribution.

Training directly on the graph coloring benchmark indeed improves performance. Graph coloring
benchmarks have only 100 problems each, so we do not split them into training/validation/test sets
using flat-75-180 for training and flat-100-239 to do model selection. Table 4 shows that Graph-Q-
SAT, trained on flat75-180 shows higher MRIR compared to the transferred model. Additionally, this
experiment shows that Graph-Q-SAT can scale when training on larger graphs.
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Another intriguing property of Graph-Q-SAT generalization is that sometimes Graph-Q-SAT shows
better performance when generalizing in comparison to training from scratch. Learning on SAT-100-
430 requires more resources, does not generalize as well, and is generally less stable than training
on SAT-50-218 and then transferring to SAT-100-430 and SAT-250-1065. Hence, generalizing with
Graph-Q-SAT not only reduces the time and samples spent on training, but yields models hardly
achievable by learning. We suppose the reason is that transfer is not directly affected by all the issues
an RL agent faces when training: higher variance in the returns caused by longer episodes, challenges
for temporal credit assignment, and difficulties with exploration.

4.3 Data Efficiency

We design our next experiment to understand how many different SAT problems Graph-Q-SAT needs
to learn from. We varied the SAT-50-218 training set from a single problem to 800 problems. Figure 4
shows that Graph-Q-SAT is extremely data efficient. Having more data helps in most cases but,
even with a single problem, Graph-Q-SAT generalizes across problem sizes and to unSAT instances.
This should allow Graph-Q-SAT to generalize to new benchmarks without access to many problems
from them. We assume that Graph-Q-SAT’s data efficiency is one of the benefits of using RL. The
environment allows the agent to explore diverse regions of state-action space, making it possible to
learn useful policies even from a single instance. In supervised learning, data diversity is addressed at
the training data generation step.

4.4 Wall-Clock Time Bottleneck

The main goal of this work is to show that RL can learn a value function that can be used as a
branching heuristic in a SAT solver, and to study the model’s generalisation properties. In its current
form, more work would be required to apply Graph-Q-SAT in an industrial setting, where wall-
clock time is the metric of success, and problem sizes are extremely large. However, we believe
that Graph-Q-SAT should be of interest to the SAT community because reduction of iterations can
reduce wall clock time when the number of saved iterations is large enough to tolerate the network
inference timings. Due to a shortage of space, we present the wall-clock time and scaling analysis in
Appendix A. This analysis shows that MRIR reduction leads to wall clock time improvements on
SAT-250 and unSAT-250.

5 Related Work

Using machine learning for the SAT problem is not a new idea [14, 15, 12, 42, 47, 28]. Recently,
SAT has attracted interest in the deep learning community. There are two main approaches: solving a
problem end-to-end or learning heuristics while keeping the algorithm backbone the same. Selsam
et al. [39, NeuroSAT] take an end-to-end supervised learning approach demonstrating that GNN can
generalize to SAT problems bigger than those used for training. NeuroSAT finds satisfying assign-
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Table 3: SAT-50 model’s performance on SATLIB flat graph col-
oring benchmark. The comparison is w.r.t. MiniSat with restarts,
since MiniSat performs better in this mode for this benchmark.

dataset variables clauses Graph-Q-SAT MRIR
average min max

30-60 90 300 1.51 1.25 1.65
50-115 150 545 1.36 0.47 1.80
75-180 225 840 1.40 0.31 2.06
100-239 300 1117 1.44 0.31 2.38
125-301 375 1403 1.02 0.32 1.87
150-360 450 1680 0.76 0.37 1.40
175-417 525 1951 0.67 0.44 1.36
200-479 600 2237 0.67 0.54 0.87

Table 4: Graph-Q-SAT MRIR (5
training runs on 75-180, model se-
lection with 100-239).

dataset Graph-Q-SAT MRIR
average min max

75-180 2.44 2.25 2.70
100-239 2.89 2.77 2.98

30-60 1.74 1.33 2.00
50-115 2.08 2.00 2.13
125-301 2.43 2.20 2.66
150-360 2.07 2.00 2.11
175-417 1.98 1.69 2.21
200-479 1.70 1.38 1.98

ments for the SAT formulae and thus cannot generalize from SAT to unSAT problems. Moreover, the
method is incomplete and might generate incorrect results, which is extremely important, especially
for unSAT problems. Selsam and Bjørner [38] modify NeuroSAT and integrate it into popular SAT
solvers to improve timing on SATCOMP-2018 benchmark. While the approach shows its potential
to scale to large problems, it requires an extensive training set including over 150,000 data points.
Amizadeh et al. [2] propose an end-to-end GNN architecture to solve circuit-SAT problems. While
their model never produces false positives, it cannot solve unSAT problems.

The following methods take the second approach: learning a branching heuristic instead of learning an
algorithm end-to-end. Jaszczur et al. [19] take the supervised learning approach using the same graph
representation as Selsam et al. [39]. The authors show a positive effect of combining DPLL/CDCL
solver with the learnt model. As in Selsam et al. [39], their approach requires diligent crafting of the
test set. Also, the authors do not compare their approach to the VSIDS heuristic, which is known
to be a crucial component of CDCL [23]. Wang and Rompf [44], whose environment we took as a
starting point, show that DQN does not generalize for 20-91 3-SAT problems, whereas Alpha(Go)
Zero [41] does. Our results show that the issue is related to state representation. They use CNNs,
which are not invariant to variable renaming or permutations. Moreover, CNNs require a fixed input
size which makes it infeasible when applying to problems with different numbers of variables or
clauses.

Yolcu and Póczos [48] use REINFORCE [46] to learn the variable selection heuristic of a local
search SAT solver [37]. Their algorithm is an incomplete solver and cannot work with unsatisfiable
instances. They also investigate the generalisation over problem sizes on random instances near the
phase transition. However, in this experiment, the training problems have ten variables only, and the
number of variables in the test set does not exceed 80 with the success ratio of the algorithm staying
below the baseline for the latter case.

Lederman et al. [26] train a REINFORCE [46] agent applying GNNs to replace the branching heuristic
for Quantified Boolean Formulas (QBF). QBF considers a different problem allowing existential and
universal quantifiers. Lederman et al. [26] note positive generalization properties across problem
size for problems from similar distributions. Our work focuses more on the generalization and
transfer properties of a GNN value-based RL algorithm. We investigate data efficiency properties
and merge VSIDS with a trained RL agent, looking into the trade-off between the model use and its
effect on the final solution. Apart from that, we show that it is possible to achieve good performance
and generalization properties with a simpler state representation. Finally, doing more message
propagations per step and using a GNN as a Q-function (in their case, a GNN only computes node
embeddings) allows us to consider more subtle dependencies in the graph.

Look-ahead SAT solvers [17] perform more computations compared to VSIDS to evaluate the
consequences of their decisions. In some of the cases, e.g. random k-SAT, this pays off. Difference
heuristics used for making a decision measure reduction in the formulae before and after the decision.
LRB heuristic [28] uses multi-armed bandits to explicitly optimise for the ability of the variables’ to
generate learnt clauses. We hypothesise, that Graph-Q-SAT might have learnt some aspects of those
heuristics (Figure 8 in Appendix B). We believe that integrating Graph-Q-SAT with other types of
solvers is a promising direction for future research.
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Vinyals et al. [43] introduce a recurrent architecture for approximately solving complex problems,
such as the Traveling Salesman Problem, approaching it in a supervised way. Bello et al. [5] consider
combinatorial optimization problems with RL. Khalil et al. [24] approach combinatorial optimization
using GNNs and DQN, learning a heuristic that is later used greedily. It differs from our approach in
that their heuristic is effectively the algorithm itself. The environment dynamics in Khalil et al. [24]
is straightforward with the next state easily inferred, given the current state and the chosen action. In
the case of SAT, there are CDCL steps after the decision, and the next state might be totally different
from the current one making the problem harder in terms of learning the Q-function. In addition,
we use Battaglia et al. [4] which is more expressive than structure2vec used in Khalil et al. [24].
The global attribute in Battaglia et al. [4] can facilitate message passing in case of a bigger graph.
Having separate updaters for edges and nodes leads to more powerful representations. And, finally,
an edge updater of Battaglia et al. [4] can learn better pairwise interaction between the sender and the
receiver, enabling sending different messages to different nodes.

Paliwal et al. [34] use GNNs with imitation learning for theorem proving. Carbune et al. [8] propose
a general framework of injecting an RL agent into existing algorithms. Cai et al. [7] use RL to find a
suboptimal solution that is further refined by another optimization algorithm, in their case, simulated
annealing [25, SA]. It is not restricted to SA, and this modularity is valuable. However, it is also a
drawback because the second optimization algorithm might benefit more from the first if they were
interleaved. For instance, Graph-Q-SAT can guide search before VSIDS overcomes its initialization
bias.

GNNs have enabled the study of RL agents in state/action spaces of dynamic size, which is crucial
for generalization beyond the given task. Wang et al. [45] and Sanchez-Gonzalez et al. [36] consider
GNNs for the control problem generalization. Bapst et al. [3] report strong generalization capabilities
for the construction task. Multi-agent research [20, 29, 1] shows that GNN benefits from invariance
to the number of agents in the team or other environmental entities.

6 Conclusions and Future Work

In this paper, we demonstrated that Q-learning can be used to learn the branching heuristic of a SAT
solver. Graph-Q-SAT uses a simple state representation and does not require elaborate reward shaping.
We show empirically that Graph-Q-SAT causes more variable propagations per step, solving the SAT
problem in fewer iterations than VSIDS. For larger problems, we showed that fewer iterations could,
in turn, reduce wall-clock time.We demonstrated its generalization abilities, showing more than 2-3X
reduction in iterations for problems up to 5X larger and 1.5-2X from SAT to unSAT. We showed how
Graph-Q-SAT improves VSIDS and that it is data-efficient. We also demonstrated positive transfer
properties when changing the task family and showed that training on data from other distributions
could lead to further performance improvements.

Although we showed the powerful generalization properties of graph-based RL on SAT, we believe
the problem is still far from solved. More work is needed before Graph-Q-SAT is ready to compete
with branching heuristics in a modern industrial setting. The two main direction of future applied
research are scaling and wall-clock time reduction. Some possible ways of tackling these issues
include combining the machine learning improvements from above together with an efficient C++
implementation, using a smaller network, reducing the network polling frequency, and replacing the
variable activities with Graph-Q-SAT’s output, similarly to Selsam and Bjørner [38].

From the machine learning perspective, it is intriguing to study how combining benchmarks from
different domains might improve the transfer behavior. Further research will focus on scaling Graph-
Q-SAT using the latest stabilizing techniques [16] and more sophisticated exploration methods.
Building an efficient curriculum is another important step towards further scaling the method,
motivated by Bapst et al. [3]. Newsham et al. [32] show that the graph structure of SAT problems
affects the problem complexity. We are interested in understanding how the structure influences the
performance of Graph-Q-SAT and how we can exploit this knowledge to improve Graph-Q-SAT.

Broader Impact

We believe that further progress in machine learning can have a profound economic, societal and
political impact. It is hard to predict a particular effect of our method on society but, in general, we
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believe that the society might benefit from our research through its impact on industry and academia.
We consider two examples below.

SAT has a profound impact on circuit design, computer security, artificial intelligence, automatic
theorem proving, and combinatorial optimisation, among others. For academia, Graph-Q-SAT code
and results give a playground to work on GNN scaling, generalisation in RL, transfer and multitask
learning, and incorporating a machine learning model with a well established algorithm. It can
encourage collaboration between the applied ML and SAT communities. Analysing the behaviour of
learned models might give human designers more insights to boost further research.

For industry, having faster SAT solvers would lead to faster production cycles and faster rate of
progress as well as to more robust products. In circuitry design, for example, SAT is used for hardware
verification. As a result, faster SAT solvers will eventually lead to fewer faults in hardware.

Like any technology, our method also carries potential risks. Further automation might reduce the
need for human labour. If not managed and regulated properly, machine learning progress might also
exacerbate social and economic inequality.
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