
Appendices
The supplementary material is organized as follows. We first discuss additional related work and
provide experiment details in Section 2 and Appendix B respectively. In Appendix C, we provide
additional experiments to further validate the extreme nature of Simplicity Bias (SB). Then, in Ap-
pendix D, we provide additional information about the experiment setup used to to show that extreme
SB can hurt generalization. We evaluate the extent to which ensemble methods and adversarial
training mitigate Simplicity Bias (SB) in Appendix E. Finally, we provide the proof of Theorem 1
in Appendix F.

A Additional Related Work

In this section, we provide a more thorough discussion of relevant work related to margin-based
generalization bounds, adversarial attacks and robustness, and out-of-distribution (OOD) examples.

Margin-based generalization bounds: Building up on the classical work of [3], recent works try to
obtain tighter generalization bounds for neural networks in terms of normalized margin [4, 50, 18, 22].
Here, margin is defined as the difference in the probability of the true label and the largest probability
of the incorrect labels. While these bounds seem to capture generalization of neural networks at a
coarse level, it has been argued [48] that these approaches may be incapable of fully explaining the
generalization ability of neural networks. Furthermore, it is unclear if the notion of model complexity
used in these works, based on Lipschitz constant, captures generalization ability accurately. In any
case, our results suggest that due to extreme simplicity bias (SB), even if a formulation captures both
margin and model complexity accurately, current optimization techniques may not be able to find
the optimal solution in terms of generalization and robustness-, as they are strongly biased towards
small-margin classifiers that exclusively rely on the simplest features.

Adversarial Defenses: Neural networks trained using standard procedures such as SGD are ex-
tremely vulnerable [23] to ε-bound adversarial attacks such as FGSM [23], PGD [42], CW [11],
and Momentum [17]; Unrestricted attacks [7, 19] can significantly degrade model performance as
well. Defense strategies based on heuristics such as feature squeezing [82], denoising [80], en-
coding [10], specialized nonlinearities [83] and distillation [56] have had limited success against
stronger attacks [2]. On the other hand, standard adversarial training [42] and its variants such
as [85] are fairly effective on datasets such as MNIST, CIFAR-10 and CIFAR-100. However, on larger
datasets such as ImageNet, these methods have limited success [63]; recent attempts [78, 63] that
make adversarial training faster do not improve robustness either. In Appendix E, we show that `2
adversarial training on synthetic datasets can improve robustness by some extent but it is unable to
learn optimal large-margin `2-robust classifiers.

Detecting OOD Examples: Neural networks trained using standard training procedures tend to rely
on low-level features and spurious correlations and hence exhibit brittleness to benign distributional
changes to the data. Recent works thus aim to detect OOD examples using generative models [57],
statistical tests [59], and model confidence scores [29, 40, 39]. Our experiments in Section 4 that
validate extreme SB in practice also show that detectors that directly or indirectly rely on model
scores to detect OOD examples may not work well as SGD-trained neural networks can exhibit
complete invariance to predictive-but-complex features.
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B Experiment Details

In this section, we provide additional details on the datasets, models, optimization methods and
training hyperparameters used in our experiments.

One-dimensional Building Blocks: We first describe the data generation process underlying each
building block: linear, noisy linear, and k-slab. Then, we introduce a noisy version of the 5-slab
block, which we later use in Appendix D.

• Linear(γ,B): The linear block is parameterized by the effective margin γ and width B. The
distribution first samples a label y ∈ {−1, 1} uniformly at random, and then given y, x is sampled
as follows: x = y(Bγ + (B −Bγ) · U(0, 1), where U(0, 1) is the uniform distribution on [0, 1].

• NoisyLinear(γ,B, p): The noisy linear block is parameterized by effective margin γ, width B, and
noise parameter p. Linear classifiers can attain the optimal classification accuracy of 1− p/2. Given
label y ∈ {−1, 1} sampled uniformly at random, x is sampled as follows:

x =

{
y(Bγ + (B −Bγ) · U(0, 1) w.p. p
U(−γ, γ) w.p. 1−p

• Slab(γ,B, k): The k-slab block is parameterized by effective margin γ, width B, and number of
slabs k. We use k ∈ {3, 5, 7} in our paper. The width of each slab, wk = 2B(1− (k − 1)γ)/k, in
the k-slab block is chosen such that the farthest points are at −B and B. For example, given label
y ∈ {−1, 1} and random sign z ∈ {−1, 1} sampled unif. at random, we can sample x from a 3-slab
block as follows:

x =

{
z( 1

2w3 · U(0, 1)) if y = −1

z( 1
2w3 + 2Bγ + w3 · U(0, 1)) if y = +1

For k-slab blocks with k ∈ {5, 7}, the probability of sampling from the two slabs (one on each
side) that are farthest away from the origin are 1/4 and 1/8 respectively to ensure that the variance
of instances in positive and negative classes, x+ and x−, are equal.

• NoisySlab(γ,B, k, p): Analogous to the noisy linear block, the noisy variant of the k-slab block
is additionally parameterized by a noise parameter p. In this setting, a (k−1)-piecewise linear
classifier can attain the optimal classification accuracy of 1− p/2. For example, For example, given
label y ∈ {−1, 1} and random sign z ∈ {−1, 1} sampled uniformly at random, we can sample x
from a p-noisy 3-slab block as follows:

x =


{
z( 1

2w3 · U(0, 1)) if y = −1

z( 1
2w3 + 2Bγ + w3 · U(0, 1)) if y = +1

w.p. 1− p

z( 1
2w3 + (2Bγ − 1

2w3) · U(0, 1)) w.p. p

Datasets: We now outline the default hyperparameters for generating the synthetic datasets used
in the paper, provide additional details on the LSN dataset, and introduce two additional synthetic
datasets as well as multiple versions of the MNIST-CIFAR dataset (i.e., with different class pairs).

• Synthetic Dataset Hyperparameters: Recall that we use four d-dimensional synthetic datasets—
LMS-k, L̂MS-k, MS-(5,7), and MS-5—wherein each coordinate corresponds to one of the building
blocks described above. Unless mentioned otherwise, for all four datasets, we set the effec-
tive margin parameter γ = 0.1, width parameter B = 1, and noise parameter p = 0.1 in all
blocks/coordinates. Also recall that each dataset comprises at most one “simple" feature S and
multiple independent complex features Sc. In our experiments, all datasets have sample sizes that
are large enough for all models considered in the paper to learn complex features Sc and attain
optimal test accuracy, even in the absence of S; we use sample sizes of 50000 for LMS-5 and MS-5
and 40000 for L̂MS-7.

• LSN Dataset: Recall that the LSN dataset (described in Section 3) is a stylized version of the LMS-k
that is amenable to theoretical analysis. In LSN, conditioned on the label y, the first and second
coordinates of x are singleton linear and 3-slab blocks: linear and 3-slab blocks have support on
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{−1, 1} and {−1, 0, 1} respectively. The remaining coordinates are standard gaussians and not
predictive of the label. Each data point (xi, yi) ∈ <d × {−1, 1} can be sampled as follows:

yi = ±1, w.p. 1/2, εi = ±1, w.p. 1/2,

xi1 = yi (Linear coordinate),

xi2 =
(yi + 1

2

)
εi (Slab coordinate),

xi,3:d ∼ N (0, Id−2) (d−2 Noise coordinates).

• Additional Datasets: We now introduce M̂S-(5,7), the noisy version of MS-(5,7), and three
MNIST-CIFAR datasets, each with different MNIST and CIFAR10 classes.
– M̂S-(5,7): Noisy 5-slab and multiple noiseless 7-slab blocks; the first coordinate is a noisy

5-slab block and the remaining d−1 coordinates are independent 7-slab blocks. Note that this
dataset comprises a noisy-but-simpler 5-slab block and multiple noiseless 7-slab blocks; a
6-piecewise linear classifier can attain 100% accuracy by learn any 7-slab block.

– MNIST-CIFAR datasets: Recall that images in the MNIST-CIFAR datasets are concatenations
of MNIST and CIFAR10 images. We introduce additional variants of the MNIST-CIFAR using
different class pairs to show that our results in the paper are robust to the exact choice of pairs:

Datasets Class −1 Class +1

MNIST CIFAR10 MNIST CIFAR10

MNIST-CIFAR:A Digit 0 Automobile Digit 1 Truck
MNIST-CIFAR:B Digit 1 Automobile Digit 4 Truck
MNIST-CIFAR:C Digit 0 Airplane Digit 1 Ship

Table 3: Three MNIST-CIFAR datasets. We use MNIST-CIFAR:A in the paper. In MNIST-CIFAR:B,
we use different MNIST classes: digits 1 and 4. In MNIST-CIFAR:C, we use different CIFAR10 classes:
airplane and ship. Our results in Section 4 hold on all three MNIST-CIFAR datasets.

Models: Here, we briefly describe the models (and its abbreviations) used in the paper. We use
fully-connected (FCNs), convolutional (CNNs), and sequential neural networks (GRUs [15]) on synthetic
datasets. Abbreviations (w, d)-FCN denotes FCN with width w and depth d, (f, k, d)-CNN denotes
d-layer CNNs with f filters of size k × k in each layer with and (h, l, d)-GRU denotes d-layer d-layer
GRU with input dimensionality l and hidden state dimensionality h. On MNIST-CIFAR, we train
MobileNetV2 [60], GoogLeNet [70], ResNet50 [27] and DenseNet121 [32].

Training Procedures: Unless mentioned otherwise, we use the following hyperparameters for
standard training and adversarial training on synthetic and MNIST-CIFAR data:

• Standard Training: On synthetic datasets, we use Stochastic Gradient Descent (SGD) with (fixed)
learning rate 0.1 and batch size 256, and `2 regularization 5 · 10−7. On MNIST-CIFAR datasets, we
use SGD with initial learning rate 0.05 with decay factor of 0.2 every 30 epochs, momentum 0.9
and `2 regularization 5 · 10−5. We do not use data augmentation. We run all models for at most
500 epochs and stop early if the training loss goes below 10−2.

• Adversarial Training: We use the same SGD hyperparameters (as described above) on synthetic
and MNIST-CIFAR datasets. We use Projected Gradient Descent (PGD) Adversarial Training [42]
to adversarially train models. We use learning rate 0.1 and 40 iterations to generate `2 & `∞
perturbations
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C Additional Results on the Extreme Nature of Simplicity Bias (SB)

Recall that Section 4 of the paper establishes the extreme nature of SB: If all features have full
predictive power, NNs rely exclusively on the simplest feature S and remain invariant to all complex
features Sc—in Section 4 of the paper. Now, we further validate the extreme nature of SB across
model architectures, datasets, optimizers, activation functions and regularization. We also analyze the
effect of input dimensionality, number of complex features, choice and scaling of random initialization
and non-random initialization.

C.1 Effect of Model Architecture

In this section, we supplement our results in Section 4 of the paper by showing that extreme simplicity
bias (SB) persists across several model architectures and on synthetic as well as image-based datasets.
In Table 4, we present {S,Sc }-Randomized AUCs for FCNs, CNNs and GRUs with depth {1,2}
trained on LMS and MS-(5,7) datasets and state-of-the-art CNNs trained on MNIST-CIFAR:A. While
the Sc-randomized AUC equals 1.00 (perfect classification), we see that the S-randomized AUCs are
approximately 0.5 for all models. This is because all models essentially only rely on the simplest
feature S and remain invariant to all complex features Sc, even though all features have equal
predictive power.

Dataset Set S Set Sc Model
Randomized AUC

Set S Set Sc

LMS-5 Linear 5-Slabs

(100,1)-FCN 0.50 1.00

(100,2)-FCN 0.49 1.00

(32,7,1)-CNN 0.50 1.00

(32,7,2)-CNN 0.50 1.00

(100,10,1)-GRU 0.51 1.00

(100,10,2)-GRU 0.50 1.00

MS-(5,7) 5-Slab 7-Slabs

(100,1)-FCN 0.50 1.00

(100,1)-FCN 0.50 1.00

(32,7,1)-CNN 0.50 1.00

(32,7,2)-CNN 0.50 1.00

(100,10,1)-GRU 0.50 1.00

(100,10,2)-GRU 0.50 1.00

MNIST-CIFAR:A MNIST
block

CIFAR
block

MobileNetV2 0.52 1.00

GoogLeNet 0.51 1.00

ResNet50 0.50 1.00

DenseNet121 0.52 1.00

Table 4: Extreme SB across models trained on synthetic and image-based datasets show that all
models exclusively rely on the simplest feature S and remain completely invariant to all complex
features Sc

C.2 Effect of MNIST-CIFAR Class Pairs

In this section, we supplement our results on MNIST-CIFAR (in Section 4) in order to show that
extreme SB observed in MobileNetV2 [60], GoogLeNet [70], ResNet50 [27] and DenseNet121 [32]
does not depend on the exact choice of MNIST and CIFAR10 class pairs used to construct the
MNIST-CIFAR datasets. To do so, we evaluate the MNIST-randomized and CIFAR10-randomized
metrics of the aforementioned models on three datasets–MNIST-CIFAR:A, MNIST-CIFAR:B,
MNIST-CIFAR:C—described in Appendix B.

Table 5 presents the standard, MNIST-randomized and CIFAR10-randomized AUC values of Mo-
bileNetV2, GoogLeNet, ResNet50 and DenseNet121 on three MNIST-CIFAR datasets. We observe
that randomizing over the simpler MNIST block is sufficient to fully degrade the predictive power
of all models; for instance, randomizing the MNIST block drops the AUC values of ResNet50 from
1.0 to 0.5 (i.e., equivalent to random classifier). However, randomizing the CIFAR10 block has no
effect—standard AUC and CIFAR10-randomized AUCs equal 1.0. In contrast, an ideal classifier that
relies on MNIST & CIFAR10 would attain non-trivial AUC even when the MNIST block is randomized.
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Model MNIST-CIFAR:A AUCs MNIST-CIFAR:B AUCs MNIST-CIFAR:C AUCs

Standard
CIFAR10

Randomized
MNIST

Randomized Standard
CIFAR10

Randomized
MNIST

Randomized Standard
CIFAR10

Randomized
MNIST

Randomized

MobileNetV2 1.00± 0.00 1.00± 0.00 0.53± 0.01 1.00± 0.00 1.00± 0.00 0.53± 0.02 1.00± 0.00 1.00± 0.00 0.50± 0.01
GoogLeNet 1.00± 0.00 1.00± 0.00 0.52± 0.02 1.00± 0.00 1.00± 0.00 0.50± 0.01 1.00± 0.00 1.00± 0.00 0.53± 0.01
ResNet50 1.00± 0.00 1.00± 0.00 0.50± 0.01 1.00± 0.00 1.00± 0.00 0.51± 0.01 1.00± 0.00 1.00± 0.00 0.50± 0.03

DenseNet121 1.00± 0.00 1.00± 0.00 0.53± 0.02 1.00± 0.00 1.00± 0.00 0.52± 0.01 1.00± 0.00 1.00± 0.00 0.54± 0.01

Table 5: (Extreme SB in three MNIST-CIFAR datasets) Standard and randomized AUCs of four
state-of-the-art CNNs trained on three MNIST-CIFAR datasets. The AUC values collectively indicate
that all models exclusively rely on the MNIST block.

C.3 Effect of Optimizers and Activation Functions

Now, we study the effect of activation function and optimizer on extreme SB. That is, can the usage
of different activation functions and optimizer encourage trained neural networks to rely on complex
features Sc in addition to the simplest feature S?

Activation
Function

LMS-7 MS-(5,7)

SGD Adam RMSProp SGD Adam RMSProp

ReLU 0.499± 0.001 0.497± 0.003 0.502± 0.004 0.499± 0.003 0.499± 0.004 0.496± 0.004
Leaky ReLU 0.501± 0.001 0.497± 0.003 0.501± 0.005 0.499± 0.005 0.498± 0.002 0.498± 0.005

PReLU 0.500± 0.004 0.500± 0.003 0.501± 0.004 0.501± 0.004 0.496± 0.003 0.499± 0.002
Tanh 0.495± 0.001 0.502± 0.004 0.495± 0.004 0.498± 0.004 0.499± 0.004 0.498± 0.002

Table 6: (Effect of activation function and optimizers) (100, 2)-FCNs with multiple activation
functions—ReLU, Leaky ReLU [41], PReLU [28], and Tanh—trained on LMS-5 data using common
first-order optimization methods—SGD, Adam [38], and RMSProp [72]—exhibit extreme SB.

Table 6 presents the S-randomized AUCs of (100, 2)-FCNs with multiple activation functions—
ReLU, Leaky ReLU [41], PReLU [28], and Tanh—trained on LMS-7 and MS-(5,7) datasets using
multiple commonly-used optimizers: SGD, Adam [38],and RMSProp [72]. We observe that for all
combinations of activations and optimizers, trained FCNs still only rely on simplest feature S; S-
randomized and Sc-randomized AUCs are approximately 0.50 and 1.0 respectively for all optimizers
and activation functions. Therefore, in addition to SGD, commonly used first-order optimization
methods such as Adam and RMSProp cannot jointly learn large-margin classifiers that rely on learn
slab-structured features in the presence of a noisy linear structure. To summarize, the experiment
in Appendix C.2 shows that simply altering the choice of optimizer and activation function does
not have any effect on extreme SB. Similar to the experiments in Section 4 of the paper, all models
exclusively rely on simplest feature S and remain invariant to complex features Sc.

C.4 Effect of `2 Regularization and Dropout

In this section, we use SGD-trained FCNs trained on LMS-7 data to examine the extent to which
Dropout [68] and `2 regularization alters the extreme nature of SB. Specifically, we use Dropout
probability parameter {0.0, 0.05, 0.10} and `2 regularization parameters {0.01, 0.001} when training
FCNs with width 100 and depth {1, 2} on LMS-7 data using SGD. In Table 7, we show the standard
and Sc-randomized AUCs equal 1.00 (perfect classification), whereas the S-randomized AUCs are
approximately 0.5 for all models. Applying Dropout while reducing the amount of `2 regularization
has negligible effect on the extreme nature of SB observed in the synthetic or image-based datasets.

C.5 Effect of Input Dimension and Number of Complex Features

In this section, we evaluate the performance of FCNs trained on LMS-7 data using SGD to show the
extreme SB persists in the low-dimensional setting (d < 10) and also with varying number of 7-slab
features 1 ≤ |Sc| ≤ d. As shown in Table 8, decreasing the input dimension d or the number of
complex features |Sc| has no effect on extreme SB of FCNs trained on the LMS-7 dataset. Similar to
our results in Figure 3, the standard and randomized AUCs collectively show that the SGD-trained
(100,1)-FCNs exclusively rely on the linear component and do not rely on the 7-slab coordinates.
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(a) (b) (c)

Figure 5: Effect of non-random initialization on simplicity bias. Subplot (a) standard test accuracy
(on MS-7 data) of linearly-interpolated model Mα ≡ α · Mslab + (1−α) · Mrand increases monotonically
with the interpolation constant α. Subplots (b) and (c) show how standard, S-randomized and
Sc-randomized AUCs vary with interpolated model Mα before and after training on LMS-7 data.

C.6 Effect of Random Initialization Scale

Now, we analyze the effect of the choice and scale (i.e., magnitude of the weights of randomly
initialized FCNs) of random initialization on simplicity bias using FCNs trained on LMS-7 data.

As shown in Table 9, the choice (Kaiming and Xavier) and the scale of random initialization
do not alter the extreme SB phenomenon on the LMS-7 dataset. That is, scaling the randomly
initialized models by up to 0.1 and 10.0 has no effect on simplicity bias—SGD-trained (100,1)-FCNs
exclusively rely on the linear component and do not rely on the 7-slab coordinates.

C.7 Effect of Non-random Initialization

In this section, we investigate the effect of non-random initialization on simplicity bias using FCNs
trained on MS-7 and LMS-7 data. The goal of this experiment is to determine the extent to which
simplicity bias persists when the untrained network (at timestep t = 0) attains non-random standard
accuracy by relying on one or more “complex" 7-slab features.

To vary the degree of non-random initialization α, we obtain model Mα by linearly interpolating
the weights of a randomly initialized network Mrand and a network Mslab that exclusively relies on
one or more “complex" 7-slab features to attain 100% accuracy on the LMS-7 dataset. That is,
Mα ≡ α · Mslab + (1 − α) · Mrand. Note that Mslab is trained on MS-7 data to attain 100% standard
accuracy by relying on one or more 7-slab coordinates. As shown in Figure 5(a), increasing the
interpolation constant α monotonically increases the standard accuracy of Mα on MS-7 data.

Now, we use the linearly interpolated model Mα (for varying values of α) as initialization and train Mα
on LMS-7 data, which additionally consists of a “simple" linearly-separable coordinate. To maintain
the input dimensionality, we obtain LMS-7 data by replacing a 7-slab coordinate by the simpler linear
coordinate. In order to maintain the non-random accuracy of Mα, we use coordinate-randomized
AUCs to choose and replace a 7-slab coordinate that the model does not depend on.

Model Dropout Standard AUC S-Randomized AUC Sc-Randomized AUC

λ = 10−2 λ = 10−4 λ = 10−2 λ = 10−4 λ = 10−2 λ = 10−4

(100,1)-FCN
0.00 1.00± 0.00 1.00± 0.00 0.50± 0.00 0.50± 0.01 1.00± 0.00 1.00± 0.00
0.05 1.00± 0.00 1.00± 0.00 0.50± 0.00 0.50± 0.00 1.00± 0.00 1.00± 0.00
0.10 1.00± 0.00 1.00± 0.00 0.50± 0.00 0.50± 0.00 1.00± 0.00 1.00± 0.00

(100,2)-FCN
0.00 1.00± 0.00 1.00± 0.00 0.50± 0.00 0.50± 0.00 1.00± 0.00 1.00± 0.00
0.05 1.00± 0.00 1.00± 0.00 0.50± 0.00 0.50± 0.00 1.00± 0.00 1.00± 0.00
0.10 1.00± 0.00 1.00± 0.00 0.50± 0.00 0.50± 0.00 1.00± 0.00 1.00± 0.00

Table 7: Dropout and `2 regularization have no effect on extreme SB of FCNs trained on LMS-7
datasets. The standard and {S,Sc }-randomized AUC values of (100,1)-FCNs and (100,2)-FCNs
collectively indicate that the models still exclusively latch on to S (linear block) and remain invariant
to Sc (7-slab blocks).
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Input Dimension d Number of 7-Slabs |Sc| Standard AUC S-Randomized AUC Sc-Randomized AUC

2 1 1.00± 0.00 0.51± 0.02 1.00± 0.00

5
1 1.00± 0.00 0.50± 0.00 1.00± 0.00
3 1.00± 0.00 0.50± 0.00 1.00± 0.00

10
1 1.00± 0.00 0.50± 0.00 1.00± 0.00
3 1.00± 0.00 0.50± 0.01 1.00± 0.00
6 1.00± 0.00 0.50± 0.00 1.00± 0.00

Table 8: Effect of input dimension and number of complex features on extreme SB of FCNs trained
on LMS-7 data. The standard and {S,Sc }-randomized AUCs of (100,1)-FCNs collectively indicate
that the models exclusively latch on to S (linear) and remain invariant to Sc (7-slabs).

Initialization Scaling Factor Standard AUC S-Randomized AUC Sc-Randomized AUC

Kaiming

0.1 1.00± 0.00 0.50± 0.00 1.00± 0.00
0.5 1.00± 0.00 0.49± 0.01 1.00± 0.00
2.0 1.00± 0.00 0.50± 0.00 1.00± 0.00

10.0 1.00± 0.00 0.50± 0.00 1.00± 0.00

Xavier

0.1 1.00± 0.00 0.50± 0.00 1.00± 0.00
0.5 1.00± 0.00 0.50± 0.00 1.00± 0.00
2.0 1.00± 0.00 0.49± 0.01 1.00± 0.00

10.0 1.00± 0.00 0.51± 0.01 1.00± 0.00

Table 9: Effect of choice (Kaiming and Xavier) and scale of random initialization on simplicity bias
of FCNs trained on LMS-7 data. The AUCs of (100,1)-FCNs collectively show increasing the scale
of random initialization does not alleviate extreme simplicity bias in this setting.

As expected, Figure 5(b) shows that prior to training on LMS-7 data, the interpolated models Mα attain
Sc-randomized AUC 0.50 and Sc-randomized accuracy equals standard AUC because the models
exclusively rely on one or more 7-slab coordinates. However, as shown in Figure 5(c), after training
Mα on LMS-7 data, the models no longer exhibit exclusive reliance on 7-slab features. In particular,
when α ≤ 0.5, the models now exclusively rely on the linear coordinate only. When α ≥ 0.5, the
dependence on the 7-slab coordinates is considerably reduced. Surprisingly, even when α = 1.0, we
observe that the model additionally relies on the linear coordinate, possibly due to non-zero training
loss at initialization. These results collectively suggest that in this setting, non-random initialization
by first training the model on complex features only can be effective in mitigating extreme simplicity
bias to some extent.
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D Additional Results on the Effect of Extreme SB on Generalization

Recall that in Section 5 of the paper, we showed that extreme SB can result in suboptimal general-
ization of SGD-trained models on the same data distribution. In this section, we present additional
information about the experiment setup used in Section 5 to show that SB can worsen standard
generalization.

D.1 Experiment Setup in Section 5

We now provide additional information about the experimental setup used in Section 5 of the
paper, where we show that extreme simplicity bias can result in suboptimal generalization. We
train fully-connected networks (FCNs) of width {100, 200, 300} and depth {1, 2} using SGD on
50-dimensional L̂MS-7 dataset of 40000 samples, which comprises of a noisy linear coordinate (10%
noise) and 49 7-slab coordinates. For each model architecture, we perform a grid search over SGD
hyperparameters—learning rate, batch size, momentum, and weight decay—and report standard and
randomized test accuracies of the model (in Table 2) that perform best on a L̂MS-7 validation dataset.
We perform a grid search over the following SGD hyperparameters:

• Learning rate: {0.001, 0.01, 0.05, 0.1, 0.3}
• Batch size: {4, 16, 64, 256}
• Weight decay: {0, 0.00005, 0.0005}
• Momentum: {0, 0.9, 0.95}

We train all models for at most 10 million updates with constant learning rate schedule and stop early
if the training loss diverges or goes below 0.01. In this setting, 10 million updates is equivalent to
1000 epochs with batch size 4 and 64000 epochs with batch size 256. As mentioned in Section 5,
the training sample size of 40000 data points is large enough for FCNs of depth {1, 2} and width
{100, 200, 300} trained on MS-7 data (i.e., Sc only, after removing S from data) to attain ≈ 100%
test accuracy using SGD with learning rate 0.3, batch size 256, weight decay 0.0005, and momentum
0.9. The optimal hyperparameters for FCNs trained on L̂MS-7 data are provided in Table 10. Note
that we do not consider `2 weight decay values larger than 0.0005 because it results in 95% test and
train accuracy even after 10 million updates by preventing FCNs from overfitting to the noise in the
linear component. Also note that (100,1)-FCNs are not able to completely overfit due to insufficient
representation capacity when trained with the chosen SGD hyperparameters (see Table 10).

Hyperparameter (100,1)-FCN (200,1)-FCN (300,1)-FCN (100,2)-FCN (200,2)-FCN (300,2)-FCN

Learning rate 0.30 0.10 0.01 0.30 0.10 1.00
Batch size 16 256 16 64 64 256

Weight decay 0.0 0.0 0.0 0.0 0.0005 0.0005
Momentum 0.90 0.0 0.0 0.0 0.0 0.0

Table 10: SGD hyperparameters of SGD-trained FCNs trained on L̂MS-7 data that result in the best
validation accuracy out of all 180 hyperparameter combinations listed in Appendix D.1.
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E Can we mitigate Simplicity Bias?

In this section, we investigate whether standard approaches for improving generalization error and
adversarial robustness—ensembles and adversarial training—help in mitigating SB.

E.1 Ensemble Methods

We now study the extent to which ensembles mitigate SB and its adverse effect on generalization.
Specifically, we evaluate the performance of ensembles of fully-connected networks (FCNs) that are
trained on two datasets: L̂MS-7 and MS-5. Recall that the L̂MS-7 data comprises one simple-but-noisy
linear coordinate and multiple relatively complex 7-slab coordinates that have no noise, whereas
MS-5 data comprises multiple noiseless 5-slab coordinates only.

(a) (b)
Figure 6: Ensembles improve performance on MS-5 data that comprises features with equal predictive
power and simplicity. However, as shown in (a), ensembles do not improve performance on L̂MS-7
data that has a simple-but-noisy linear coordinate that has less predictive power than than the 7-slab
coordinates; this is because individual FCNs trained on L̂MS-7 data exclusively rely on the noisy linear
coordinate and consequently misclassify the same set of instances, as shown in subplot (b).

To better highlight the effect of ensembles on generalization, we choose a sample size (for both
datasets) such that individual models (a) overfit to training data (i.e., non-zero generalization gap)
but (b) still attain non-trivial test accuracy. We now discuss the performance of ensembles of
independently trained models on MS-5 and L̂MS-7 datasets:

• MS-5 data: Recall that MS-5 data comprises multiple independent 5-slab blocks, one in each
coordinate, that have equal simplicity and predictive power. Thus, since all features have equal
simplicity, independent SGD-trained (100,2)-FCN end up relying on different 5-slab coordinates
due to random initialization, as shown in Figure 6(b). As the training sample size is small, FCNs
overfit to the training data and attain approximately 75% test accuracy, as shown in Figure 6.
Consequently, as shown in Figure 6, ensembles of these models rely on all 5-slab coordinates
learned by the individual models and attain better test accuracy by aggregating model predictions
and averaging out overfitting. For example, Figure 6 shows that ensembles of size 5 and 10
improves generalization by approximately 15% and 20% respectively.

• L̂MS-7 data: Recall that L̂MS-5 data comprises one simple-but-noisy linear block (with 50%
noise) and multiple independent 7-slab blocks that have no noise. Now, due to extreme SB,
every independently trained FCN exclusively latches on (and overfits to) the simpler-but-noisy
linear block, as shown in Figure 6(b). As a result, all models collectively lack diversity and
essentially learn the same decision boundary because of extreme SB. Therefore, ensembles of these
models do not improve generalization because the independent models make misclassifications
on the same instances. As shown in Figure 6(a), ensembles of size 3, 5 and 10 do not improve
generalization—the test accuracy remains 75%.

The ensemble performance on MS-5 data indicates that when datasets have multiple equally simple
features, ensembles of independently trained models mitigate SB to some extent by aggregating
predictions of models that rely on simple features. Conversely, the ensemble performance on L̂MS-7
data suggests that when datasets comprise few features that the more noisy and less predictive than
the rest, ensembles may not improve generalization. Our results also suggest that the generalization
improvements using ensemble methods in practice may stem from combining multiple simple-but-
noisy features (such as color, texture) and not by learning complex features (such as shape).
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E.2 Adversarial Training

We now investigate the extent to which adversarial training [42] mitigates SB and its adverse effect
on adversarial robustness using two datasets: MNIST-CIFAR and AdvMS-(5,7).

E.2.1 Adversarially training FCNs on AdvMS-(5,7) data

Now, we first introduce AdvMS-(5,7), a variant of the MS-(5,7) dataset, and then investigate if
adversarially trained FCNs that improve adversarial robustness by some extent also mitigate extreme
simplicity bias (SB).

AdvMS-(5,7) dataset: Recall that d-dimensional MS-(5,7) data, introduced in Section 3, consists
of d− 1 7-slab coordinates and a single relatively simpler 5-slab coordinate, all of which have perfect
predictive power. Similar to MS-(5,7) data, the d-dimensional AdvMS-(5,7) data comprises 5-slab
and 7-slab coordinates. Specifically, the first d/2 coordinates correspond to independent 5-slabs,
each with effective margin γ5 and the other d/2 coordinates correspond to independent 7-slabs with
effective margin γ7. In contrast to MS-(5,7) data, the AdvMS-(5,7) dataset (a) comprises d/2 5-slab
coordinates and (b) the 5-slabs and 7-slabs do not necessarily share the same effective margin. In our
experiments below, we set d = 20, γ5 = 0.05 and γ7 = 0.15. That is, we conduct our experiments
on 20-dimensional data in which the the simple features S and complex features Sc correspond to the
10 small-margin 5-slab and 10 large-margin 7-slab coordinates respectively.

Experiment setup: In Section 4, we observed that SGD-trained FCNs, due to extreme SB, exclusively
rely on the simplest feature S and consequently learn small-margin classifiers that are highly vulnera-
ble to adversarial attacks. To mitigate SB and attain optimal adversarial robustness, fully-connected
networks with width w and depth d, (w, d)-FCNs, must learn maximum-margin classifiers and con-
sequently rely on all simple and complex features (i.e., features in S and Sc). The margin of the
20-dimensional AdvMS-(5,7) dataset described above is approximately γdata = 0.62, which implies
that the maximum-margin classifier should exhibit robustness to `2 adversarial perturbations that
have norm ε < γdata. Therefore, to check if adversarial training mitigates extreme SB, we evaluate the
robustness of adversarially trained FCNs against `2 adversarial perturbations that have norm ε < γdata.
In addition to γdata, let γS = 0.30 denote the maximum margin of the classifier that exclusively relies
on all 5-slab features in S.

Also note that (a) adversarial perturbations are generated using PGD attacks [42], (b) (200, 2)-
FCNs and (1000, 2)-FCNs are expressive enough to learn the maximum-margin classifier on the
20-dimensional AdvMS-(5,7) data, (c) FCNs are adversarially trained for 4000 epochs with initial
learning rate 0.1 that decays by a multiplicative factor of 0.1 after every 1000 epochs, and (d) the
training data comprises 6000 data points, which is enough for SGD-trained (1000, 2)-FCNs to learn
7-slab coordinates and attain 100% generalization.

Experiment results: Recall that the feature sets S and Sc correspond to the set of ten 5-slab and
7-slab coordinates in the AdvMS-(5,7) dataset respectively. As shown in Figure 7, we evaluate
the standard (blue), ε-robust (orange), S-randomized (green) and Sc-randomized (red) accuracies,
defined in Section 3, of FCNs with width {200, 1000} and depth 2 that are adversarially trained
with `2 perturbation norm ε ≤ γdata. The dashed and solid purple vertical bars denote γS and γdata
respectively. We make two key observations:

• Adversarial trained FCNs do not learn maximum-margin classifiers. When ε ≤ 0.1, (200, 2)-FCNs
learn classifiers that attain 100% standard and ε-robust accuracies. However, when ε ≥ 0.2, due

Figure 7: Adversarially trained FCNs on AdvMS-(5,7) data exhibit adversarial robustness to some
extent, but are (a) unable to mitigate extreme simplicity bias, as shown by the {S,Sc }-randomized
accuracies and (b) do not learn maximum-margin classifiers that attain optimal adversarial robustness
(i.e., 100% γdata-robust accuracy). See Appendix E.2 for more detail.
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to optimization-related issues, adversarially trained (200, 2)-FCNs are unable to learn a non-trivial
classifier that obtains more than 50% standard and ε-robust accuracy. Increasing the model width
from 200 to 1000 improves adversarial robustness to some extent—adversarially trained (1000, 2)-
FCNs learn classifiers with 100% standard and robust accuracies when ε ≤ 0.25. However, when
ε ≥ γS = 0.3 (dashed purple line), adversarially trained (2000, 2)-FCNs are unable to learn ε-robust
classifiers as well. We note that further increasing the model width to 2000 does not improve
robustness. Consequently, adversarial training does not result in maximum-margin classifiers
that have optimal adversarial robustness (i.e., classifiers with 100% γdata-robust accuracy) on
AdvMS-(5,7) data. These results reconcile two phenomena observed in practice: larger capacity
models can improve adversarial robustness [81], but large-epsilon adversarial training can “fail"
and result in trivial classifiers due to optimization-related issues [66].

• Adversarial training does not mitigate extreme SB. The {S,Sc }-randomized accuracies of adver-
sarially trained FCNs collectively show that adversarial training does not mitigate extreme SB.
When the perturbation budget ε ≤ γS, adversarially trained (2000, 2)-FCNs exhibit robustness by
exclusively relying on multiple “simple" 5-slab coordinates. That is, randomizing S drops the model
accuracy to 50%, but randomizing the more complex 7-slab coordinates has no effect on model
accuracy. Conversely, when ε ≥ γS, classifiers with 100% ε-robust accuracy must rely on features
in S and Sc. However, as shown in Figure 7, when ε ≥ γS, adversarial training fails and results in
trivial classifiers that attain 50% standard and robust accuracy.

To summarize, the experiment above shows that adversarially trained FCNs do not mitigate simplicity
bias or learn maximum-margin classifiers that are optimally robust to `2 adversarial attacks.

E.2.2 Adversarially training CNNs on MNIST-CIFAR data

Recall that the MNIST-CIFAR images, described in Section 3, are vertically concatenations of “simple"
MNIST images and the more complex CIFAR10 images. Next, we show that models that are `∞-
adversarially trained on the MNIST-CIFAR data improve ε-robust accuracy (defined in Section 3) but
do not achieve the best possible ε-robust accuracy due to extreme SB.

Table 11 evaluates the standard, ε-robust and CIFAR10-randomized accuracies of SGD-trained and
adversarially trained MobileNetV2, ResNet50 and DenseNet121 using the MNIST-CIFAR dataset.
First, we observe that adversarial training with perturbation norm 0.3 significantly improves ε-robust
accuracies over those of SGD-trained models, without degrading the models’ standard test accuracies.
However, the CIFAR10-randomized accuracies indicate that the adversarial training does not lead
to reliance on the CIFAR10 block—adversarially trained CNNs continue to remain invariant to the
CIFAR10 block even though it is almost fully predictive of the label. Consequently, these results
suggest that adversarial training improves robustness but does not achieve the best ε-robust accuracy
on the MNIST-CIFAR dataset.

To summarize, our experiments on AdvMS-(5,7) and MNIST-CIFAR datasets show that while ad-
versarial training does improve the ε-robust accuracy over that of SGD-trained model, adversarially
trained models continue to remain susceptible to extreme SB and consequently do not achieve
maximum possible adversarial robustness.

Model `∞ budget ε Test Accuracy ε-Robust Accuracy CIFAR10-Randomized Accuracy

Standard SGD `∞ Adv. Training Standard SGD `∞ Adv. Training Standard SGD `∞ Adv. Training

MobileNetV2 0.30 0.999± 0.001 0.999± 0.000 0.000± 0.000 0.991± 0.000 0.493± 0.005 0.493± 0.001
DenseNet121 0.30 1.000± 0.000 0.999± 0.000 0.000± 0.000 0.981± 0.003 0.494± 0.005 0.501± 0.003
ResNet50 0.30 1.000± 0.000 0.999± 0.001 0.001± 0.000 0.982± 0.002 0.501± 0.001 0.499± 0.002

Table 11: Adversarial training on MNIST-CIFAR: The table above presents standard, ε-robust
and CIFAR10-randomized accuracies of SGD-trained and adversarially trained MobileNetV2,
DenseNet121 and ResNet50 models. While adversarial training significantly improves ε-robust
accuracy, it does not encourage models to learn complex features (CIFAR10 block in this case). The
CIFAR10-randomized accuracies indicate that adversarially trained models do not mitigate extreme
SB, as they exclusively rely on the MNIST block.
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F Proof of Theorem 1

In this section, we first re-introduce the data distribution and theorem. Then, we describe the proof
sketch and notation, before moving on to the proof.

Linear-Slab-Noise (LSN) data: The LSN dataset is a stylized version of LMS-k that is amenable to
theoretical analysis. In LSN, conditioned on the label y, the first and second coordinates of x are
singleton linear and 3-slab blocks: linear and 3-slab blocks have support on {−1, 1} and {−1, 0, 1}
respectively. The remaining coordinates are standard gaussians and not predictive of the label. Each
data point (xi, yi) ∈ <d × {−1, 1} from LSN can be sampled as follows:

yi = ±1, w.p. 1/2, εi = ±1, w.p. 1/2,

xi1 = yi (Linear coordinate),

xi2 =
(yi + 1

2

)
εi (Slab coordinate),

xi,3:d ∼ N (0, Id−2) (d−2 Noise coordinates).

According to Theorem 1 (re-stated), one-hidden-layer ReLU neural networks trained with standard
mini-batch gradient descent (GD) on the LSN dataset provably learns a classifier that exclusively relies
on the “simple" linear coordinate, thus exhibiting simplicity bias at the cost of margin.

Theorem 1. Let f(x) =
∑k
j=1 vj · ReLU(

∑d
i=1 wi,jxi) denote a one-hidden-layer neural network

with k hidden units and ReLU activations. Set vj = ±1/
√
k w.p. 1/2 ∀j ∈ [k]. Let {(xi, yi)}mi=1

denote i.i.d. samples from LSN where m ∈ [cd2, dα/c] for some α > 2. Then, given d > Ω(
√
k log k)

and initial wij ∼ N (0, 1
dk log4 d

), after O(1) iterations, mini-batch gradient descent (over w) with

hinge loss, step size η = Ω(log d)
−1/2, mini-batch size Θ(m), satisfies:

• Test error is at most 1/poly(d)

• The learned weights of hidden units wij satisfy:

|w1j | =
2√
k

(
1− c√

log d

)
+O

(
1√

dk log d

)
︸ ︷︷ ︸

Linear Coordinate

, |w2,j | = O

(
1√

dk log d

)
︸ ︷︷ ︸

3-Slab Coordinate

, ‖w3:d,j‖ = O

(
1√

k log d

)
︸ ︷︷ ︸
d−2 Noise Coordinates

with probability greater than 1− 1
poly(d) . Note that c is a universal constant.

Proof Sketch Since the number of iterations t = O(1), we partition the dataset into t minibatches
each of size n := m/t samples. This means that each iteration uses a fresh batch of n samples and
the t iterations together form a single pass over the data. The overall outline of the proof is as follows.
If the step size is η, then for t . 4

η iterations, with probability ≥ 1− 1
poly(d) ,

• Lemma 2 shows that the hinge loss is “active" (i.e., yf(x) < 1) for all data points in a given batch.

• Under this condition, we derive closed-form expressions for population gradients in Lemmas 4, 5
and 6.

• Lemma 1 uses the above lemmas to establish precise estimates of the linear, slab and noise
coordinates for all iterations until t.

The proof is organized as follows. Appendix F.1 presents the main lemmas that will directly lead to
Theorem 1. Appendix F.2 derives closed form expressions for population gradients and Appendix F.3
presents auxiliary lemmas that are useful in the main proofs.

Notation Recall that f(x) =
∑k
j=1 vj · ReLU(

∑d
i=1 wijxi) = vTReLU(WTx) where W ∈ Rd×k

and v ∈ Rk. Note that wi = [w1i w2i, · · ·wdi]T is the ith column in W . Let w̄i and x̄j denote the
w3:d,i and x3:d,j respectively. Also, let Sn = {(xi, yi)}ni=1 denote a set of n i.i.d. points randomly
sampled from LSN. For simplicity, we also assume |{i : vi = 1/

√
k}| = |{i : vi = −1/

√
k}| = k/2. We

can now define the loss function as Lf (Sn) = 1/n
∑n
i `(xi, yi), where `(x, y) = max(0, 1− yf(x))

denotes the hinge loss. For notational simplicity, we use X = µ± δ and |X−µ| ≤ δ interchangeably.
Also let ϕ and φ denote the probability density function and cumulative distribution function of
standard normal distribution.
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Proof of Theorem 1. The proof directly follows from Lemma 1 and Lemma 2. In Lemma 1, we show
that the weights in the linear coordinate are Ω(

√
d) larger than the weights in the slab and noise

coordinates. Applying Lemma 1 at t̂ = b 4
η (1− cn√

log d
)c gives the following result:

w
(t̂)
1i

(a)
=

2√
k

(1− cn√
log d

) +O(
1√

dk log d
) and |w(t̂)

2i |
(a)
= O(

1√
dk log d

) and ||w̄(t̂)
i |

(a)
= O(

1√
k log d

)

where (a) is due to c0(1 + ĉ)t ≤ c0eĉt ≤ c0e1 = O(1).

The 0− 1 error of the function f at timestep t̂ is small as well, because we can directly use Lemma 2
to get Pr(yf(x) < 0) = 2/c3d6. Therefore, the 0− 1 error is at most 2

c3d6 = O( 1
d6 ). �

F.1 Proof by Induction

In this section, we use proof by induction to show that for the first t = O(1/η) steps, (1) the hinge
loss is “active" for all data points (Lemma 2) and (2) hidden layer weights in the linear coordinate are
Ω(
√
d) larger than the hidden layer weights in the slab and noise coordinates (Lemma 1).

Lemma 1. Let |Sn| ∈ [cd2, dα/c] and initialization wij ∼ N (0, 1/dk log2 d). Also let ĉ = η/4, c0 = 2

and cn = 5
√
αc0(1 + ĉ)t. Then, for all t ≤ 4

η (1 − cn/
√

log d), d ≥ exp((8cn/η)2),
√
d/log3(d) >

24
√
k/c0c and i ∈ [k], w.p. greater than 1−O( 1

d2 ), we have:

yif(xi) ≤ 1 ∀(xi, yi) ∈ Sn (1)

w
(t)
1i =

tηvi
2
± c0(1 + ĉ)t√

dk log d
(2)

|w(t)
2i | ≤

c0(1 + ĉ)t√
dk log d

(3)

||w̄(t)||2 ≤
c0(1 + ĉ)t√
k log d

(4)

Proof. First, we prove that equations (2), (3) & (4) hold at initialization (i.e., t = 0) with high
probability. Using 7 and 1:

max
i∈{1,2}

max
j≤k
|wij | ≤

2√
dk log d

and max
i≤k
||w̄i|| ≤

2√
k log d

w.p. 1− 2

d4

Therefore, w1i = (0)ηvi
2 ± c0(1+ĉ)0√

dk log d
and |w2i| ≤ c0(1+ĉ)0√

dk log d
and ||w̄i|| ≤ c0(1+ĉ)0√

k log d
. Since equations

(2), (3) & (4) hold at t = 0, we can use Lemma 2 to show that the hinge loss is “active" with high
probability:

yif(xi) = ± cn√
log d

< 1 when d ≥ exp(c2n)

Now, we assume that the inductive hypothesis—equations (1), (2), (3) and (4)—is true after every
timestep τ where τ ∈ {0, · · · , t}.
We now prove that the inductive hypothesis is true at timestep t+ 1, after applying gradient descent
using the (t+ 1)th batch. Since z(1) holds at timestep t, we can use the closed-form expression of
the gradient along the linear coordinate (lemma 4) to prove that equation (2) holds at timestep t+ 1
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as well:

w
(t+1)
1i = w

(t)
1i +

ηvi
4

[
2 + φ

(w1i + w2i

||w̄i||

)
+ φ

(w1i−w2i

||w̄i||

)
− 2φ

( w1i

||w̄i||

)]
± 5ηvi

d

√
log(cd2)

c

= w
(t)
1i +

ηvi
2

+
ηvi
2
|w(t)

2i | · max
|δ|≤|w(t)

2i |

1

||w̄t||ϕ
(w(t)

1i + δ

||w̄(t)
i ||

)
± 5ηvi

d

√
log(cd2)

c

(a)
=

tηvi
2
± c0(1 + ĉ)t√

dk log d
+
ηvi
2

+
ηvi
2

c0(1 + ĉ)t√
dk log d

± 5ηvi
d

√
log(cd2)

c

(b)
=

(t+ 1)ηvi
2

± c0(1 + ĉ)t√
dk log d

± ηvi
c0(1 + ĉ)t√
dk log d

=
(t+ 1)ηvi

2
± c0(1 + ĉ)t(1 + ηvi)√

dk log d

(c)
=

(t+ 1)ηvi
2

± c0(1 + ĉ)t+1

√
dk log d

where (a) is via equation (12) in Lemma 3, (b) is because d/log3(d) ≥ 20/c0e1
√
c and (c) is due to

ηvi ≤ ĉ.
Similarly, since equation (1) holds at timestep t (via the inductive hypothesis), we can use the
closed-form expression of the gradient along the slab coordinate (lemma 5) to show that the weights
in the slab (i.e., second) coordinate are small (equation (3)) at timestep t+ 1 as well:

w
(t+1)
2i = w

(t)
2i +

ηvi
4

[
φ
(w1i + w2i

||w̄i||

)
− φ

(w1i−w2i

||w̄i||

)]
± 5ηvi

d

√
log(cd2)

c

= w
(t)
2i +

ηvi
2
|w(t)

2i | · max
|δ|≤|w(t)

2i |

1

||w̄t||ϕ
(w(t)

1i + δ

||w̄(t)
i ||

)
± 5ηvi

d

√
log(cd2)

c

(a)
= ±c0(1 + ĉ)t√

dk log d
± ηvi

2

c0(1 + ĉ)t√
dk log d

± ηvi
2

c0(1 + ĉ)t√
dk log d

≤ ± c0(1 + ĉ)t+1

√
dk log d

where (a) is due to equations (11) in Lemma 3, (3) and d/log3(d) ≥ 20/c0e1
√
c.

Finally, we can use the closed-form expression of the gradient along the noise coordinate (lemma 6)
to prove that the norm of the gradient along the noise coordinates (i.e., coordinates 3 to d) is small
(equation (4)) at timestep t+ 1:

w̄
(t+1)
i = w̄

(t+1)
i +

ηvi
4

[
ϕ
(w1i + w2i

||w̄i||

)
+ ϕ

(w1i−w2i

||w̄i||

)
− 2ϕ

( w1i

||w̄i||

)]
︸ ︷︷ ︸

Ḡ1

w̄
(t)
i

||w̄i||
± 3η|vi| log(

√
cd)√

cd

w̄i
||w̄i||

± 6η|vi|√
cd

u⊥i︸ ︷︷ ︸
Ḡ2

We first show that the the first part of the noise gradient, Ḡ1, is at most ηvi/2:
ηvi
4

[
ϕ
(w1i + w2i

||w̄i||

)
+ ϕ

(w1i−w2i

||w̄i||

)
− 2ϕ

( w1i

||w̄i||

)]
=
ηvi
4

1

||w̄(t)
i ||

ϕ
( w

(t)
1i

||w̄(t)
i ||

)
︸ ︷︷ ︸
≤1(see eq. 13 in Lemma 3)

[
2− ϕ

( w
(t)
2i

||w̄(t)
i ||

)(
exp(

w
(t)
1i w

(t)
2i

||w̄(t)
i ||2

) + exp(
−w(t)

1i w
(t)
2i

||w̄(t)
i ||2

)
)]

︸ ︷︷ ︸
≤2

≤ ηvi
2

Next, we show that the `2 norm of the second part of the noise gradient, ||Ḡ2||, is O(1/
√
d):

||B|| ≤ 3η|vi|
log(
√
cd)√
cd

+
6η|vi|√
cd
≤ 12η|vi|√

cd

Now, we can use the upper bounds on G1 and G2 to show that the `2 norm of the gradient along the
noise gradients is small as well:

||w̄(t+1)
i || ≤ ||w̄(t)

i ||+
ηvi
2
||w̄(t)

i ||+
12η|vi|√

cd

(a)

≤ ||w̄(t)
i ||+

ηvi
2
||w̄(t)

i ||+
ηvi
2
||w̄(t)

i ||

(b)

≤ c0(1 + ĉ)t(1 + ηvi)√
k log d

(c)

≤ c0(1 + ĉ)t+1

√
k log d

where (a) is because d/log d ≥ (24
√
k/c0c)2, (b) is due to equation (4) and (c) is because ηvi ≤ ĉ. �
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Since equations (2), (3) & (4) hold at timestep t (from Lemma 1), we can show that the hinge loss is
positive (i.e., yf(x) < 1) for all data points with high probability as well.

Lemma 2. Let Sn denote a set of n ∈ [cd2, dα/c] i.i.d. samples from LSN, where α > 2 and
c > 1. Suppose equations (2), (3) & (4) hold at timestep t. Also let d ≥ exp(( 8cn

η )2) where
cn = 5

√
αc0(1 + ĉ)t. Then, w.p. greater than 1− 2

c3d6 , we have:

yif(xi) =
tη

4
± cn√

log d
= (t± 1/2)

η

4
∀(xi, yi) ∈ Sn (5)

Proof. We use equations (2), (3) & (4) to obtain simplify the dot product between w(t)
i & xj and the

indicator 1
{
w

(t)
i · xj ≥ 0

}
. First, we show that the dot product between w(t)

i and xj is in the band
tηviyj

2 ± cn√
k log d

with high probability:

w
(t)
i · xj = w

(t)
1i yj + w

(t)
2i

yj + 1

2
εj + w̄

(t)
i · x̄j

(a)
= w

(t)
1i yj + w

(t)
2i

yj + 1

2
εj + ||w̄(t)

i ||Zj
(b)
= w

(t)
1i yj + w

(t)
2i

yj + 1

2
εj ± ||w̄(t)

i ||
√

8α log d w.p. 1− 2

d6

=
tηviyj

2
± c0(1 + ĉ)t√

dk log d
(yj +

yj + 1

2
εj)±

c0(1 + ĉ)t√
k log d

√
8α log d via eq. 2, 3, 4

(c)
=
tηviyj

2
± 2c0(1 + ĉ)t√

dk log d
± 3
√
αc0(1 + ĉ)t√
k log d

=
tηviyj

2
± cn√

k log d
(6)

= (tyj ± 1/4)
ηvi
2

when d ≥ exp((
8cn
η

)2) (7)

where (a) is because w̄(t)
i · x̄j = ||w̄(t)

i ||N (0, 1), (b) is via lemma 7 & c > 1, and (c) is because

(yj +
yj+1

2 εj) < 2. Next, when d ≥ exp(( 8cn
η )2), we can simplify 1

{
w

(t)
i · xj ≥ 0

}
as follows:

1
{
w

(t)
i · xj ≥ 0

} eq.7

≤ 1
{

(tyj ± 1/4)
ηvi
2
≥ 0
}
≤


1, if t = 0

1, if t > 0 and yjvi ≥ 0

0, if t > 0 and yjvi < 0

≤ 1{t = 0 ∨ yvi ≥ 0}

(8)

We can now use equations (6) & (8) to show that yjf (t)(xj) is in the band tη/4± O(1/
√

log d) with
high probability:

yjf
(t)(xj) =

k∑
i=1

yjvi · ReLU(wi · xj) =

k∑
i=1

vi1{t = 0 ∨ yvi ≥ 0}
( tηvi

2
± cn√

k log d

)
=

k∑
i=1

1{t = 0 ∨ yvi ≥ 0}
( tη

2k
± cn

k
√

log d

) (a)
=

{
±k cn

k
√

log d
, if t = 0

k
2

(
tη
2k
± cn

k
√

log d

)
, if t > 0

(9)

=
tη

4
± cn√

log d

(b)
= (t± 1/2)

η

4

where (a) is due to |{vi | vi > 0}| = |{vi | vi < 0}| = k/2 and (b) follows from cn/
√

log d ≤ η/8
when d ≥ exp((8cn/η)2) �

Lemma 3. If equations (2), (3) & (4) hold at timestep t, d > exp(( 4c0e
1

η )2) and d/log d >
√
k, we

have:

max
|δ|≤|w(t)

2i |

1

||w̄t||ϕ
(w(t)

1i + δ

||w̄(t)
i ||

)
≤ 1 (10)

∣∣∣φ(w(t)
1i + w

(t)
2i

||w̄(t)||

)
− φ

(w(t)
1i − w

(t)
2i

||w̄(t)||

)∣∣∣ ≤ 2c0(1 + ĉ)t√
dk log d

(11)

∣∣∣φ(w(t)
1i + w

(t)
2i

||w̄(t)||

)
− φ

( w
(t)
1i

||w̄(t)||

)∣∣∣ ≤ c0(1 + ĉ)t√
dk log d

(12)

1

||w̄t||ϕ
( w

(t)
1i

||w̄(t)
i ||

)
≤ c0(1 + ĉ)t√

dk log d
(13)
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Proof. Let gz(x) = 1
xϕ( zx ) and h(x) = max|δ|≤|w(t)

2i |
1
xϕ(

w
(t)
1i +δ

x ) = max|δ|≤|w(t)
2i |

gwt1i+δ(x).

To prove Equation (10), we show that an upper bound on ||w(t)|| is less than a lower bound on
arg maxx h(x), which subsequently implies that h(||w(t)||) < maxx h(x) because h is an increasing
function for all |x| ≤ arg maxx h(x).

First, we find the maximizer x∗ of h(x) as follows:

max
x

h(x) = max
x

max
|δ|≤|w(t)

2i |
g
w

(t)
1i +δ

(x)
(a)
= max
|δ|≤|w(t)

2i |

e−1

|w(t)
1i + δ|

when x∗ = |w(t)
1i + δ|

where (a) follows from lemma 11. Next, we lower bound the maximizer x∗ of h(x):

x∗ = |w(t)
1i + δ| ≥ |w(t)

1i + w
(t)
2i | ≥

∣∣∣|w(t)
1i | − |w

(t)
2i |
∣∣∣ (a)

≥
∣∣∣| tηvi

2
± c0(1 + ĉ)t√

dk log d
| − |c0(1 + ĉ)t√

dk log d
|
∣∣∣

(b)

≥
∣∣∣| tηvi

2
± ηvi

8
| − |ηvi

8
|
∣∣∣ ≥ ∣∣∣t− 1/2

∣∣∣ηvi
2
≥ ηvi

4

where (a) follows from the weights in the linear and slab coordinate at timestep t (equations (2) &
(3)) and (b) is because c0(1+ĉ)t√

dk log d
≤ ηvi

8 when
√
d ≥ 8c0e

1

η . Therefore, arg maxx h(x) ≥ ηvi/4. We
can use the upper bound on the `2 norm of the gradient along the noise coordinates (equation (4))
and d ≥ exp( 4c0e

1

η ) to show that ||w̄(t)
i || is less than x∗:

||w̄(t)
i || ≤

c0(1 + ĉ)t√
dk log d

≤ ηvi
4
≤ arg max

x
h(x)

From lemma 11, we know that h(x) is an increasing function for all |x| < x∗. This implies
that h(||w(t)

i ||) ≤ h( c0(1+ĉ)t√
dk log d

) ≤ h(ηvi4 ) ≤ h(x∗). Therefore, when d ≥ exp(( 4c0e
1

η )2) and
d/log d ≥

√
k, we obtain the desired result as follows:

max
|δ|≤|w(t)

2i |

1

||w̄t||
ϕ
(w(t)

1i + δ

||w̄(t)
i ||

)
= h(||w(t)

i ||) ≤ h(
c0e

1

√
dk log d

) ≤
√
k log d

c0e1

1

d
( η

4c0e
1 )2 log d

≤ 1

Now, we can prove equations (11), (12) and (13) using equation (10) as follows:∣∣∣φ(w(t)
1i + w

(t)
2i

||w̄(t)||

)
− φ

(w(t)
1i − w

(t)
2i

||w̄(t)||

)∣∣∣ ≤ 2|w(t)
2i | · max

|δ|≤|w(t)
2i |

1

||w̄t||ϕ
(w(t)

1i + δ

||w̄(t)
i ||

) (a)

≤ 2c0(1 + ĉ)t√
dk log d

(14)

∣∣∣φ(w(t)
1i + w

(t)
2i

||w̄(t)||

)
− φ

( w
(t)
1i

||w̄(t)||

)∣∣∣ ≤ |w(t)
2i | · max

|δ|≤|w(t)
2i |

1

||w̄t||ϕ
(w(t)

1i + δ

||w̄(t)
i ||

) (a)

≤ c0(1 + ĉ)t√
dk log d

(15)

1

||w̄t||ϕ
( w

(t)
1i

||w̄(t)
i ||

)
≤ max
|δ|≤|w(t)

2i |

1

||w̄t||ϕ
(w(t)

1i + δ

||w̄(t)
i ||

) (a)

≤ c0(1 + ĉ)t√
dk log d

(16)

where (a) is due to equation (4). �

F.2 Closed-form Gradient Expressions

In this section, we provide closed-form expressions for gradients along the linear, slab and noise
coordinates: ∇w1i

Lf (Sn),∇w2i
Lf (Sn) and∇w̄iLf (Sn). First, we provide a closed-form expression

for the gradient along the linear coordinate:

Lemma 4. If n > cd2 and yif(xi) < 1 ∀(xi, yi) ∈ Sn, then w.p. greater than 1− 3
n :

∇w1i
Lf (Sn) = −vi

4

[
2 + φ

(w1i + w2i

||w̄i||

)
+ φ

(w1i−w2i

||w̄i||

)
− 2φ

( w1i

||w̄i||

)]
± 5vi

d

√
log(cd2)

c
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Proof.

∇w1iLf (Sn) = −vi
n

n∑
j=1

1{yjf(xj) ≤ 1}1
{
wTi xj ≥ 0

}
yjx1j

(a)
= −vi

n

n∑
j=1

1
{
w̄Ti x̄j ≥ −wi1yj − wi21{yj = 1}εj

}
(b)
= −vi

n

n∑
j=1

1

{
Zj ≥

−w1iy − w2i1{yj = 1}εj
||w̄i||

}
where Zj ∼ N (0, 1)

= −vi
{0,1,−1}∑

l

1

n

n∑
i=1

1{x2j = l}1
{
Zj ≥

−w1i(2l
2−1)−w2il

||w̄i||

}

=−vi
{0,1,−1}∑

l

(
P(x2j = l)φ

(w1i(2l
2−1) + w2il

||w̄i||

)
±
√

logn

n

)
via lemma 9

=−vi
4

[φ(
w1i + w2i

||w̄i||
) + φ(

w1i−w2i

||w̄i||
) + 2φ(

−w1i

||w̄i||
)]± 5vi

d

√
log(cd2)

c
n > cd2

= −vi
4

[
2 + φ

(w1i + w2i

||w̄i||

)
+ φ

(w1i−w2i

||w̄i||

)
− 2φ

( w1i

||w̄i||

)]
± 5vi

d

√
log(cd2)

c
w.p. 1− 3

n

where (a) is due to yixi1 = y2
i = 1 & 1{yjf(xj) ≤ 1} = 1 and (b) is due to 1

{
w̄Ti x̄j ≥ k

}
=

1{||w̄i||Zj ≥ k}. �

Similarly, we provide a closed-form expression for the gradient along the slab coordinate:

Lemma 5. If n > cd2 and yif(xi) < 1 ∀(xi, yi) ∈ Sn, then w.p. greater than 1− 3
n :

∇w2i
Lf (Sn) = −vi

4

[
φ
(w1i + w2i

||w̄i||

)
− φ

(w1i − w2i

||w̄i||

)]
± 5vi

d

√
log(cd2)

c

Proof.

∇w2i
Lf (Sn) = −vi

n

n∑
j=1

1{yjf(xj) ≤ 1}1
{
wTi xj ≥ 0

}
yjx2j

(a)
= −vi

n

n∑
j=1

1
{
w̄Ti x̄j ≥ −w1iyj − w2i1{yj = 1}εj

}
1{yj = 1}εj

(b)
= vi

{−1,1}∑
l

1

n

n∑
j=1

(−1)1{εj=l}1

{
Zj ≥

−w1i − w2il

||w̄i||

}

= −vi
{1,−1}∑

l

(
P(x2j = l)φ

(w1i + w2il

||w̄i||

)
±
√

log n

n

)
via lemma 9

= −vi
4

[φ(
w1i + w2i

||w̄i||
)− φ(

w1i−w2i

||w̄i||
)]± 5vi

d

√
log(cd2)

c
n > cd2

= −vi
4

[
φ
(w1i + w2i

||w̄i||

)
− φ

(w1i − w2i

||w̄i||

)]
± 5vi

d

√
log(cd2)

c
w.p. 1− 3

n

where (a) is due to yixi2 = 1{yi = 1}εi & 1{yjf(xj) ≤ 1} = 1 and (b) is due to 1
{
w̄Ti x̄j ≥ k

}
=

1{||w̄i||Zj ≥ k}. �

Next, we provide a closed-form expression for the gradient along the noise coordinates:

30



Lemma 6. If n > cd2 and yif(xi) < 1 ∀(xi, yi) ∈ Sn, then w.p. greater than 1− 1
3n :

∇w̄iLf (Sn) = Ḡw̄i ±
3|vi| log(

√
cd)√

cd

w̄i
||w̄i||

± 6|vi|√
cd
u⊥i

Ḡ = − vi
4||w̄i||

[
ϕ
(w1i + w2i

||w̄i||

)
+ ϕ

(w1i−w2i

||w̄i||

)
− 2ϕ

( w1i

||w̄i||

)]
where u⊥i is some unit vector orthogonal to w̄i.

Proof. Let S ⊂ Rd−2 denote the subspace spanned by w̄i. Then, for any x ∈ Rd, x = xS + xS
⊥

where xS & xS
⊥

are the orthogonal projections of x onto S and its orthogonal complement S⊥. We
show the `2 norm of the orthogonal projections of∇w̄iLf (Sn) onto S and S⊥ are O( 1√

d
):

∇w̄iLf (Sn) = −vi
n

n∑
j=1

1{yjf(xj) ≤ 1}1
{
wTi xj ≥ 0

}
yj x̄j

= −vi
n

n∑
j=1

1
{
wTi xj ≥ 0

}
yj(x̄

S
j )︸ ︷︷ ︸

case 1

−vi
n

n∑
j=1

1
{
wTi xj ≥ 0

}
yj(x̄

S⊥
j )︸ ︷︷ ︸

case 2

Next, we show that the projection of ∇w̄iLf (Sn) onto S⊥ (i.e., case 2) has small norm w.p. greater
than 1− 1

d :

||∇w̄iLf (Sn))S
⊥
|| = ||vi

n

n∑
j=1

1
{
wTi xj ≥ 0

}
yj x̄

S⊥
j || = ||

vi
n

n∑
j=1

1
{
wTi x

S
j ≥ 0

}
yj x̄

S⊥
j ||

(a)

≤ |vi| · ||
n∑
j=1

N (0,
1

n2
Id−2)|| = |vi| · ||N (0,

1

n
Id−2)||

(b)

≤ 4|vi|
√
d

n
± 2|vi|

√
logn

n

(c)

≤ 6|vi|√
cd

w.p. 1− 1

n

where (a) is because xSj ⊥ x̄S
⊥
j , (b) is via fact 1 and (c) is due to n ≥ cd2. Next, we show that the

norm of the gradient in the direction of w̄i (i.e., case 1) is close to Ḡ w.h.p.:

∇w̄iLf (Sn))S = −vi
n

n∑
j=1

1
{
wTi xj ≥ 0

}
yj x̄

S
j

(a)
= −

( 1

n

n∑
j=1

1
{
wTi x

S
j ≥ 0

}
yjw̄

T
i x̄j

) viw̄i
||w̄i||2

(b)
= −

( 1

n

n∑
j=1

1

{
Zj ≥

−w1iy − w2i1{yj = 1}εj
||w̄i||

}
yjZj

) viw̄i
||w̄i||

= (

{0,±1}∑
l

(−1)1{l 6=0}

n

n∑
i=1

1

{
x2j = l ∧ Zj ≥

−w1i(2l
2−1)−w2il

||w̄i||

}
Zj)

viw̄i
||w̄i||

=
[
2ϕ(

wi1
||w̄i||

)− ϕ(
w1i + w2i

||w̄i||
)− ϕ(

w1i − w2i

||w̄i||
)± 5 logn√

n

] viw̄i
4||w̄i||

via lemma 10

= Ḡw̄i ±
3|vi| log(

√
cd)√

cd

w̄i
||w̄i||

w.p. 1− 12

n

where (a) is because x̄Sj =
w̄Ti xj
||w̄i||2 w̄i and (b) is because (b) is due to 1

{
w̄Ti x̄j ≥ k

}
=

1{||w̄i||Zj ≥ k}. Therefore, by combining the results in case 1 and 2, the following holds w.p.
greater than 1− 13

n :

∇w̄if (Sn) = Ḡw̄i ±
3|vi| log(

√
cd)√

cd

w̄i
||w̄i||

± 6|vi|√
cd
u⊥i

�
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F.3 Miscellaneous Lemmas

Lemma 7. LetXi ∼ N (0, σ2) and δ ∈ (0, 1). Then, maxi∈[k] |Xi| ≤ σ
√

2 log(2k
δ ) with probability

greater than 1− δ,

Proof. Let ϕ denote the probability density function of the standard normal. Also let Z ∼ N (0, 1).
Then, for t ≥ 1, we have:

P(|X| ≥ σt) = P(|Z| ≥ t) = 2

∫ ∞
t

xϕ(x) dx ≤ 2

t

∫ ∞
t

xϕ(x) dx
(a)

≤ 2

t

∫ t

∞
ϕ′(x) dx ≤ 2

t
ϕ(t) ≤ 2ϕ(t)

where (a) is because ϕ′(x) = −xϕ(x). Using union bound with t =
√

2 log(2k
δ ) ≥ 1 ∀δ ∈ (0, 1)

gives the desired result. �

Lemma 8. Let φ and ϕ denote the cumulative distribution function and the probability density
function of the standard gaussian. Then, for any Z ∼ N (0, 1) and k ∈ R:

E[1{Z ≥ k}Z] = ϕ(k) = exp(−k2/2)

Proof. The expectation E[1{Z ≥ k}Z] can be simplified as follows:

E[1{Z ≥ c}Z] = Pr[Z ≥ c]E [Z|Z ≥ c] = φc(k)

∫ ∞
k

x
ϕ(x)

φc(k)
dx

(a)
= −

∫ ∞
k

ϕ′(x) dx = ϕ(k)

where (a) is due to ϕ′(x) = −xϕ(x). �

Lemma 9. Let bi ∼ bernoulli(p) and Zi ∼ N (0, 1). Let Xi = bi1{Zi ≥ k} and X̄ = 1
n

∑n
i=1Xi.

Then:

Pr
(
|X̄ − pφ(−k)| ≥

√
log n

n

)
≤ 1

n

Proof. Note that E
[
X̄
]

= E [Xi] = E [bi]E [1{Zi ≥ k}] = pφ(−k) and |Xi| ≤ 1. Therefore, using

Hoeffding’s inequality with t =
√

logn
n directly gives the result. �

Lemma 10. Let bi ∼ bern(p) and Zi ∼ N (0, 1). Let Xi = bi1{Zi ≥ k}Zi and X̄ = 1
n

∑n
i=1Xi.

Then:

P
(
|X̄ − pϕ(k)| ≤

√
2

n
log n

)
≥ 1− 4

n

Proof. Since |Xi| = |bi1{Zi ≥ k}Zi| ≤ |Zi|, we have maxi∈[n] |Xi| ≤
√

4 log(n) w.p. at least
1 − 2

n via lemma 7. From lemma 8, we get E [Xi] = E [bi]E [1{Zi ≥ k}Zi] = pϕ(k). Let A =

1
{
|Xi| ≤

√
4 log(n)∀i ∈ [n]

}
. Given A, we can use Hoeffding’s inequality with t∗ =

√
2
n log n

(and δ = 2/n) to get the desired result, as follows:

P(|X̄ − pϕ(k)| ≤ t∗) ≥ P(|X̄ − pϕ(k)| ≤ t∗ |A)P(A) ≥ (1− 2

n
)2 ≥ 1− 4

n

Therefore, X̄ = pϕ(k)±
√

2
n log n w.p. at least 1− 4

n . �

Lemma 11. Let g : R\{0} → R be defined as gz(x) = 1
x exp(− z2

2x2 ). Then, (1) |z| and −|z| are the
global maximizer and minimizer respectively, and (2) g monotonically increases from −|z| to |z|.

Proof. Note that g′z(x) = 1
x2 exp(− z2

2x2 )( z
2

x2 − 1). Therefore, the critical points of g are |z| and −|z|.
Let S = {t : |t| ≥ |z|, t ∈ R/{0}}. Note that g′z(x) < 0 for all x ∈ S and g′z(x) > 0 for all x ∈ Sc.
Therefore, (1) and (2) hold. �

Fact 1. Let X ∼ N (0, σ2Id) denote a d-dimensional gaussian vector. Then, from [75], w.p. greater
than 1− δ:

||X||2 ≤ 4σ
√
d+ 2σ

32



References
[1] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S Kan-

wal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at memorization
in deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 233–242. JMLR. org, 2017.

[2] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420, 2018.

[3] Peter L Bartlett. The sample complexity of pattern classification with neural networks: the size of
the weights is more important than the size of the network. IEEE transactions on Information Theory,
44(2):525–536, 1998.

[4] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Advances in Neural Information Processing Systems, pages 6240–6249, 2017.

[5] Anand Bhattad, Min Jin Chong, Kaizhao Liang, Bo Li, and David Forsyth. Unrestricted adversarial
examples via semantic manipulation. In International Conference on Learning Representations, 2020.

[6] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines.
arXiv preprint arXiv:1206.6389, 2012.

[7] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models. arXiv preprint arXiv:1712.04248, 2017.

[8] Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. Sgd learns over-parameterized
networks that provably generalize on linearly separable data. arXiv preprint arXiv:1710.10174, 2017.

[9] Sébastien Bubeck, Eric Price, and Ilya Razenshteyn. Adversarial examples from computational constraints.
arXiv preprint arXiv:1805.10204, 2018.

[10] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding: One hot way to
resist adversarial examples. 2018.

[11] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. arxiv e-prints,
page. arXiv preprint arXiv:1608.04644, 2, 2016.

[12] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

[13] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. arXiv preprint arXiv:2002.04486, 2020.

[14] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming. In
Advances in Neural Information Processing Systems, pages 2933–2943, 2019.

[15] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

[16] Akshay Degwekar, Preetum Nakkiran, and Vinod Vaikuntanathan. Computational limitations in robust
classification and win-win results. arXiv preprint arXiv:1902.01086, 2019.

[17] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Xiaolin Hu, J Li, and J Zhu. Boosting adversarial
attacks with momentum. arxiv preprint. arXiv preprint arXiv: 1710.06081, 2017.

[18] Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. arXiv preprint
arXiv:1703.11008, 2017.

[19] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. Exploring the
landscape of spatial robustness. arXiv preprint arXiv:1712.02779, 2017.

[20] Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, et al. Evaluating nlp models via contrast sets. arXiv
preprint arXiv:2004.02709, 2020.

[21] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and Wieland
Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and
robustness. arXiv preprint arXiv:1811.12231, 2018.

[22] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of neural
networks. arXiv preprint arXiv:1712.06541, 2017.

[23] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

33



[24] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on linear
convolutional networks. In Advances in Neural Information Processing Systems, pages 9461–9471, 2018.

[25] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1321–1330.
JMLR. org, 2017.

[26] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R Bowman, and Noah A
Smith. Annotation artifacts in natural language inference data. arXiv preprint arXiv:1803.02324, 2018.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
corr abs/1512.03385 (2015), 2015.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034, 2015.

[29] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution examples
in neural networks. arXiv preprint arXiv:1610.02136, 2016.

[30] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. arXiv preprint arXiv:1907.07174, 2019.

[31] Katherine L Hermann and Andrew K Lampinen. What shapes feature representations? exploring datasets,
architectures, and training. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

[32] Gao Huang, Zhuang Liu, and Kilian Q Weinberger. Densely connected convolutional networks. corr
abs/1608.06993 (2016). arXiv preprint arXiv:1608.06993, 2016.

[33] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry.
Adversarial examples are not bugs, they are features. In Advances in Neural Information Processing
Systems, pages 125–136, 2019.

[34] Joern-Henrik Jacobsen, Jens Behrmann, Richard Zemel, and Matthias Bethge. Excessive invariance causes
adversarial vulnerability. In International Conference on Learning Representations, 2019.

[35] Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In Conference
on Learning Theory, pages 1772–1798, 2019.

[36] Jason Jo and Yoshua Bengio. Measuring the tendency of cnns to learn surface statistical regularities. arXiv
preprint arXiv:1711.11561, 2017.

[37] Sanjay Kariyappa and Moinuddin K Qureshi. Improving adversarial robustness of ensembles with diversity
training. arXiv preprint arXiv:1901.09981, 2019.

[38] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[39] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. arxiv e-prints, page. arXiv preprint arXiv:1612.01474, 5,
2016.

[40] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.

[41] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network
acoustic models. In Proc. icml, volume 30, page 3, 2013.

[42] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[43] Karttikeya Mangalam and Vinay Uday Prabhu. Do deep neural networks learn shallow learnable examples
first? 2019.

[44] Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic heuristics in
natural language inference. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 3428–3448, 2019.

[45] Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic heuristics in
natural language inference. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 3428–3448, Florence, Italy, July 2019. Association for Computational Linguistics.

[46] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-layer
neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018.

[47] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal adver-
sarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1765–1773, 2017.

34



[48] Vaishnavh Nagarajan and J Zico Kolter. Uniform convergence may be unable to explain generalization in
deep learning. In Advances in Neural Information Processing Systems, pages 11611–11622, 2019.

[49] Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L Edelman, Fred Zhang,
and Boaz Barak. Sgd on neural networks learns functions of increasing complexity. arXiv preprint
arXiv:1905.11604, 2019.

[50] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to spectrally-
normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564, 2017.

[51] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 427–436, 2015.

[52] Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher Ré. Hidden stratification causes
clinically meaningful failures in machine learning for medical imaging. arXiv preprint arXiv:1909.12475,
2019.

[53] Guillermo Ortiz-Jimenez, Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Hold
me tight! influence of discriminative features on deep network boundaries. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[54] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robustness via promoting
ensemble diversity. arXiv preprint arXiv:1901.08846, 2019.

[55] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learning: from
phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277, 2016.

[56] Nicolas Papernot, Patrick D McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
defense to adversarial perturbations against deep neural networks. corr abs/1511.04508 (2015). In 37th
IEEE Symposium on Security and Privacy, 2015.

[57] Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon, and Balaji
Lakshminarayanan. Likelihood ratios for out-of-distribution detection. In Advances in Neural Information
Processing Systems, pages 14680–14691, 2019.

[58] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1135–1144, 2016.

[59] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The odds are odd: A statistical test for detecting
adversarial examples. arXiv preprint arXiv:1902.04818, 2019.

[60] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4510–4520, 2018.

[61] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. Adversarially
robust generalization requires more data. In Advances in Neural Information Processing Systems, pages
5014–5026, 2018.

[62] Ali Shafahi, W Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein. Are adversarial examples
inevitable? arXiv preprint arXiv:1809.02104, 2018.

[63] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,
Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In Advances in Neural
Information Processing Systems, pages 3353–3364, 2019.

[64] Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep learning. arXiv
preprint arXiv:1703.07950, 2017.

[65] Becks Simpson, Francis Dutil, Yoshua Bengio, and Joseph Paul Cohen. Gradmask: reduce overfitting by
regularizing saliency. arXiv preprint arXiv:1904.07478, 2019.

[66] Chawin Sitawarin, Supriyo Chakraborty, and David Wagner. Improving adversarial robustness through
progressive hardening. arXiv preprint arXiv:2003.09347, 2020.

[67] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1):2822–2878,
2018.

[68] Nitish Srivastava. Improving neural networks with dropout. University of Toronto, 182(566):7, 2013.

[69] Thilo Strauss, Markus Hanselmann, Andrej Junginger, and Holger Ulmer. Ensemble methods as a defense
to adversarial perturbations against deep neural networks. arXiv preprint arXiv:1709.03423, 2017.

[70] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

35



[71] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[72] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

[73] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. The space of
transferable adversarial examples. arXiv preprint arXiv:1704.03453, 2017.

[74] Guillermo Valle-Perez, Chico Q. Camargo, and Ard A. Louis. Deep learning generalizes because the
parameter-function map is biased towards simple functions. In International Conference on Learning
Representations, 2019.

[75] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge
University Press, 2019.

[76] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations
by penalizing local predictive power. In Advances in Neural Information Processing Systems, pages
10506–10518, 2019.

[77] Haohan Wang, Zexue He, and Eric P. Xing. Learning robust representations by projecting superficial
statistics out. In International Conference on Learning Representations, 2019.

[78] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training. arXiv
preprint arXiv:2001.03994, 2020.

[79] Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. arXiv preprint
arXiv:2002.09277, 2020.

[80] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming He. Feature denoising for
improving adversarial robustness. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 501–509, 2019.

[81] Cihang Xie and Alan Yuille. Intriguing properties of adversarial training at scale. arXiv preprint
arXiv:1906.03787, 2019.

[82] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep neural
networks. arXiv preprint arXiv:1704.01155, 2017.

[83] Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. Efficient defenses against adversarial
attacks. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pages 39–49,
2017.

[84] C Zhang, S Bengio, M Hardt, B Recht, and O Vinyals. Understanding deep learning requires rethinking
generalization. In Int Conf. on Learning Representations, 2017.

[85] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I Jordan.
Theoretically principled trade-off between robustness and accuracy. arXiv preprint arXiv:1901.08573,
2019.

36


