A Single hint setting

In this section, we modify the construction of [2] in the single hint setting to take into account knowledge of the parameter α . Our goal is to prove Theorem 1. The algorithm is nearly identical to that of [2] and most of the analysis is the same. We refer the reader to the original reference for complete details.

Algorithm 3 1-HINT $_{\alpha}$

Input: Parameter α Define $\lambda_0 = 1$ and $r_0 = 1$ Set procedure \mathcal{A} to be Algorithm 2 in [2]. **for** t = 1, ..., T **do** Get hint h_t Get \overline{x}_t from procedure \mathcal{A} , and set $x_t \leftarrow \overline{x}_t + \frac{(\|\overline{x}_t\|^2 - 1)}{2r_t}h_t$ Play x_t and receive cost c_t Set $r_{t+1} \leftarrow \sqrt{r_t^2 + \frac{\alpha \max(0, -\langle c_t, h_t \rangle)}{\log(T)}}$ Define $\sigma_t = \frac{|\langle c_t, h_t \rangle|}{r_t}$ Define λ_t as the solution to: $\lambda_t = \frac{\|c_t\|^2}{\sum_{\tau=1}^t \sigma_\tau + \lambda_\tau}$ Define the loss $\ell_t(x) = \langle c_t, x \rangle + \frac{|\langle c_t, h_t \rangle|}{2r_t}(\|x\|^2 - 1)$. Send the loss function ℓ_t to \mathcal{A} **end for**

The only difference between our algorithm 1-HINT_{α} and Algorithm 1 of [2] is the definition of r_t : when we set $r_{t+1} = \sqrt{r_t^2 + \frac{\max(0, -\langle c_t, h_t \rangle)\alpha}{\log(T)}}$, [2] instead sets $r_{t+1} = \sqrt{r_t^2 + \max(0, -\langle c_t, h_t \rangle)}$. We can now prove Theorem 1, which we restate below for reference:

Theorem 1. For any $0 < \alpha < 1$, there exists an algorithm 1-HINT_{α} that runs in O(d) time per update, takes a single hint sequence \vec{h} , and guarantees regret:

$$\begin{aligned} \mathcal{R}_{1-\mathrm{Hint}_{\alpha}}(\mathcal{B}, \vec{c} \mid \{\vec{h}\}) &\leq \frac{1}{2} + 4\left(\sqrt{\sum_{t \in B_{\alpha}^{\vec{h}}} \|c_t\|^2} + \frac{\log T}{\alpha} + 2\sqrt{\frac{(\log T)\sum_{t=1}^{T} \max(0, -\langle c_t, h_t \rangle)}{\alpha}}\right) \\ &\leq O\left(\sqrt{\frac{(\log T)|B_{\alpha}^{\vec{h}}|}{\alpha}} + \frac{\log T}{\alpha}\right). \end{aligned}$$

Proof. Following [2], we observe that since A always returns $\overline{x}_t \in B$, $x_t \in B$. Further,

$$\langle c_t, x_t - u \rangle \le \ell_t(x_t) - \ell_t(u) + \frac{\max(0, -\langle c_t, h_t \rangle)}{r_t},$$

and ℓ_t is σ_t -strongly convex.

Next, by [2] Lemma 3.4, we have

$$\mathcal{R}_{1\text{-Hint}_{\alpha}}(\mathcal{B}, \vec{c} \mid \{\vec{h}\}) \leq \sum_{t=1}^{T} \frac{\max(0, -\langle c_t, h_t \rangle)}{r_t} + \sum_{t=1}^{T} \ell_t(\bar{x}_t) - \ell_t(u).$$

We can bound the first sum as:

$$\begin{split} \sum_{t=1}^{T} \frac{\max(0, -\langle c_t, h_t \rangle)}{r_t} &\leq \frac{\log T}{\alpha} \sum_{t=1}^{T} \frac{\alpha \max(0, -\langle c_t, h_t \rangle) / \log T}{r_t} \\ &\leq \frac{2 \log T}{\alpha} \sqrt{\sum_{t=1}^{T} \frac{\alpha \max(0, -\langle c_t, h_t \rangle)}{\log T}} \\ &\leq \sqrt{2 \frac{\sum_{t=1}^{T} (\log T) \max(0, -\langle c_t, h_t \rangle)}{\alpha}}. \end{split}$$

For the second sum, we appeal to Lemma 3.6 of [2], which yields:

$$\begin{split} \sum_{t=1}^{T} \ell_t(\bar{x}_t) - \ell_t(u) &\leq \frac{1}{2} + 4\left(\sqrt{\sum_{t\in B_{\alpha}^{\bar{h}}} \|c_t\|^2} + \frac{r_T(\log T)}{\alpha}\right) \\ &\leq \frac{1}{2} + 4\left(\sqrt{\sum_{t\in B_{\alpha}^{\bar{h}}} \|c_t\|^2} + \frac{\sqrt{(\log^2 T) + (\log T)\alpha\sum_{t=1}^T \max(0, -\langle c_t, h_t\rangle)}}{\alpha}\right) \\ &\leq \frac{1}{2} + 4\left(\sqrt{\sum_{t\in B_{\alpha}^{\bar{h}}} \|c_t\|^2} + \frac{\log T}{\alpha} + \sqrt{\frac{(\log T)\sum_{t=1}^T \max(0, -\langle c_t, h_t\rangle)}{\alpha}}\right). \end{split}$$
Combining these identities now yields the desired theorem.

Combining these identities now yields the desired theorem.

B **Full proofs: Constrained setting**

B.1 Proof of Theorem 2

Theorem 2. Let $\alpha \in (0,1)$ be given. There exists a randomized algorithm \mathcal{A}_{MW} for OLO with K hint sequences that has a regret bound of

$$\mathbb{E}[\mathcal{R}_{\mathcal{A}_{MW}}(\mathcal{B}, \vec{c} \mid H)] \le O\left(\inf_{i \in K} \sqrt{\frac{(\log T)(|B_{\alpha}^{\vec{h}(i)}| + \log K)}{\alpha}} + \frac{\log T}{\alpha}\right)$$

Proof. At each time step t, our goal is to pick a single hint $h_t \in \{h_t^{(1)}, \ldots, h_t^{(K)}\}$. We instantiate this problem as an instance of the standard prediction with K experts problem with binary losses defined as follows.

$$\ell_{t,i} = \begin{cases} 0 & \text{if } |\langle c_t, h_t^{(i)} \rangle| \ge \alpha \, \|c_t\| \,, \\ 1 & \text{otherwise.} \end{cases}$$

Let $\vec{h}^{(i^*)}$ denote the hint sequence with minimum loss in hindsight, i.e., $i^* = \operatorname{argmin}_{i \in K} \sum_t \ell_{t,i}$. We note that by definition of the losses ℓ , we have $\sum_t \ell_{t,i^*} = |B_{\alpha}^{\vec{h}^{(i^*)}}|$. Let $\vec{h}^{\text{MW}} = (h_1^{(i_1)}, h_2^{(i_2)}, \ldots)$ be the sequence of hints obtained by running the classical Multiplicative Weights algorithm with a decay factor of $\eta = \frac{1}{2}$. Then by standard analysis (e.g., Theorem 2.1 of Arora et al. [1]), we have the following.

$$\mathbb{E}[\sum_{t} (\ell_{t,i_t} - \ell_{t,i^*})] \le 2\log K + \frac{1}{2} \sum_{t} (\ell_{t,i^*}).$$
(6)

Substituting $|B_{\alpha}^{\vec{h}^{(i^*)}}| = \sum_t \ell_{t,i^*}$ and rearranging,

$$\mathbb{E}[|B_{\alpha}^{\vec{h}^{MW}}|] = \mathbb{E}[\sum_{t} \ell_{t,i_{t}}] \le \frac{3}{2}|B_{\alpha}^{\vec{h}^{(i^{*})}}| + 2\log K.$$
(7)

We then run an instance of the single hint algorithm, 1-HINT_{α}, with the hint sequence \vec{h}^{MW} . Applying Theorem 1 yields the following.

$$\mathbb{E}[\mathcal{R}_{A_{\mathrm{MW}}}(\mathcal{B}, \vec{c} \mid H)] \leq O\left(\mathbb{E}\left[\sqrt{\frac{(\log T)|B_{\alpha}^{\vec{h}^{\mathrm{MW}}}|}{\alpha}}\right] + \frac{\log T}{\alpha}\right)$$
$$\leq O\left(\sqrt{\frac{(\log T)\mathbb{E}\left[|B_{\alpha}^{\vec{h}^{\mathrm{MW}}}|\right]}{\alpha}} + \frac{\log T}{\alpha}\right)$$
$$\leq O\left(\sqrt{\frac{(\log T)(|B_{\alpha}^{\vec{h}^{(i^{*})}}| + \log K)}{\alpha}} + \frac{\log T}{\alpha}\right),$$

where the first inequality follows from Jensen's inequality and the second one follows from (7). \Box

B.2 Proof of Proposition 4

Before proving Proposition 4, we apply the analysis of adaptive follow-the-regularized-leader (FTRL) as in [19] to obtain:

Proposition 14. For any $w_{\star} \in \Delta_K$, we have:

$$\sum_{t=1}^{T} (\ell_t(w_t) - \ell_t(w_\star)) \le 2\sqrt{(\log^2 K) + (\log K) \sum_{t=1}^{T} \|g_t\|_{\infty}^2}$$

Proof. To begin, recall that the entropic regularizer $\psi(w) = \log(K) + \sum_{i=1}^{K} w^{(i)} (\log w^{(i)})$ is 1-strongly-convex with respect to the 1-norm over Δ_K , has minimum value 0 and maximum value $\log K$.

Then, standard bounds for FTRL (e.g., [19, Theorem 1]) tell us that:

$$\begin{split} \sum_{t=1}^{T} \ell_t(w_t) - \ell_t(w_\star) &\leq \sqrt{\frac{(\log K) + \sum_{t=1}^{T} \|g_t\|_{\infty}^2}{\log K}} \psi(w_\star) + \sum_{t=1}^{T} \frac{\|g_t\|_{\infty}^2 \sqrt{\log K}}{2\sqrt{(\log K) + \sum_{\tau=1}^{t-1} \|g_\tau\|_{\infty}^2}} \\ &\leq \sqrt{\frac{(\log K) + \sum_{t=1}^{T} \|g_t\|_{\infty}^2}{\log K}} \psi(w_\star) + \sum_{t=1}^{T} \frac{\|g_t\|_{\infty}^2 \sqrt{\log K}}{2\sqrt{\sum_{\tau=1}^{t} \|g_\tau\|_{\infty}^2}} \\ &\leq \sqrt{\frac{(\log K) + \sum_{t=1}^{T} \|g_t\|_{\infty}^2}{\log K}} \psi(w_\star) + \sqrt{(\log K) \sum_{t=1}^{T} \|g_t\|_{\infty}^2} \\ &\leq 2\sqrt{(\log^2 K) + (\log K) \sum_{t=1}^{T} \|g_t\|_{\infty}^2}. \end{split}$$

Now with Proposition 14 in hand, we can restate and prove:

Proposition 4. Let $w_t \in \Delta_K$ be chosen via FTRL on the losses ℓ_t as in Algorithm 1. Then, for any $w_* \in \Delta_K$, we have

$$\sum_{t=1}^{T} \ell_t(w_t) \le \frac{22 \log K}{\alpha} + 2 \sum_{t=1}^{T} \ell_t(w_\star).$$

Proof. From Proposition 3, we have

$$\sum_{t=1}^T \|g_t\|_\infty^2 \le \sum_{t=1}^T \frac{4}{\alpha} \ell_t(w_t)$$

Combining this with the regret bound of Proposition 14 yields:

$$\sum_{t=1}^{T} \ell_t(w_t) - \ell_t(w_\star) \le 2\sqrt{(\log^2 K) + \frac{4\log K}{\alpha} \sum_{t=1}^{T} \ell_t(w_t)}$$

If we set $R = \sum_{t=1}^{T} \ell_t(w_t) - \ell_t(w_\star)$, we can rewrite the above as:

$$R \le 2\sqrt{(\log^2 K) + \frac{4\log K}{\alpha}R + \frac{4\log K}{\alpha}\sum_{t=1}^T \ell_t(w_\star)}.$$

Now we use $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$ and solve for R:

$$R \leq \frac{16\log K}{\alpha} + \sqrt{4\log^2 K + \frac{16\log K}{\alpha} \sum_{t=1}^T \ell_t(w_\star)}$$
$$\leq \frac{18\log K}{\alpha} + \sqrt{\frac{16\log K}{\alpha} \sum_{t=1}^T \ell_t(w_\star)}$$
$$\Rightarrow \sum_{t=1}^T \ell_t(w_t) \leq \sum_{t=1}^T \ell_t(w_\star) + \frac{18\log K}{\alpha} + \sqrt{\frac{16\log K}{\alpha} \sum_{t=1}^T \ell_t(w_\star)}.$$

Next, observe that $\sqrt{aX} \leq X + \frac{a}{4}$ for all $a, X \geq 0$, so that

$$\sum_{t=1}^{T} \ell_t(w_t) \le 2 \sum_{t=1}^{T} \ell_t(w_\star) + \frac{22 \log K}{\alpha}.$$

as desired.

C Lower bound proofs

=

Theorem 7. For any α and $T \geq \frac{1}{\alpha} \log \frac{1}{\alpha}$, there exists a sequence \vec{c} of costs and a set H of hint sequences, |H| = K for some K, such that: (i) there is a convex combination of the K hints that always has correlation α with the costs and (ii) the regret of any online algorithm is at least $\sqrt{\frac{\log K}{2\alpha}}$.

Proof. Consider a one-dimensional problem with $K = \frac{T2^B}{B}$ hint sequences for $B = \alpha T$. Suppose $T \geq \frac{\log(1/\alpha)}{\alpha}$, so that $2^B \geq \frac{T}{B}$ and $\log K \leq 2B = 2T\alpha$. We group the hint sequences into $\frac{T}{B}$ groups each of size 2^B . We now specify the hint sequence in the *i*th such group for some arbitrary *i*. All hints in the *i*th group are 0 for all $t \notin [(i-1)B, iB-1]$ and for $t \in [iB, (i+1)B)$, the hints take on the 2^B possible sequences of ± 1 . Then it is clear that for *any* sequence of ± 1 costs, there is a convex combination of hints that places weight B/T on exactly one hint sequence in each of the T/B groups such that the linear combination always has correlation $\alpha = B/T$ with the cost.

Let the costs be random ± 1 , so that the expected regret is \sqrt{T} . Then we conclude by observing $\sqrt{\log K}/\sqrt{2\alpha} \le \sqrt{2\alpha T}/\sqrt{2\alpha} = \sqrt{T}$.

Theorem 8. In the two-dimensional constrained setting, there is a sequence \vec{h} and \vec{c} of hints and costs (K = 1) such that: (i) $\forall t$, $\langle h_t, c_t \rangle \ge \alpha$, and (ii) the regret of any online algorithm is at least $\Omega(1/\alpha)$.

Proof. Let e_0 and e_1 be orthogonal unit vectors, and let $h_t = e_0$ for all t. Suppose that $c_t = \alpha e_0 \pm \sqrt{1 - \alpha^2} e_1$ for all t, where the sign is chosen uniformly at random. Note that any online algorithm has expected reward at most αT (since it cannot gain anything in the e_1 direction, so it is best to place all the mass along e_0).

On the other hand, we have

$$\mathbb{E}\left[\left\|\sum_{t=1}^{T} c_t\right\|^2\right] = \alpha^2 T^2 + T(1-\alpha^2),$$

and thus the optimal vector in hindsight achieves a reward $\sqrt{\alpha^2 T^2 + T(1 - \alpha^2)}$. Thus the regret is

$$\frac{T(1-\alpha^2)}{\alpha T + \sqrt{\alpha^2 T^2 + T(1-\alpha^2)}} \ge \frac{T(1-\alpha^2)}{2\alpha T + \sqrt{T(1-\alpha^2)}} \ge \frac{1}{\alpha},$$

for sufficiently large T.

D Proofs from Section 4

Theorem 10. Suppose A_1, \ldots, A_K are deterministic OLO algorithms that are associated with monotone regret bounds S_1, \ldots, S_K . Suppose $\forall t, \sup_{x,y \in \mathcal{B}} \langle c_t, x - y \rangle \leq 1$. Then, we have:

$$\mathcal{R}_{\mathcal{C}_{det}}(\mathcal{B}, \vec{c}) \le K \left(4 + 4 \min_{i} \mathcal{S}_{i}([1, T], \vec{c}) \right).$$

Proof. We can divide the operation of Algorithm 2 into phases in which γ is constant. Each phase may be further subdivided into sub-phases in which i is constant. First, let us bound the regret in a single phase with fixed γ . Suppose this phase has $N \leq K$ sub-phases¹. Let t_1, \ldots, t_N be the time indices at which each sub-phase begins, and let $t_{N+1} - 1$ be the last time index belonging to this phase. Notice that for all $i \leq N$, we must have $r_{t_{i+1}-t_i-1}^{i,\gamma} \leq \gamma$ since the *i*th sub-phase lasts for $t_{i+1} - t_i$ iterations. Then since $\sup_{x,y} \langle c_{t_{i+1}-1}, x - y \rangle \leq 1$ for all i and $x, y \in X$, we have $r_{t_{i+1}-t_i}^{i,\gamma} \leq r_{t_{i+1}-t_i-1}^{i,\gamma} + 1 \leq \gamma + 1$. Now we can write the regret incurred over this phase as:

$$\sup_{u \in X} \sum_{t=t_1}^{t_{N+1}-1} \langle c_t, x_t - u \rangle \le \sum_{i=1}^N \sup_{u \in X} \sum_{t=t_i}^{t_{i+1}-1} \langle c_t, x_t - u \rangle \\ \le \sum_{i=1}^N r_{t_{i+1}-t_i}^{i,\gamma} \le N(\gamma+1) \le K\gamma + K.$$

Let P denote the total number of phases. We now show that $P \leq 2 + \max(-1, \log_2(\min_i \mathcal{S}_i([1, T], \vec{c})))$. Suppose otherwise. Let $j = \operatorname{argmin}_i \mathcal{S}_i([1, T], \vec{c})$ be the algorithm with the least total regret. Let us consider the (P-1)th phase. In this phase, $\gamma = 2^{P-2}$. Since $P > 2 + \log_2(\min_i \mathcal{S}_i([1, T], \vec{c}))$, we must have $\min_i \mathcal{S}_i([1, T], \vec{c}) < \gamma$. Consider the *j*th subphase in this phase. Since γ will eventually increase, this sub-phase must eventually end. Therefore there must be some *t* and τ such that $t + \tau < T$ and

$$\sup_{u \in X} \sum_{\tau'=1}^{\tau} \langle c_{t+\tau'}, w_{\tau'} - u \rangle > \gamma,$$

where $w_{\tau'}$ is the output of A_j after seeing input $c_t, \ldots, c_{t+\tau'-1}$. By the increasing property of R_j , we also have:

$$\sup_{u \in X} \sum_{\tau'=1}^{\prime} \langle c_{t+\tau'}, w_{\tau'} - u \rangle \leq \mathcal{S}_j([t, t+\tau], \vec{c}) \leq \mathcal{S}_j([1, T], \vec{c}) < \gamma.$$

which is a contradiction. Therefore $P \leq 2 + \max(-1, \log_2(\min_i S_i([1, T], \vec{c})))$.

Now we are in a position to calculate the total regret. Let $1 = T_1, \ldots, T_P$ be the start times of the P phases, and let $T_{P+1} - 1 = T$ for notational convenience. Then we have:

$$\sup_{u \in X} \sum_{t=1}^{T} \langle c_t, x_t - u \rangle \leq \sum_{e=1}^{P} \sup_{u \in X} \sum_{t=T_e}^{T_{e+1}-1} \langle c_t, x_t - u \rangle.$$

¹All phases except maybe the last phase have exactly K sub-phases.

Now since the regret in an phase is at most $K\gamma + K$, and γ doubles every phase,

$$\leq \sum_{e=1}^{P} K2^{e-1} + K \leq KP + K2^{F}$$
$$\leq K2^{P+1}$$
$$\leq K \left(4 + 4\min_{i} \mathcal{S}_{i}([1,T],\vec{c})\right),$$

where the second-to-last inequality follows from $x \le 2^x$ for $x \ge 1$, and the last inequality is from case analysis.

Algorithm 4 Randomized combiner.

```
Input: Online algorithms A_1, \ldots, A_K
Reset A_1
Set \gamma \leftarrow 1, \tau \leftarrow 1
Initialize the candidate indices C \leftarrow [K]
Choose index i uniformly at random from C
for t = 1, ..., T do
   for j \in C do
       Get y_{\tau}^{j}, the \tauth output of \mathcal{A}_{j}
    end for
    Respond x_t \leftarrow y^i_{\tau}
    Get cost c_t, define g_\tau \leftarrow c_t
    for j \in C do
       Send g_{\tau} to \mathcal{A}_{i} as \tauth cost
       Set r_{\tau}^{j,\gamma} \leftarrow \sup_{u \in \mathcal{B}} \sum_{\tau'=1}^{\tau} \langle g_{\tau'}, y_{\tau'}^j - u \rangle
       if r_{\tau}^{j,\gamma} > \gamma then
           Set C \leftarrow C \setminus \{j\}
        end if
    end for
   if i \notin C then
       if C = \emptyset then
           Set C \leftarrow [K]
           Set \gamma \leftarrow 2\gamma
        end if
       Set \tau \leftarrow 1
       Reset \mathcal{A}_j for all j \in C
        Select index i uniformly at random from C
    end if
    Set \tau \leftarrow \tau + 1
end for
```

Theorem 11. Suppose A_1, \ldots, A_K are deterministic OLO algorithms with monotone regret bounds S_1, \ldots, S_K . Suppose for all t, $\sup_{x,y \in \mathcal{B}} \langle c_t, x - y \rangle \leq 1$. Then for any fixed sequence \vec{c} of costs (i.e., an oblivious adversary), Algorithm 4 guarantees:

$$\mathbb{E}\left[\mathcal{R}_{\mathcal{C}_{\mathrm{rand}}}(\mathcal{B},\vec{c})\right] \leq \log_2(K+1) \cdot \left(4 + 4\min_i \mathcal{S}_i([1,T],\vec{c})\right)$$

Further, if \vec{c} is allowed to depend on the algorithm's randomness (i.e., an adaptive adversary), then $\mathcal{R}_{\mathcal{C}_{\text{rand}}}(\mathcal{B}, \vec{c}) \leq K \left(4 + 4 \min_{i} \mathcal{S}_{i}([1, T], \vec{c}) \right).$

Proof. We divide the operation of Algorithm 4 into phases in which γ is constant. Each phase is further subdivided into sub-phases in which *i* is constant. First, let us fix an phase *e* with a fixed value of γ and bound the expected regret incurred in this phase. Let *N* denote the number of sub-phases in this phase. Just as in the proof of Theorem 10, we can show that the total regret incurred in this phase is at most $N(\gamma + 1)$. However, while there are exactly *K* sub-phases in any phase of Algorithm 2

(except perhaps the last one), the number of sub-phases in any phase of Algorithm 4 is a random variable.

We now bound $\mathbb{E}[N]$, the expected number of sub-phases in any phase. For the fixed phase e, for any time index t, let F(i, t) be the smallest index $\tau \ge t$ such that $\sup_{u \in X} \sum_{\tau'=t}^{\tau} \langle c_{\tau'}, w^i(t, \tau') - u \rangle > \gamma$, where we define $w^i(t, \tau')$ to be the output of A_i after seeing input $c_t, \ldots, c_{\tau'-1}$ and $w^i(t, t)$ to be the initial output of A_i . We set F(i, t) = T if no such index $\tau \le T$ exists. Intuitively, F(i, t) denotes the index $\tau \ge t$ when the regret experienced by algorithm A_i that is initialized at time t first exceeds γ .

Let C(S, t) be the expected number of sub-phases (counting the current one) left in the phase if a subphase starts at time t with the specified set of active indices S. We define $C(S, T + 1) = C(\emptyset, t) = 0$ for all S and t for notational convenience. Note that C(S, T) = 1 for all S. Further, by definition, we have $\mathbb{E}[N] = C(\{1, 2, ..., K\}, t)$ for some t (corresponding to the start of the phase). We claim that C satisfies:

$$C(S,t) = 1 + \frac{1}{|S|} \sum_{i \in S} C(S \setminus \{j \in S \mid F(j,t) \le F(i,t)\}, F(i,t) + 1).$$

To see this, observe that each index $i \in S$ is equally likely to be selected for the fixed i throughout the sub-phase starting at time t. By definition of F, the sub-phase will end at time F(i,t) if the selected index is i. Further, at the end of the sub-phase, S will be $S \setminus \{j \in S \mid F(j,t) \leq F(i,t)\}$. Therefore, conditioned on selecting index i for this sub-phase, the expected number of sub-phases is $1 + C(S \setminus \{j \in S \mid F(j,t) \leq F(i,t)\}, F(i,t) + 1)$. Since each index is selected with probability 1/|S|, the stated identity follows. Now we apply Lemma 15 to conclude that $C(\{1,\ldots,K\},t) \leq \log_2(K+1)$ for all t, which implies $\mathbb{E}[N] \leq \log_2(K+1)$.

Finally, let P denote the total number of phases. We can show that $P \leq 2 + \max(-1, \log_2(\min_i S_i([1, T], \vec{c})))$. The proof of this claim is identical to that in Theorem 10 and is omitted for brevity. Let N_p and $\gamma_p = 2^{p-1}$ denote the number of sub-phases in phase p and the corresponding value for γ respectively. We can then conclude the total expected regret experienced by Algorithm 4 is

$$\mathbb{E}\left[\sup_{u\in X}\sum_{t=1}^{T} \langle c_t, x_t - u \rangle\right] \leq \sum_{p=1}^{P} \mathbb{E}[N_p](\gamma_p + 1) \leq (2^P + P) \cdot \log_2(K+1)$$
$$\leq \log_2(K+1) \left(4 + 4\min_i \mathcal{S}_i([1,T],\vec{c})\right).$$

To prove the second bound for an adaptive adversary, we simply observe that in the worst-case, we cannot have more than K sub-phases in any phase. The rest of the argument is identical.

In order to prove Theorem 11, we need the following technical Lemma:

Lemma 15. Let $F : [K] \times [T] \rightarrow [T]$ be such that $F(i,t) \ge t$ for all $i \in [K], t \in [T]$ and $C : 2^{[K]} \times [T] \rightarrow \mathbb{R}$ be a function that satisfies $C(\emptyset, t) = 0$ for all t, C(S, T) = 1 for all S, C(S, T + 1) = 0 for all S, and C satisfies the recursion:

$$C(S,t) = 1 + \frac{1}{|S|} \sum_{i \in S} C(S \setminus \{j \in S \mid F(j,t) \le F(i,t)\}, F(i,t) + 1).$$

Then $C(\{1,...,K\},t) \le \log_2(K+1)$ *for all* t.

Proof. We define the auxiliary function $Z(N) = \sup_{t,|S| \le N} C(S,t)$. Observe Z(0) = 0, Z(1) = 1, and Z(N) is non-decreasing with N. Now suppose for purposes of induction that $Z(n) \le \log_2(n+1)$ for n < N. Then we have

$$Z(N) \le 1 + \sup_{N' \le N} \frac{1}{N'} \sup_{t,|S|=N'} \sum_{i \in S} C(S - \{j \in S \mid F(j,t) \le F(i,t)\}, F(i,t) + 1)$$
$$\le 1 + \sup_{N' \le N} \frac{1}{N'} \sup_{t,|S|=N'} \sum_{i \in S} Z(N' - |\{j \in S \mid F(j,t) \le F(i,t)\}|).$$

Now since Z(n) is non-decreasing in n, this is bounded by:

$$\leq 1 + \sup_{N' \leq N} \frac{1}{N'} \sum_{i=1}^{N'} Z(N' - i)$$

$$\leq 1 + \sup_{N' \leq N} \frac{1}{N'} \sum_{i=1}^{N'} \log_2(N' - i + 1)$$

Now we apply Jensen inequality to the concave function $\log_2(n)$:

$$\leq 1 + \sup_{N' \leq N} \log_2 \left(\frac{1}{N'} \sum_{i=1}^{N'} N' - i + 1 \right)$$

$$\leq 1 + \sup_{N' \leq N} \log_2((N'+1)/2)$$

$$= \log_2(N+1).$$

To conclude, note that clearly $C(\{1, \ldots, K\}, t) \leq Z(K)$ for all t.

E Other applications of the combiner

In this section we discuss a couple of direct applications of our combiner algorithms to other settings.

E.1 Adapting to different norms

For any ℓ_p -norm, $p \in (1, 2]$, there is an algorithm that guarantees regret $\sup_{u \in \mathcal{B}} \frac{\|u\|_p}{\sqrt{p-1}} \sqrt{\sum_{t=1}^T \|c_t\|_q^2}$ where q is such that $\frac{1}{p} + \frac{1}{q} = 1$ (such bounds can be obtained by e.g., the adaptive FTRL analysis described in [19], or see [24] for a non-adaptive version). However, it is not clear which p-norm yields the best regret guarantee until we have seen all the costs. Fortunately, these are monotone regret bounds, so by making a discrete grid of $O(\log d)$ p-norms in a d-dimensional space we can obtain the best of all these bounds in hindsight up to an additional factor of $\log d$ in the regret. Specifically:

Theorem 16. Let $K = \lfloor (\log d)/2 \rfloor$, let $q_0 = 2$ and $\frac{1}{q_i} = \frac{1}{q_{i-1}} - \frac{1}{\log d}$ for $i \leq K$. Define p_i by $\frac{1}{q_i} + \frac{1}{p_i} = 1$. For each $i \in [K]$, let \mathcal{A}_i be an online learning algorithm that guarantees regret $\sup_{u \in \mathcal{B}} \frac{||u||_{p_i}}{\sqrt{p_i - 1}} \sqrt{\sum_{t=1}^T ||c_t||_{q_i}^2}$. Then combining these algorithms using Algorithm 2 yields a worst-case regret bound of:

$$\mathbb{E}[\mathcal{R}_{\mathcal{A}}(\mathcal{B},\vec{c})] \leq O\left((\log\log d) \cdot \inf_{p} \sup_{u \in \mathcal{B}} \frac{\|u\|_{p}}{\sqrt{p-1}} \sqrt{\sum_{t=1}^{T} \|c_{t}\|_{q}^{2}}\right).$$

E.2 Simultaneous Adagrad and dimension-free bounds

The adaptive online gradient descent algorithm of [15] obtains the regret bound $D_2 \sqrt{\sum_{t=1}^{T} \|c_t\|_2^2}$, where D_2 is the ℓ_2 -diameter of \mathcal{B} . In contrast, the Adagrad algorithm obtains the bound $D_{\infty} \sum_{i=1}^{d} \sqrt{\sum_{t=1}^{T} c_{t,i}^2}$ where D_{∞} is the ℓ_{∞} -diameter of \mathcal{B} and $c_{t,i}$ is the *i*th component of c_t [10]. Adagrad's bound can be extremely good when the c_t are sparse, but might be much worse than the adaptive online gradient descent bound otherwise. However, both bounds are clearly monotone, so by applying our combiner construction, we have:

Theorem 17. There is an algorithm A such that for any sequence of vectors \vec{c} , the regret is at most:

$$\mathbb{E}[\mathcal{R}_{\mathcal{A}}(\mathcal{B},\vec{c})] \leq O\left(\min\left\{D_2\sqrt{\sum_{t=1}^T \|c_t\|_2^2}, D_{\infty}\sum_{i=1}^d \sqrt{\sum_{t=1}^T c_{t,i}^2}\right\}\right).$$

F Proof of Theorem 13

Theorem 13. There is an algorithm \mathcal{A} for the unconstrained setting such that for any $u \in \mathbb{R}^d$ and any $\alpha \in (0, 1)$, we have

$$\mathcal{R}_{\mathcal{A}}(u, \vec{c} \mid H) = O\left(\inf_{w \in \Delta_{K}} \left\{ \|u\| (\log T) \left(\frac{\sqrt{\log K}}{\alpha} + \sqrt{\frac{B_{\alpha}^{H(w)}}{\alpha}}\right) \right\} \right).$$

Proof. Algorithm \mathcal{A} instantiates one *d*-dimensional *parameter-free* OLO algorithm \mathcal{A}' that outputs x_t , gets costs c_t , and guarantees regret for some user specified ϵ :

$$\sum_{t=1}^{T} \langle c_t, x_t - u \rangle \le \epsilon + O\left(\|u\| \log(T) + \|u\| \sqrt{\sum_{t=1}^{T} \|c_t\|^2 \log \frac{T}{\epsilon}} \right).$$

Where the O hides absolute constants. Such algorithms are described in several recent works [7, 8, 27, 17, 20]. Also, algorithm A instantiates K one-dimensional learning algorithms, A_i for the hint sequence $\vec{h^{(i)}}$. At time t, the *i*th such learner outputs $y_t^{(i)}$, gets cost $-\langle c_t, h_t^{(i)} \rangle$ and guarantees regret:

$$\sum_{t=1}^{T} \langle c_t, h_t^{(i)} \rangle (y^{(i)} - y_t^{(i)}) \le \frac{\epsilon}{K} + O\left(|y^{(i)}| \log(T) + |y^{(i)}| \sqrt{\sum_{t=1}^{T} \langle c_t, h_t^{(i)} \rangle^2 \log \frac{KT}{\epsilon}} \right)$$
$$\le \frac{\epsilon}{K} + O\left(|y^{(i)}| \log(T) + |y^{(i)}| \sqrt{\sum_{t=1}^{T} \|c_t\|^2 \log \frac{KT}{\epsilon}} \right).$$

These one-dimensional learners may simply be instances of the *d*-dimensional learner restricted to one dimension. The algorithm \mathcal{A} responds with the predictions $\hat{x}_t = x_t - \sum_{i=1}^{K} y_t^{(i)} h_t^{(i)}$ and set $\epsilon = 1$. The regret is:

$$\begin{split} \sum_{t=1}^{T} \langle c_t, \hat{x}_t - u \rangle &= \sum_{t=1}^{T} \langle c_t, x_t - u \rangle - \sum_{i=1}^{K} \sum_{t=1}^{T} \langle c_t, h_t^{(i)} \rangle y_t^{(i)} \\ &= \inf_{y^{(1)}, \dots, y^{(K)} \in \mathbb{R}} \left\{ \sum_{t=1}^{T} \langle c_t, x_t - u \rangle + \sum_{i=1}^{K} \sum_{t=1}^{T} \langle c_t, h_t^i \rangle (y^{(i)} - y_t^{(i)}) - \sum_{t=1}^{T} \left\langle c_t, \sum_{i=1}^{K} y^{(i)} h_t^{(i)} \right\rangle \right\} \\ &\leq O\left(\inf_{y^{(1)}, \dots, y^{(K)} \in \mathbb{R}} \left\{ 1 + \|u\| \sqrt{\sum_{t=1}^{T} \|c_t\|^2 \log T} + \sum_{i=1}^{K} \left(\frac{1}{K} + |y^{(i)}| \sqrt{\sum_{t=1}^{T} \|c_t\|^2 \log(KT)} \right) \right. \\ &+ \|u\| \log(T) + \sum_{i=1}^{K} |y^{(i)}| \log(T) - \sum_{t=1}^{T} \left\langle c_t, \sum_{i=1}^{K} y^{(i)} h_t^{(i)} \right\rangle \right\} \right) \\ &\leq O\left(2 + \inf_{\sum_i |y^{(i)}| \leq \|u\| \sqrt{\frac{\log T}{\log(KT)}}} \left\{ 2\|u\| \log(T) + 2\|u\| \sqrt{\sum_{t=1}^{T} \|c_t\|^2 \log T} - \sum_{t=1}^{T} \left\langle c_t, \sum_{i=1}^{K} y^{(i)} h_t^{(i)} \right\rangle \right\} \right) \\ &\text{Let } w \text{ be an arbitrary element of } \Delta_K. \text{ We set } y^{(i)} = \|u\| \frac{w^{(i)}}{\sqrt{\alpha |B_\alpha^{(W)}| + \frac{\log(KT)}{\log T}}}. \text{ Notice that this implies} \end{split}$$

$$\begin{split} \sum |y^{(i)}| &\leq \|u\| \sqrt{\frac{\log T}{\log(KT)}}. \text{ Also, we have} \\ &- \sum_{t=1}^{T} \langle c_t, H(w)_t \rangle \leq -\sum_{t=1}^{T} \alpha \|c_t\|^2 + 2|B^{H(w)}_{\alpha}|, \quad \text{ and} \\ &- \sum_{t=1}^{T} \left\langle c_t, \sum_{i=1}^{K} y^{(i)} h^{(i)}_t \right\rangle \leq -\frac{\|u\|}{\sqrt{\alpha |B^{H(w)}_{\alpha}| + \frac{\log(KT)}{\log T}}} \sum_{t=1}^{T} \alpha \|c_t\|^2 + 2\|u\| \sqrt{\frac{|B^{H(w)}_{\alpha}|}{\alpha}}. \end{split}$$

Thus the regret bound for ${\mathcal A}$ becomes

$$\begin{aligned} \mathcal{R}_{\mathcal{A}}(u,\vec{c} \mid H) &\leq O\left(2 + w \|u\| \log(T) + 2\|u\| \sqrt{\frac{|B_{\alpha}^{H(w)}|}{\alpha}} \\ &+ 2\|u\| \sqrt{\sum_{t=1}^{T} \|c_t\|^2 \log T} - \frac{\|u\|}{\sqrt{\alpha |B_{\alpha}^{H(w)}| + \frac{\log(KT)}{\log T}}} \sum_{t=1}^{T} \alpha \|c_t\|^2\right) \\ &\leq O\left(2 + \frac{\|u\| (\log T) \sqrt{\alpha |B_{\alpha}^{H(w)}| + \frac{\log(KT)}{\log T}}}{\alpha} + 2\|u\| \sqrt{\frac{|B_{\alpha}^{H(w)}|}{\alpha}}\right) \\ &= O\left(\frac{\|u\| \sqrt{(\log T) \log(KT)}}{\alpha} + \|u\| (\log T) \sqrt{\frac{|B_{\alpha}^{H(w)}|}{\alpha}}\right). \end{aligned}$$

Since w was chosen arbitrarily in Δ_K , the bound holds for all $w \in \Delta_K$ and so we are done. \Box