
A Single hint setting

In this section, we modify the construction of [2] in the single hint setting to take into account
knowledge of the parameter α. Our goal is to prove Theorem 1. The algorithm is nearly identical
to that of [2] and most of the analysis is the same. We refer the reader to the original reference for
complete details.

Algorithm 3 1-HINTα
Input: Parameter α

Define λ0 = 1 and r0 = 1
Set procedure A to be Algorithm 2 in [2].
for t = 1, . . . , T do

Get hint ht
Get xt from procedure A, and set

xt ← xt +
(‖xt‖2 − 1)

2rt
ht

Play xt and receive cost ct
Set rt+1 ←

√
r2
t + αmax(0,−〈ct,ht〉)

log(T )

Define σt = |〈ct,ht〉|
rt

Define λt as the solution to:

λt =
‖ct‖2∑t

τ=1 στ + λτ

Define the loss `t(x) = 〈ct, x〉+ |〈ct,ht〉|
2rt

(‖x‖2 − 1). Send the loss function `t to A
end for

The only difference between our algorithm 1-HINTα and Algorithm 1 of [2] is the definition of rt:

when we set rt+1 =
√
r2
t + max(0,−〈ct,ht〉)α

log(T ) , [2] instead sets rt+1 =
√
r2
t + max(0,−〈ct, ht〉). We

can now prove Theorem 1, which we restate below for reference:

Theorem 1. For any 0 < α < 1, there exists an algorithm 1-HINTα that runs in O(d) time per
update, takes a single hint sequence ~h, and guarantees regret:

R1-HINTα(B,~c | {~h}) ≤ 1

2
+ 4



√∑

t∈B~hα

‖ct‖2 +
log T

α
+ 2

√
(log T )

∑T
t=1 max(0,−〈ct, ht〉)

α




≤ O



√

(log T )|B~hα|
α

+
log T

α


 .

Proof. Following [2], we observe that since A always returns xt ∈ B, xt ∈ B. Further,

〈ct, xt − u〉 ≤ `t(xt)− `t(u) +
max(0,−〈ct, ht〉)

rt
,

and `t is σt-strongly convex.

Next, by [2] Lemma 3.4, we have

R1-HINTα(B,~c | {~h}) ≤
T∑

t=1

max(0,−〈ct, ht〉)
rt

+

T∑

t=1

`t(x̄t)− `t(u).

11



We can bound the first sum as:
T∑

t=1

max(0,−〈ct, ht〉)
rt

≤ log T

α

T∑

t=1

αmax(0,−〈ct, ht〉)/ log T

rt

≤ 2 log T

α

√√√√
T∑

t=1

αmax(0,−〈ct, ht〉)
log T

≤

√

2

∑T
t=1(log T ) max(0,−〈ct, ht〉)

α
.

For the second sum, we appeal to Lemma 3.6 of [2], which yields:

T∑

t=1

`t(x̄t)− `t(u) ≤ 1

2
+ 4



√∑

t∈B~hα

‖ct‖2 +
rT (log T )

α




≤ 1

2
+ 4



√∑

t∈B~hα

‖ct‖2 +

√
(log2 T ) + (log T )α

∑T
t=1 max(0,−〈ct, ht〉)

α




≤ 1

2
+ 4



√∑

t∈B~hα

‖ct‖2 +
log T

α
+

√
(log T )

∑T
t=1 max(0,−〈ct, ht〉)

α


 .

Combining these identities now yields the desired theorem.

B Full proofs: Constrained setting

B.1 Proof of Theorem 2

Theorem 2. Let α ∈ (0, 1) be given. There exists a randomized algorithm AMW for OLO with K
hint sequences that has a regret bound of

E[RAMW(B,~c | H)] ≤ O


 inf
i∈K

√
(log T )(|B~h(i)

α |+ logK)

α
+

log T

α


 .

Proof. At each time step t, our goal is to pick a single hint ht ∈ {h(1)
t , . . . , h

(K)
t }. We instantiate

this problem as an instance of the standard prediction with K experts problem with binary losses
defined as follows.

`t,i =

{
0 if |〈ct, h(i)

t 〉| ≥ α ‖ct‖ ,
1 otherwise.

Let ~h(i∗) denote the hint sequence with minimum loss in hindsight, i.e., i∗ = argmini∈K
∑
t `t,i. We

note that by definition of the losses `, we have
∑
t `t,i∗ = |B~h(i∗)

α |. Let ~hMW = (h
(i1)
1 , h

(i2)
2 , . . .)

be the sequence of hints obtained by running the classical Multiplicative Weights algorithm with a
decay factor of η = 1

2 . Then by standard analysis (e.g., Theorem 2.1 of Arora et al. [1]), we have the
following.

E[
∑

t

(`t,it − `t,i∗)] ≤ 2 logK +
1

2

∑

t

(`t,i∗) . (6)

Substituting |B~h(i∗)
α | = ∑t `t,i∗ and rearranging,

E[|B~hMW

α |] = E[
∑

t

`t,it ] ≤
3

2
|B~h(i∗)
α |+ 2 logK. (7)

12



We then run an instance of the single hint algorithm, 1-HINTα, with the hint sequence ~hMW. Applying
Theorem 1 yields the following.

E[RAMW(B,~c | H)] ≤ O


E



√

(log T )|B~hMW
α |

α


+

log T

α




≤ O




√√√√ (log T )E
[
|B~hMW
α |

]

α
+

log T

α




≤ O



√

(log T )(|B~h(i∗)
α |+ logK)

α
+

log T

α


 ,

where the first inequality follows from Jensen’s inequality and the second one follows from (7).

B.2 Proof of Proposition 4

Before proving Proposition 4, we apply the analysis of adaptive follow-the-regularized-leader (FTRL)
as in [19] to obtain:

Proposition 14. For any w? ∈ ∆K , we have:

T∑

t=1

(`t(wt)− `t(w?)) ≤ 2

√√√√(log2K) + (logK)

T∑

t=1

‖gt‖2∞.

Proof. To begin, recall that the entropic regularizer ψ(w) = log(K) +
∑K
i=1 w

(i)(logw(i)) is 1-
strongly-convex with respect to the 1-norm over ∆K , has minimum value 0 and maximum value
logK.

Then, standard bounds for FTRL (e.g., [19, Theorem 1]) tell us that:

T∑

t=1

`t(wt)− `t(w?) ≤

√
(logK) +

∑T
t=1 ‖gt‖2∞

logK
ψ(w?) +

T∑

t=1

‖gt‖2∞
√

logK

2
√

(logK) +
∑t−1
τ=1 ‖gτ‖2∞

≤

√
(logK) +

∑T
t=1 ‖gt‖2∞

logK
ψ(w?) +

T∑

t=1

‖gt‖2∞
√

logK

2
√∑t

τ=1 ‖gτ‖2∞

≤

√
(logK) +

∑T
t=1 ‖gt‖2∞

logK
ψ(w?) +

√√√√(logK)

T∑

t=1

‖gt‖2∞

≤ 2

√√√√(log2K) + (logK)
T∑

t=1

‖gt‖2∞.

Now with Proposition 14 in hand, we can restate and prove:

Proposition 4. Let wt ∈ ∆K be chosen via FTRL on the losses `t as in Algorithm 1. Then, for any
w? ∈ ∆K , we have

T∑

t=1

`t(wt) ≤
22 logK

α
+ 2

T∑

t=1

`t(w?).

13



Proof. From Proposition 3, we have

T∑

t=1

‖gt‖2∞ ≤
T∑

t=1

4

α
`t(wt).

Combining this with the regret bound of Proposition 14 yields:

T∑

t=1

`t(wt)− `t(w?) ≤ 2

√√√√(log2K) +
4 logK

α

T∑

t=1

`t(wt).

If we set R =
∑T
t=1 `t(wt)− `t(w?), we can rewrite the above as:

R ≤ 2

√√√√(log2K) +
4 logK

α
R+

4 logK

α

T∑

t=1

`t(w?).

Now we use
√
a+ b ≤ √a+

√
b and solve for R:

R ≤ 16 logK

α
+

√√√√4 log2K +
16 logK

α

T∑

t=1

`t(w?)

≤ 18 logK

α
+

√√√√16 logK

α

T∑

t=1

`t(w?)

=⇒
T∑

t=1

`t(wt) ≤
T∑

t=1

`t(w?) +
18 logK

α
+

√√√√16 logK

α

T∑

t=1

`t(w?).

Next, observe that
√
aX ≤ X + a

4 for all a,X ≥ 0, so that

T∑

t=1

`t(wt) ≤ 2
T∑

t=1

`t(w?) +
22 logK

α
.

as desired.

C Lower bound proofs

Theorem 7. For any α and T ≥ 1
α log 1

α , there exists a sequence ~c of costs and a set H of hint
sequences, |H| = K for some K, such that: (i) there is a convex combination of the K hints that

always has correlation α with the costs and (ii) the regret of any online algorithm is at least
√

logK
2α .

Proof. Consider a one-dimensional problem with K = T2B

B hint sequences for B = αT . Suppose
T ≥ log(1/α)

α , so that 2B ≥ T
B and logK ≤ 2B = 2Tα. We group the hint sequences into T

B groups
each of size 2B . We now specify the hint sequence in the ith such group for some arbitrary i. All
hints in the ith group are 0 for all t /∈ [(i− 1)B, iB − 1] and for t ∈ [iB, (i+ 1)B), the hints take
on the 2B possible sequences of ±1. Then it is clear that for any sequence of ±1 costs, there is a
convex combination of hints that places weight B/T on exactly one hint sequence in each of the
T/B groups such that the linear combination always has correlation α = B/T with the cost.

Let the costs be random ±1, so that the expected regret is
√
T . Then we conclude by observing√

logK/
√

2α ≤
√

2αT/
√

2α =
√
T .

Theorem 8. In the two-dimensional constrained setting, there is a sequence ~h and ~c of hints and
costs (K = 1) such that: (i) ∀t, 〈ht, ct〉 ≥ α, and (ii) the regret of any online algorithm is at least
Ω(1/α).

14



Proof. Let e0 and e1 be orthogonal unit vectors, and let ht = e0 for all t. Suppose that ct =
αe0 ±

√
1− α2e1 for all t, where the sign is chosen uniformly at random. Note that any online

algorithm has expected reward at most αT (since it cannot gain anything in the e1 direction, so it is
best to place all the mass along e0).

On the other hand, we have

E



∥∥∥∥∥
T∑

t=1

ct

∥∥∥∥∥

2

 = α2T 2 + T (1− α2),

and thus the optimal vector in hindsight achieves a reward
√
α2T 2 + T (1− α2). Thus the regret is

T (1− α2)

αT +
√
α2T 2 + T (1− α2)

≥ T (1− α2)

2αT +
√
T (1− α2)

≥ 1

α
,

for sufficiently large T .

D Proofs from Section 4

Theorem 10. Suppose A1, . . . ,AK are deterministic OLO algorithms that are associated with
monotone regret bounds S1, . . . ,SK . Suppose ∀t, supx,y∈B〈ct, x− y〉 ≤ 1. Then, we have:

RCdet
(B,~c) ≤ K

(
4 + 4 min

i
Si([1, T ],~c)

)
.

Proof. We can divide the operation of Algorithm 2 into phases in which γ is constant. Each phase
may be further subdivided into sub-phases in which i is constant. First, let us bound the regret in
a single phase with fixed γ. Suppose this phase has N ≤ K sub-phases1. Let t1, . . . , tN be the
time indices at which each sub-phase begins, and let tN+1 − 1 be the last time index belonging to
this phase. Notice that for all i ≤ N , we must have ri,γti+1−ti−1 ≤ γ since the ith sub-phase lasts
for ti+1 − ti iterations. Then since supx,y〈cti+1−1, x − y〉 ≤ 1 for all i and x, y ∈ X , we have
ri,γti+1−ti ≤ r

i,γ
ti+1−ti−1 + 1 ≤ γ + 1. Now we can write the regret incurred over this phase as:

sup
u∈X

tN+1−1∑

t=t1

〈ct, xt − u〉 ≤
N∑

i=1

sup
u∈X

ti+1−1∑

t=ti

〈ct, xt − u〉 ≤
N∑

i=1

ri,γti+1−ti ≤ N(γ + 1) ≤ Kγ +K.

Let P denote the total number of phases. We now show that P ≤ 2 +
max(−1, log2 (mini Si([1, T ],~c))). Suppose otherwise. Let j = argmini Si([1, T ],~c) be the al-
gorithm with the least total regret. Let us consider the (P − 1)th phase. In this phase, γ = 2P−2.
Since P > 2 + log2 (mini Si([1, T ],~c)), we must have mini Si([1, T ],~c) < γ. Consider the jth sub-
phase in this phase. Since γ will eventually increase, this sub-phase must eventually end. Therefore
there must be some t and τ such that t+ τ < T and

sup
u∈X

τ∑

τ ′=1

〈ct+τ ′ , wτ ′ − u〉 > γ,

where wτ ′ is the output of Aj after seeing input ct, . . . , ct+τ ′−1. By the increasing property of Rj ,
we also have:

sup
u∈X

τ∑

τ ′=1

〈ct+τ ′ , wτ ′ − u〉 ≤ Sj([t, t+ τ ],~c) ≤ Sj([1, T ],~c) < γ.

which is a contradiction. Therefore P ≤ 2 + max(−1, log2 (mini Si([1, T ],~c))).

Now we are in a position to calculate the total regret. Let 1 = T1, . . . , TP be the start times of the P
phases, and let TP+1 − 1 = T for notational convenience. Then we have:

sup
u∈X

T∑

t=1

〈ct, xt − u〉 ≤
P∑

e=1

sup
u∈X

Te+1−1∑

t=Te

〈ct, xt − u〉.

1All phases except maybe the last phase have exactly K sub-phases.

15



Now since the regret in an phase is at most Kγ +K, and γ doubles every phase,

≤
P∑

e=1

K2e−1 +K ≤ KP +K2P

≤ K2P+1

≤ K
(

4 + 4 min
i
Si([1, T ],~c)

)
,

where the second-to-last inequality follows from x ≤ 2x for x ≥ 1, and the last inequality is from
case analysis.

Algorithm 4 Randomized combiner.
Input: Online algorithms A1, . . . ,AK
Reset A1

Set γ ← 1, τ ← 1
Initialize the candidate indices C ← [K]
Choose index i uniformly at random from C
for t = 1, . . . , T do

for j ∈ C do
Get yjτ , the τ th output of Aj

end for
Respond xt ← yiτ
Get cost ct, define gτ ← ct
for j ∈ C do

Send gτ to Aj as τ th cost
Set rj,γτ ← supu∈B

∑τ
τ ′=1〈gτ ′ , y

j
τ ′ − u〉

if rj,γτ > γ then
Set C ← C \ {j}

end if
end for
if i /∈ C then

if C = ∅ then
Set C ← [K]
Set γ ← 2γ

end if
Set τ ← 1
Reset Aj for all j ∈ C
Select index i uniformly at random from C

end if
Set τ ← τ + 1

end for

Theorem 11. Suppose A1, . . . ,AK are deterministic OLO algorithms with monotone regret bounds
S1, . . . ,SK . Suppose for all t, supx,y∈B〈ct, x− y〉 ≤ 1. Then for any fixed sequence ~c of costs (i.e.,
an oblivious adversary), Algorithm 4 guarantees:

E [RCrand
(B,~c)] ≤ log2(K + 1) ·

(
4 + 4 min

i
Si([1, T ],~c)

)
.

Further, if ~c is allowed to depend on the algorithm’s randomness (i.e., an adaptive adversary), then
RCrand

(B,~c) ≤ K
(

4 + 4 min
i
Si([1, T ],~c)

)
.

Proof. We divide the operation of Algorithm 4 into phases in which γ is constant. Each phase is
further subdivided into sub-phases in which i is constant. First, let us fix an phase e with a fixed value
of γ and bound the expected regret incurred in this phase. Let N denote the number of sub-phases in
this phase. Just as in the proof of Theorem 10, we can show that the total regret incurred in this phase
is at most N(γ + 1). However, while there are exactly K sub-phases in any phase of Algorithm 2

16



(except perhaps the last one), the number of sub-phases in any phase of Algorithm 4 is a random
variable.

We now bound E[N ], the expected number of sub-phases in any phase. For the fixed phase e, for any
time index t, let F (i, t) be the smallest index τ ≥ t such that supu∈X

∑τ
τ ′=t〈cτ ′ , wi(t, τ ′)−u〉 > γ,

where we define wi(t, τ ′) to be the output of Ai after seeing input ct, . . . , cτ ′−1 and wi(t, t) to be the
initial output of Ai. We set F (i, t) = T if no such index τ ≤ T exists. Intuitively, F (i, t) denotes the
index τ ≥ t when the regret experienced by algorithm Ai that is initialized at time t first exceeds γ.

Let C(S, t) be the expected number of sub-phases (counting the current one) left in the phase if a sub-
phase starts at time t with the specified set of active indices S. We define C(S, T + 1) = C(∅, t) = 0
for all S and t for notational convenience. Note that C(S, T ) = 1 for all S. Further, by definition, we
have E[N ] = C({1, 2, . . . ,K}, t) for some t (corresponding to the start of the phase). We claim that
C satisfies:

C(S, t) = 1 +
1

|S|
∑

i∈S
C(S \ {j ∈ S | F (j, t) ≤ F (i, t)}, F (i, t) + 1).

To see this, observe that each index i ∈ S is equally likely to be selected for the fixed i throughout
the sub-phase starting at time t. By definition of F , the sub-phase will end at time F (i, t) if the
selected index is i. Further, at the end of the sub-phase, S will be S \ {j ∈ S | F (j, t) ≤ F (i, t)}.
Therefore, conditioned on selecting index i for this sub-phase, the expected number of sub-phases is
1 + C(S \ {j ∈ S | F (j, t) ≤ F (i, t)}, F (i, t) + 1). Since each index is selected with probability
1/|S|, the stated identity follows. Now we apply Lemma 15 to conclude that C({1, . . . ,K}, t) ≤
log2(K + 1) for all t, which implies E[N ] ≤ log2(K + 1).

Finally, let P denote the total number of phases. We can show that P ≤ 2 +
max(−1, log2(mini Si([1, T ],~c))). The proof of this claim is identical to that in Theorem 10 and
is omitted for brevity. Let Np and γp = 2p−1 denote the number of sub-phases in phase p and the
corresponding value for γ respectively. We can then conclude the total expected regret experienced
by Algorithm 4 is

E

[
sup
u∈X

T∑

t=1

〈ct, xt − u〉
]
≤

P∑

p=1

E[Np](γp + 1) ≤ (2P + P ) · log2(K + 1)

≤ log2(K + 1)
(

4 + 4 min
i
Si([1, T ],~c)

)
.

To prove the second bound for an adaptive adversary, we simply observe that in the worst-case, we
cannot have more than K sub-phases in any phase. The rest of the argument is identical.

In order to prove Theorem 11, we need the following technical Lemma:

Lemma 15. Let F : [K] × [T ] → [T ] be such that F (i, t) ≥ t for all i ∈ [K], t ∈ [T ] and
C : 2[K] × [T ] → R be a function that satisfies C(∅, t) = 0 for all t, C(S, T ) = 1 for all S,
C(S, T + 1) = 0 for all S, and C satisfies the recursion:

C(S, t) = 1 +
1

|S|
∑

i∈S
C(S \ {j ∈ S | F (j, t) ≤ F (i, t)}, F (i, t) + 1).

Then C({1, . . . ,K}, t) ≤ log2(K + 1) for all t.

Proof. We define the auxiliary function Z(N) = supt,|S|≤N C(S, t). Observe Z(0) = 0, Z(1) = 1,
and Z(N) is non-decreasing withN . Now suppose for purposes of induction that Z(n) ≤ log2(n+1)
for n < N . Then we have

Z(N) ≤ 1 + sup
N ′≤N

1

N ′
sup

t,|S|=N ′

∑

i∈S
C(S − {j ∈ S | F (j, t) ≤ F (i, t)}, F (i, t) + 1)

≤ 1 + sup
N ′≤N

1

N ′
sup

t,|S|=N ′

∑

i∈S
Z(N ′ − |{j ∈ S | F (j, t) ≤ F (i, t)}|).

17



Now since Z(n) is non-decreasing in n, this is bounded by:

≤ 1 + sup
N ′≤N

1

N ′

N ′∑

i=1

Z(N ′ − i)

≤ 1 + sup
N ′≤N

1

N ′

N ′∑

i=1

log2(N ′ − i+ 1).

Now we apply Jensen inequality to the concave function log2(n):

≤ 1 + sup
N ′≤N

log2


 1

N ′

N ′∑

i=1

N ′ − i+ 1




≤ 1 + sup
N ′≤N

log2((N ′ + 1)/2)

= log2(N + 1).

To conclude, note that clearly C({1, . . . ,K}, t) ≤ Z(K) for all t.

E Other applications of the combiner

In this section we discuss a couple of direct applications of our combiner algorithms to other settings.

E.1 Adapting to different norms

For any `p-norm, p ∈ (1, 2], there is an algorithm that guarantees regret supu∈B
‖u‖p√
p−1

√∑T
t=1 ‖ct‖2q

where q is such that 1
p + 1

q = 1 (such bounds can be obtained by e.g., the adaptive FTRL analysis
described in [19], or see [24] for a non-adaptive version). However, it is not clear which p-norm
yields the best regret guarantee until we have seen all the costs. Fortunately, these are monotone regret
bounds, so by making a discrete grid of O(log d) p-norms in a d-dimensional space we can obtain
the best of all these bounds in hindsight up to an additional factor of log d in the regret. Specifically:

Theorem 16. Let K = b(log d)/2c, let q0 = 2 and 1
qi

= 1
qi−1
− 1

log d for i ≤ K. Define pi by
1
qi

+ 1
pi

= 1. For each i ∈ [K], let Ai be an online learning algorithm that guarantees regret

supu∈B
‖u‖pi√
pi−1

√∑T
t=1 ‖ct‖2qi . Then combining these algorithms using Algorithm 2 yields a worst-

case regret bound of:

E[RA(B,~c)] ≤ O


(log log d) · inf

p
sup
u∈B

‖u‖p√
p− 1

√√√√
T∑

t=1

‖ct‖2q


 .

E.2 Simultaneous Adagrad and dimension-free bounds

The adaptive online gradient descent algorithm of [15] obtains the regret bound D2

√∑T
t=1 ‖ct‖22,

where D2 is the `2-diameter of B. In contrast, the Adagrad algorithm obtains the bound

D∞
∑d
i=1

√∑T
t=1 c

2
t,i where D∞ is the `∞-diameter of B and ct,i is the ith component of ct [10].

Adagrad’s bound can be extremely good when the ct are sparse, but might be much worse than the
adaptive online gradient descent bound otherwise. However, both bounds are clearly monotone, so by
applying our combiner construction, we have:

Theorem 17. There is an algorithm A such that for any sequence of vectors ~c, the regret is at most:

E[RA(B,~c)] ≤ O


min



D2

√√√√
T∑

t=1

‖ct‖22, D∞
d∑

i=1

√√√√
T∑

t=1

c2t,i






 .

18



F Proof of Theorem 13

Theorem 13. There is an algorithm A for the unconstrained setting such that for any u ∈ Rd and
any α ∈ (0, 1), we have

RA(u,~c | H) = O


 inf
w∈∆K



‖u‖(log T )



√

logK

α
+

√
B
H(w)
α

α








 .

Proof. Algorithm A instantiates one d-dimensional parameter-free OLO algorithm A′ that outputs
xt, gets costs ct, and guarantees regret for some user specified ε:

T∑

t=1

〈ct, xt − u〉 ≤ ε+O


‖u‖ log(T ) + ‖u‖

√√√√
T∑

t=1

‖ct‖2 log
T

ε


 .

Where the O hides absolute constants. Such algorithms are described in several recent works [7, 8,
27, 17, 20]. Also, algorithm A instantiates K one-dimensional learning algorithms, Ai for the hint
sequence ~h(i). At time t, the ith such learner outputs y(i)

t , gets cost −〈ct, h(i)
t 〉 and guarantees regret:

T∑

t=1

〈ct, h(i)
t 〉(y(i) − y(i)

t ) ≤ ε

K
+O


|y(i)| log(T ) + |y(i)|

√√√√
T∑

t=1

〈ct, h(i)
t 〉2 log

KT

ε




≤ ε

K
+O


|y(i)| log(T ) + |y(i)|

√√√√
T∑

t=1

‖ct‖2 log
KT

ε


 .

These one-dimensional learners may simply be instances of the d-dimensional learner restricted to
one dimension. The algorithm A responds with the predictions x̂t = xt −

∑K
i=1 y

(i)
t h

(i)
t and set

ε = 1. The regret is:
T∑

t=1

〈ct, x̂t − u〉 =
T∑

t=1

〈ct, xt − u〉 −
K∑

i=1

T∑

t=1

〈ct, h(i)
t 〉y(i)

t

= inf
y(1),...,y(K)∈R

{
T∑

t=1

〈ct, xt − u〉+
K∑

i=1

T∑

t=1

〈ct, hit〉(y(i) − y(i)
t )−

T∑

t=1

〈
ct,

K∑

i=1

y(i)h
(i)
t

〉}

≤ O


 inf
y(1),...,y(K)∈R



1 + ‖u‖

√√√√
T∑

t=1

‖ct‖2 log T +
K∑

i=1


 1

K
+ |y(i)|

√√√√
T∑

t=1

‖ct‖2 log(KT )




+‖u‖ log(T ) +

K∑

i=1

|y(i)| log(T )−
T∑

t=1

〈
ct,

K∑

i=1

y(i)h
(i)
t

〉})

≤ O


2 + inf∑

i |y(i)|≤‖u‖
√

log T
log(KT )



2‖u‖ log(T ) + 2‖u‖

√√√√
T∑

t=1

‖ct‖2 log T −
T∑

t=1

〈
ct,

K∑

i=1

y(i)h
(i)
t

〉



 .

Let w be an arbitrary element of ∆K . We set y(i) = ‖u‖ w(i)√
α|BH(w)

α |+ log(KT )
log T

. Notice that this implies

∑ |y(i)| ≤ ‖u‖
√

log T
log(KT ) . Also, we have

−
T∑

t=1

〈ct, H(w)t〉 ≤ −
T∑

t=1

α‖ct‖2 + 2|BH(w)
α |, and

−
T∑

t=1

〈
ct,

K∑

i=1

y(i)h
(i)
t

〉
≤ − ‖u‖√

α|BH(w)
α |+ log(KT )

log T

T∑

t=1

α‖ct‖2 + 2‖u‖

√
|BH(w)
α |
α

.

19



Thus the regret bound for A becomes

RA(u,~c | H) ≤ O


2 + w‖u‖ log(T ) + 2‖u‖

√
|BH(w)
α |
α

+2‖u‖

√√√√
T∑

t=1

‖ct‖2 log T − ‖u‖√
α|BH(w)

α |+ log(KT )
log T

T∑

t=1

α‖ct‖2



≤ O


2 +

‖u‖(log T )
√
α|BH(w)

α |+ log(KT )
log T

α
+ 2‖u‖

√
|BH(w)
α |
α




= O


‖u‖

√
(log T ) log(KT )

α
+ ‖u‖(log T )

√
|BH(w)
α |
α


 .

Since w was chosen arbitrarily in ∆K , the bound holds for all w ∈ ∆K and so we are done.

20


