A Single hint setting

In this section, we modify the construction of [2] in the single hint setting to take into account knowledge of the parameter α. Our goal is to prove Theorem 1. The algorithm is nearly identical to that of [2] and most of the analysis is the same. We refer the reader to the original reference for complete details.

```
Algorithm 3 1-HINT \({ }_{\alpha}\)
Input: Parameter \(\alpha\)
    Define \(\lambda_{0}=1\) and \(r_{0}=1\)
    Set procedure \(\mathcal{A}\) to be Algorithm 2 in [2].
    for \(t=1, \ldots, T\) do
        Get hint \(h_{t}\)
        Get \(\bar{x}_{t}\) from procedure \(\mathcal{A}\), and set
                        \(x_{t} \leftarrow \bar{x}_{t}+\frac{\left(\left\|\bar{x}_{t}\right\|^{2}-1\right)}{2 r_{t}} h_{t}\)
```

 Play \(x_{t}\) and receive cost \(c_{t}\)
 Set \(r_{t+1} \leftarrow \sqrt{r_{t}^{2}+\frac{\alpha \max \left(0,-\left\langle c_{t}, h_{t}\right\rangle\right)}{\log (T)}}\)
 Define \(\sigma_{t}=\frac{\left|\left\langle c_{t}, h_{t}\right\rangle\right|}{r_{t}}\)
 Define \(\lambda_{t}\) as the solution to:
 $$
\lambda_{t}=\frac{\left\|c_{t}\right\|^{2}}{\sum_{\tau=1}^{t} \sigma_{\tau}+\lambda_{\tau}}
$$

Define the loss $\ell_{t}(x)=\left\langle c_{t}, x\right\rangle+\frac{\left|\left\langle c_{t}, h_{t}\right\rangle\right|}{2 r_{t}}\left(\|x\|^{2}-1\right)$. Send the loss function ℓ_{t} to \mathcal{A} end for

The only difference between our algorithm 1-Hint α_{α} and Algorithm 1 of [2] is the definition of r_{t} : when we set $r_{t+1}=\sqrt{r_{t}^{2}+\frac{\max \left(0,-\left\langle c_{t}, h_{t}\right\rangle\right) \alpha}{\log (T)}}$, [2] instead sets $r_{t+1}=\sqrt{r_{t}^{2}+\max \left(0,-\left\langle c_{t}, h_{t}\right\rangle\right)}$. We can now prove Theorem 1, which we restate below for reference:

Theorem 1. For any $0<\alpha<1$, there exists an algorithm $1-\mathrm{HINT}_{\alpha}$ that runs in $O(d)$ time per update, takes a single hint sequence \vec{h}, and guarantees regret:

$$
\begin{aligned}
\mathcal{R}_{1-\operatorname{HiNT}_{\alpha}}(\mathcal{B}, \vec{c} \mid\{\vec{h}\}) & \leq \frac{1}{2}+4\left(\sqrt{\sum_{t \in B_{\alpha}^{\vec{h}}}\left\|c_{t}\right\|^{2}}+\frac{\log T}{\alpha}+2 \sqrt{\frac{(\log T) \sum_{t=1}^{T} \max \left(0,-\left\langle c_{t}, h_{t}\right\rangle\right)}{\alpha}}\right) \\
& \leq O\left(\sqrt{\frac{(\log T)\left|B_{\alpha}^{\vec{h}}\right|}{\alpha}}+\frac{\log T}{\alpha}\right)
\end{aligned}
$$

Proof. Following [2], we observe that since \mathcal{A} always returns $\bar{x}_{t} \in \mathcal{B}, x_{t} \in \mathcal{B}$. Further,

$$
\left\langle c_{t}, x_{t}-u\right\rangle \leq \ell_{t}\left(x_{t}\right)-\ell_{t}(u)+\frac{\max \left(0,-\left\langle c_{t}, h_{t}\right\rangle\right)}{r_{t}}
$$

and ℓ_{t} is σ_{t}-strongly convex.
Next, by [2] Lemma 3.4, we have

$$
\mathcal{R}_{1-\mathrm{HiNT}_{\alpha}}(\mathcal{B}, \vec{c} \mid\{\vec{h}\}) \leq \sum_{t=1}^{T} \frac{\max \left(0,-\left\langle c_{t}, h_{t}\right\rangle\right)}{r_{t}}+\sum_{t=1}^{T} \ell_{t}\left(\bar{x}_{t}\right)-\ell_{t}(u) .
$$

We can bound the first sum as:

$$
\begin{aligned}
\sum_{t=1}^{T} \frac{\max \left(0,-\left\langle c_{t}, h_{t}\right\rangle\right)}{r_{t}} & \leq \frac{\log T}{\alpha} \sum_{t=1}^{T} \frac{\alpha \max \left(0,-\left\langle c_{t}, h_{t}\right\rangle\right) / \log T}{r_{t}} \\
& \leq \frac{2 \log T}{\alpha} \sqrt{\sum_{t=1}^{T} \frac{\alpha \max \left(0,-\left\langle c_{t}, h_{t}\right\rangle\right)}{\log T}} \\
& \leq \sqrt{2 \frac{\sum_{t=1}^{T}(\log T) \max \left(0,-\left\langle c_{t}, h_{t}\right\rangle\right)}{\alpha}}
\end{aligned}
$$

For the second sum, we appeal to Lemma 3.6 of [2], which yields:

$$
\begin{aligned}
\sum_{t=1}^{T} \ell_{t}\left(\bar{x}_{t}\right)-\ell_{t}(u) & \leq \frac{1}{2}+4\left(\sqrt{\sum_{t \in B_{\alpha}^{\vec{\alpha}}}\left\|c_{t}\right\|^{2}}+\frac{r_{T}(\log T)}{\alpha}\right) \\
& \leq \frac{1}{2}+4\left(\sqrt{\sum_{t \in B_{\alpha}^{\vec{h}}}\left\|c_{t}\right\|^{2}}+\frac{\sqrt{\left(\log ^{2} T\right)+(\log T) \alpha \sum_{t=1}^{T} \max \left(0,-\left\langle c_{t}, h_{t}\right\rangle\right)}}{\alpha}\right) \\
& \leq \frac{1}{2}+4\left(\sqrt{\sum_{t \in B_{\alpha}^{\vec{\alpha}}}\left\|c_{t}\right\|^{2}}+\frac{\log T}{\alpha}+\sqrt{\frac{(\log T) \sum_{t=1}^{T} \max \left(0,-\left\langle c_{t}, h_{t}\right\rangle\right)}{\alpha}}\right)
\end{aligned}
$$

Combining these identities now yields the desired theorem.

B Full proofs: Constrained setting

B. 1 Proof of Theorem 2

Theorem 2. Let $\alpha \in(0,1)$ be given. There exists a randomized algorithm $\mathcal{A}_{M W}$ for $O L O$ with K hint sequences that has a regret bound of

$$
\mathbb{E}\left[\mathcal{R}_{\mathcal{A}_{M W}}(\mathcal{B}, \vec{c} \mid H)\right] \leq O\left(\inf _{i \in K} \sqrt{\frac{(\log T)\left(\left|B_{\alpha}^{\vec{h}^{(i)}}\right|+\log K\right)}{\alpha}}+\frac{\log T}{\alpha}\right)
$$

Proof. At each time step t, our goal is to pick a single hint $h_{t} \in\left\{h_{t}^{(1)}, \ldots, h_{t}^{(K)}\right\}$. We instantiate this problem as an instance of the standard prediction with K experts problem with binary losses defined as follows.

$$
\ell_{t, i}= \begin{cases}0 & \text { if }\left|\left\langle c_{t}, h_{t}^{(i)}\right\rangle\right| \geq \alpha\left\|c_{t}\right\| \\ 1 & \text { otherwise }\end{cases}
$$

Let $\vec{h}^{\left(i^{*}\right)}$ denote the hint sequence with minimum loss in hindsight, i.e., $i^{*}=\operatorname{argmin}_{i \in K} \sum_{t} \ell_{t, i}$. We note that by definition of the losses ℓ, we have $\sum_{t} \ell_{t, i^{*}}=\left|B_{\alpha}^{\vec{h}^{\left(i^{*}\right)}}\right|$. Let $\vec{h}^{\text {MW }}=\left(h_{1}^{\left(i_{1}\right)}, h_{2}^{\left(i_{2}\right)}, \ldots\right)$ be the sequence of hints obtained by running the classical Multiplicative Weights algorithm with a decay factor of $\eta=\frac{1}{2}$. Then by standard analysis (e.g., Theorem 2.1 of Arora et al. [1]), we have the following.

$$
\begin{equation*}
\mathbb{E}\left[\sum_{t}\left(\ell_{t, i_{t}}-\ell_{t, i^{*}}\right)\right] \leq 2 \log K+\frac{1}{2} \sum_{t}\left(\ell_{t, i^{*}}\right) \tag{6}
\end{equation*}
$$

Substituting $\left|B_{\alpha}^{\vec{h}^{\left(i^{*}\right)}}\right|=\sum_{t} \ell_{t, i^{*}}$ and rearranging,

$$
\begin{equation*}
\mathbb{E}\left[\left|B_{\alpha}^{\vec{h}^{\mathrm{MW}}}\right|\right]=\mathbb{E}\left[\sum_{t} \ell_{t, i_{t}}\right] \leq \frac{3}{2}\left|B_{\alpha}^{\vec{h}^{\left(i^{*}\right)}}\right|+2 \log K \tag{7}
\end{equation*}
$$

We then run an instance of the single hint algorithm, $1-\mathrm{HINT}_{\alpha}$, with the hint sequence \vec{h}^{MW}. Applying Theorem 1 yields the following.

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{R}_{A_{\mathrm{MW}}}(\mathcal{B}, \vec{c} \mid H)\right] & \leq O\left(\mathbb{E}\left[\sqrt{\frac{(\log T)\left|B_{\alpha}^{\vec{h}^{\mathrm{MW}}}\right|}{\alpha}}\right]+\frac{\log T}{\alpha}\right) \\
& \leq O\left(\sqrt{\left.\frac{(\log T) \mathbb{E}\left[\left|B_{\alpha}^{\overrightarrow{\mathrm{MW}}}\right|\right]}{\alpha}+\frac{\log T}{\alpha}\right)}\right. \\
& \leq O\left(\sqrt{\frac{(\log T)\left(\mid B_{\alpha}^{\left.\vec{h}^{\left(i^{*}\right)} \mid+\log K\right)}\right.}{\alpha}}+\frac{\log T}{\alpha}\right)
\end{aligned}
$$

where the first inequality follows from Jensen's inequality and the second one follows from (7).

B. 2 Proof of Proposition 4

Before proving Proposition 4, we apply the analysis of adaptive follow-the-regularized-leader (FTRL) as in [19] to obtain:
Proposition 14. For any $w_{\star} \in \Delta_{K}$, we have:

$$
\sum_{t=1}^{T}\left(\ell_{t}\left(w_{t}\right)-\ell_{t}\left(w_{\star}\right)\right) \leq 2 \sqrt{\left(\log ^{2} K\right)+(\log K) \sum_{t=1}^{T}\left\|g_{t}\right\|_{\infty}^{2}}
$$

Proof. To begin, recall that the entropic regularizer $\psi(w)=\log (K)+\sum_{i=1}^{K} w^{(i)}\left(\log w^{(i)}\right)$ is 1-strongly-convex with respect to the 1 -norm over Δ_{K}, has minimum value 0 and maximum value $\log K$.

Then, standard bounds for FTRL (e.g., [19, Theorem 1]) tell us that:

$$
\begin{aligned}
\sum_{t=1}^{T} \ell_{t}\left(w_{t}\right)-\ell_{t}\left(w_{\star}\right) & \leq \sqrt{\frac{(\log K)+\sum_{t=1}^{T}\left\|g_{t}\right\|_{\infty}^{2}}{\log K}} \psi\left(w_{\star}\right)+\sum_{t=1}^{T} \frac{\left\|g_{t}\right\|_{\infty}^{2} \sqrt{\log K}}{2 \sqrt{(\log K)+\sum_{\tau=1}^{t-1}\left\|g_{\tau}\right\|_{\infty}^{2}}} \\
& \leq \sqrt{\frac{(\log K)+\sum_{t=1}^{T}\left\|g_{t}\right\|_{\infty}^{2}}{\log K}} \psi\left(w_{\star}\right)+\sum_{t=1}^{T} \frac{\left\|g_{t}\right\|_{\infty}^{2} \sqrt{\log K}}{2 \sqrt{\sum_{\tau=1}^{t}\left\|g_{\tau}\right\|_{\infty}^{2}}} \\
& \leq \sqrt{\frac{(\log K)+\sum_{t=1}^{T}\left\|g_{t}\right\|_{\infty}^{2}}{\log K}} \psi\left(w_{\star}\right)
\end{aligned} \sqrt{(\log K) \sum_{t=1}^{T}\left\|g_{t}\right\|_{\infty}^{2}}
$$

Now with Proposition 14 in hand, we can restate and prove:
Proposition 4. Let $w_{t} \in \Delta_{K}$ be chosen via FTRL on the losses ℓ_{t} as in Algorithm 1. Then, for any $w_{\star} \in \Delta_{K}$, we have

$$
\sum_{t=1}^{T} \ell_{t}\left(w_{t}\right) \leq \frac{22 \log K}{\alpha}+2 \sum_{t=1}^{T} \ell_{t}\left(w_{\star}\right)
$$

Proof. From Proposition 3, we have

$$
\sum_{t=1}^{T}\left\|g_{t}\right\|_{\infty}^{2} \leq \sum_{t=1}^{T} \frac{4}{\alpha} \ell_{t}\left(w_{t}\right)
$$

Combining this with the regret bound of Proposition 14 yields:

$$
\sum_{t=1}^{T} \ell_{t}\left(w_{t}\right)-\ell_{t}\left(w_{\star}\right) \leq 2 \sqrt{\left(\log ^{2} K\right)+\frac{4 \log K}{\alpha} \sum_{t=1}^{T} \ell_{t}\left(w_{t}\right)}
$$

If we set $R=\sum_{t=1}^{T} \ell_{t}\left(w_{t}\right)-\ell_{t}\left(w_{\star}\right)$, we can rewrite the above as:

$$
R \leq 2 \sqrt{\left(\log ^{2} K\right)+\frac{4 \log K}{\alpha} R+\frac{4 \log K}{\alpha} \sum_{t=1}^{T} \ell_{t}\left(w_{\star}\right)}
$$

Now we use $\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}$ and solve for R :

$$
\begin{aligned}
R & \leq \frac{16 \log K}{\alpha}+\sqrt{4 \log ^{2} K+\frac{16 \log K}{\alpha} \sum_{t=1}^{T} \ell_{t}\left(w_{\star}\right)} \\
& \leq \frac{18 \log K}{\alpha}+\sqrt{\frac{16 \log K}{\alpha} \sum_{t=1}^{T} \ell_{t}\left(w_{\star}\right)} \\
\Longrightarrow \sum_{t=1}^{T} \ell_{t}\left(w_{t}\right) & \leq \sum_{t=1}^{T} \ell_{t}\left(w_{\star}\right)+\frac{18 \log K}{\alpha}+\sqrt{\frac{16 \log K}{\alpha} \sum_{t=1}^{T} \ell_{t}\left(w_{\star}\right)}
\end{aligned}
$$

Next, observe that $\sqrt{a X} \leq X+\frac{a}{4}$ for all $a, X \geq 0$, so that

$$
\sum_{t=1}^{T} \ell_{t}\left(w_{t}\right) \leq 2 \sum_{t=1}^{T} \ell_{t}\left(w_{\star}\right)+\frac{22 \log K}{\alpha}
$$

as desired.

C Lower bound proofs

Theorem 7. For any α and $T \geq \frac{1}{\alpha} \log \frac{1}{\alpha}$, there exists a sequence \vec{c} of costs and a set H of hint sequences, $|H|=K$ for some K, such that: (i) there is a convex combination of the K hints that always has correlation α with the costs and (ii) the regret of any online algorithm is at least $\sqrt{\frac{\log K}{2 \alpha}}$.

Proof. Consider a one-dimensional problem with $K=\frac{T 2^{B}}{B}$ hint sequences for $B=\alpha T$. Suppose $T \geq \frac{\log (1 / \alpha)}{\alpha}$, so that $2^{B} \geq \frac{T}{B}$ and $\log K \leq 2 B=2 T \alpha$. We group the hint sequences into $\frac{T}{B}$ groups each of size 2^{B}. We now specify the hint sequence in the i th such group for some arbitrary i. All hints in the i th group are 0 for all $t \notin[(i-1) B, i B-1]$ and for $t \in[i B,(i+1) B)$, the hints take on the 2^{B} possible sequences of ± 1. Then it is clear that for any sequence of ± 1 costs, there is a convex combination of hints that places weight B / T on exactly one hint sequence in each of the T / B groups such that the linear combination always has correlation $\alpha=B / T$ with the cost.

Let the costs be random ± 1, so that the expected regret is \sqrt{T}. Then we conclude by observing $\sqrt{\log K} / \sqrt{2 \alpha} \leq \sqrt{2 \alpha T} / \sqrt{2 \alpha}=\sqrt{T}$.

Theorem 8. In the two-dimensional constrained setting, there is a sequence \vec{h} and \vec{c} of hints and costs $(K=1)$ such that: (i) $\forall t,\left\langle h_{t}, c_{t}\right\rangle \geq \alpha$, and (ii) the regret of any online algorithm is at least $\Omega(1 / \alpha)$.

Proof. Let e_{0} and e_{1} be orthogonal unit vectors, and let $h_{t}=e_{0}$ for all t. Suppose that $c_{t}=$ $\alpha e_{0} \pm \sqrt{1-\alpha^{2}} e_{1}$ for all t, where the sign is chosen uniformly at random. Note that any online algorithm has expected reward at most αT (since it cannot gain anything in the e_{1} direction, so it is best to place all the mass along e_{0}).

On the other hand, we have

$$
\mathbb{E}\left[\left\|\sum_{t=1}^{T} c_{t}\right\|^{2}\right]=\alpha^{2} T^{2}+T\left(1-\alpha^{2}\right)
$$

and thus the optimal vector in hindsight achieves a reward $\sqrt{\alpha^{2} T^{2}+T\left(1-\alpha^{2}\right)}$. Thus the regret is

$$
\frac{T\left(1-\alpha^{2}\right)}{\alpha T+\sqrt{\alpha^{2} T^{2}+T\left(1-\alpha^{2}\right)}} \geq \frac{T\left(1-\alpha^{2}\right)}{2 \alpha T+\sqrt{T\left(1-\alpha^{2}\right)}} \geq \frac{1}{\alpha}
$$

for sufficiently large T.

D Proofs from Section 4

Theorem 10. Suppose $\mathcal{A}_{1}, \ldots, \mathcal{A}_{K}$ are deterministic $O L O$ algorithms that are associated with monotone regret bounds $\mathcal{S}_{1}, \ldots, \mathcal{S}_{K}$. Suppose $\forall t$, $\sup _{x, y \in \mathcal{B}}\left\langle c_{t}, x-y\right\rangle \leq 1$. Then, we have:

$$
\mathcal{R}_{\mathcal{C}_{\mathrm{det}}}(\mathcal{B}, \vec{c}) \leq K\left(4+4 \min _{i} \mathcal{S}_{i}([1, T], \vec{c})\right)
$$

Proof. We can divide the operation of Algorithm 2 into phases in which γ is constant. Each phase may be further subdivided into sub-phases in which i is constant. First, let us bound the regret in a single phase with fixed γ. Suppose this phase has $N \leq K$ sub-phases ${ }^{1}$. Let t_{1}, \ldots, t_{N} be the time indices at which each sub-phase begins, and let $t_{N+1}-1$ be the last time index belonging to this phase. Notice that for all $i \leq N$, we must have $r_{t_{i+1}-t_{i}-1}^{i, \gamma} \leq \gamma$ since the i th sub-phase lasts for $t_{i+1}-t_{i}$ iterations. Then since $\sup _{x, y}\left\langle c_{t_{i+1}-1}, x-y\right\rangle \leq 1$ for all i and $x, y \in X$, we have $r_{t_{i+1}-t_{i}}^{i, \gamma} \leq r_{t_{i+1}-t_{i}-1}^{i, \gamma}+1 \leq \gamma+1$. Now we can write the regret incurred over this phase as:

$$
\sup _{u \in X} \sum_{t=t_{1}}^{t_{N+1}-1}\left\langle c_{t}, x_{t}-u\right\rangle \leq \sum_{i=1}^{N} \sup _{u \in X} \sum_{t=t_{i}}^{t_{i+1}-1}\left\langle c_{t}, x_{t}-u\right\rangle \leq \sum_{i=1}^{N} r_{t_{i+1}-t_{i}}^{i, \gamma} \leq N(\gamma+1) \leq K \gamma+K
$$

Let P denote the total number of phases. We now show that $P \leq 2+$ $\max \left(-1, \log _{2}\left(\min _{i} \mathcal{S}_{i}([1, T], \vec{c})\right)\right)$. Suppose otherwise. Let $j=\operatorname{argmin}_{i} \mathcal{S}_{i}([1, T], \vec{c})$ be the algorithm with the least total regret. Let us consider the $(P-1)$ th phase. In this phase, $\gamma=2^{P-2}$. Since $P>2+\log _{2}\left(\min _{i} \mathcal{S}_{i}([1, T], \vec{c})\right)$, we must have $\min _{i} \mathcal{S}_{i}([1, T], \vec{c})<\gamma$. Consider the j th subphase in this phase. Since γ will eventually increase, this sub-phase must eventually end. Therefore there must be some t and τ such that $t+\tau<T$ and

$$
\sup _{u \in X} \sum_{\tau^{\prime}=1}^{\tau}\left\langle c_{t+\tau^{\prime}}, w_{\tau^{\prime}}-u\right\rangle>\gamma
$$

where $w_{\tau^{\prime}}$ is the output of A_{j} after seeing input $c_{t}, \ldots, c_{t+\tau^{\prime}-1}$. By the increasing property of R_{j}, we also have:

$$
\sup _{u \in X} \sum_{\tau^{\prime}=1}^{\tau}\left\langle c_{t+\tau^{\prime}}, w_{\tau^{\prime}}-u\right\rangle \leq \mathcal{S}_{j}([t, t+\tau], \vec{c}) \leq \mathcal{S}_{j}([1, T], \vec{c})<\gamma
$$

which is a contradiction. Therefore $P \leq 2+\max \left(-1, \log _{2}\left(\min _{i} \mathcal{S}_{i}([1, T], \vec{c})\right)\right)$.
Now we are in a position to calculate the total regret. Let $1=T_{1}, \ldots, T_{P}$ be the start times of the P phases, and let $T_{P+1}-1=T$ for notational convenience. Then we have:

$$
\sup _{u \in X} \sum_{t=1}^{T}\left\langle c_{t}, x_{t}-u\right\rangle \leq \sum_{e=1}^{P} \sup _{u \in X} \sum_{t=T_{e}}^{T_{e+1}-1}\left\langle c_{t}, x_{t}-u\right\rangle .
$$

[^0]Now since the regret in an phase is at most $K \gamma+K$, and γ doubles every phase,

$$
\begin{aligned}
& \leq \sum_{e=1}^{P} K 2^{e-1}+K \leq K P+K 2^{P} \\
& \leq K 2^{P+1} \\
& \leq K\left(4+4 \min _{i} \mathcal{S}_{i}([1, T], \vec{c})\right),
\end{aligned}
$$

where the second-to-last inequality follows from $x \leq 2^{x}$ for $x \geq 1$, and the last inequality is from case analysis.

```
Algorithm 4 Randomized combiner.
    Input: Online algorithms \(\mathcal{A}_{1}, \ldots, \mathcal{A}_{K}\)
    Reset \(\mathcal{A}_{1}\)
    Set \(\gamma \leftarrow 1, \tau \leftarrow 1\)
    Initialize the candidate indices \(C \leftarrow[K]\)
    Choose index \(i\) uniformly at random from \(C\)
    for \(t=1, \ldots, T\) do
        for \(j \in C\) do
            Get \(y_{\tau}^{j}\), the \(\tau\) th output of \(\mathcal{A}_{j}\)
        end for
        Respond \(x_{t} \leftarrow y_{\tau}^{i}\)
        Get cost \(c_{t}\), define \(g_{\tau} \leftarrow c_{t}\)
        for \(j \in C\) do
            Send \(g_{\tau}\) to \(\mathcal{A}_{j}\) as \(\tau\) th cost
            Set \(r_{\tau}^{j, \gamma} \leftarrow \sup _{u \in \mathcal{B}} \sum_{\tau^{\prime}=1}^{\tau}\left\langle g_{\tau^{\prime}}, y_{\tau^{\prime}}^{j}-u\right\rangle\)
            if \(r_{\tau}^{j, \gamma}>\gamma\) then
                Set \(C \leftarrow C \backslash\{j\}\)
            end if
        end for
        if \(i \notin C\) then
            if \(C=\emptyset\) then
                    Set \(C \leftarrow[K]\)
                    Set \(\gamma \leftarrow 2 \gamma\)
            end if
            Set \(\tau \leftarrow 1\)
            Reset \(\mathcal{A}_{j}\) for all \(j \in C\)
            Select index \(i\) uniformly at random from \(C\)
        end if
        Set \(\tau \leftarrow \tau+1\)
    end for
```

Theorem 11. Suppose $\mathcal{A}_{1}, \ldots, \mathcal{A}_{K}$ are deterministic OLO algorithms with monotone regret bounds $\mathcal{S}_{1}, \ldots, \mathcal{S}_{K}$. Suppose for all $t, \sup _{x, y \in \mathcal{B}}\left\langle c_{t}, x-y\right\rangle \leq 1$. Then for any fixed sequence \vec{c} of costs (i.e., an oblivious adversary), Algorithm 4 guarantees:

$$
\mathbb{E}\left[\mathcal{R}_{\mathcal{C}_{\mathrm{rand}}}(\mathcal{B}, \vec{c})\right] \leq \log _{2}(K+1) \cdot\left(4+4 \min _{i} \mathcal{S}_{i}([1, T], \vec{c})\right)
$$

Further, if \vec{c} is allowed to depend on the algorithm's randomness (i.e., an adaptive adversary), then

$$
\mathcal{R}_{\mathcal{C}_{\text {rand }}}(\mathcal{B}, \vec{c}) \leq K\left(4+4 \min _{i} \mathcal{S}_{i}([1, T], \vec{c})\right)
$$

Proof. We divide the operation of Algorithm 4 into phases in which γ is constant. Each phase is further subdivided into sub-phases in which i is constant. First, let us fix an phase e with a fixed value of γ and bound the expected regret incurred in this phase. Let N denote the number of sub-phases in this phase. Just as in the proof of Theorem 10, we can show that the total regret incurred in this phase is at most $N(\gamma+1)$. However, while there are exactly K sub-phases in any phase of Algorithm 2
(except perhaps the last one), the number of sub-phases in any phase of Algorithm 4 is a random variable.

We now bound $\mathbb{E}[N]$, the expected number of sub-phases in any phase. For the fixed phase e, for any time index t, let $F(i, t)$ be the smallest index $\tau \geq t$ such that $\sup _{u \in X} \sum_{\tau^{\prime}=t}^{\tau}\left\langle c_{\tau^{\prime}}, w^{i}\left(t, \tau^{\prime}\right)-u\right\rangle>\gamma$, where we define $w^{i}\left(t, \tau^{\prime}\right)$ to be the output of A_{i} after seeing input $c_{t}, \ldots, c_{\tau^{\prime}-1}$ and $w^{i}(t, t)$ to be the initial output of A_{i}. We set $F(i, t)=T$ if no such index $\tau \leq T$ exists. Intuitively, $F(i, t)$ denotes the index $\tau \geq t$ when the regret experienced by algorithm A_{i} that is initialized at time t first exceeds γ.

Let $C(S, t)$ be the expected number of sub-phases (counting the current one) left in the phase if a subphase starts at time t with the specified set of active indices S. We define $C(S, T+1)=C(\emptyset, t)=0$ for all S and t for notational convenience. Note that $C(S, T)=1$ for all S. Further, by definition, we have $\mathbb{E}[N]=C(\{1,2, \ldots, K\}, t)$ for some t (corresponding to the start of the phase). We claim that C satisfies:

$$
C(S, t)=1+\frac{1}{|S|} \sum_{i \in S} C(S \backslash\{j \in S \mid F(j, t) \leq F(i, t)\}, F(i, t)+1)
$$

To see this, observe that each index $i \in S$ is equally likely to be selected for the fixed i throughout the sub-phase starting at time t. By definition of F, the sub-phase will end at time $F(i, t)$ if the selected index is i. Further, at the end of the sub-phase, S will be $S \backslash\{j \in S \mid F(j, t) \leq F(i, t)\}$. Therefore, conditioned on selecting index i for this sub-phase, the expected number of sub-phases is $1+C(S \backslash\{j \in S \mid F(j, t) \leq F(i, t)\}, F(i, t)+1)$. Since each index is selected with probability $1 /|S|$, the stated identity follows. Now we apply Lemma 15 to conclude that $C(\{1, \ldots, K\}, t) \leq$ $\log _{2}(K+1)$ for all t, which implies $\mathbb{E}[N] \leq \log _{2}(K+1)$.
Finally, let P denote the total number of phases. We can show that $P \leq 2+$ $\max \left(-1, \log _{2}\left(\min _{i} \mathcal{S}_{i}([1, T], \vec{c})\right)\right)$. The proof of this claim is identical to that in Theorem 10 and is omitted for brevity. Let N_{p} and $\gamma_{p}=2^{p-1}$ denote the number of sub-phases in phase p and the corresponding value for γ respectively. We can then conclude the total expected regret experienced by Algorithm 4 is

$$
\begin{aligned}
\mathbb{E}\left[\sup _{u \in X} \sum_{t=1}^{T}\left\langle c_{t}, x_{t}-u\right\rangle\right] & \leq \sum_{p=1}^{P} \mathbb{E}\left[N_{p}\right]\left(\gamma_{p}+1\right) \leq\left(2^{P}+P\right) \cdot \log _{2}(K+1) \\
& \leq \log _{2}(K+1)\left(4+4 \min _{i} \mathcal{S}_{i}([1, T], \vec{c})\right)
\end{aligned}
$$

To prove the second bound for an adaptive adversary, we simply observe that in the worst-case, we cannot have more than K sub-phases in any phase. The rest of the argument is identical.

In order to prove Theorem 11, we need the following technical Lemma:
Lemma 15. Let $F:[K] \times[T] \rightarrow[T]$ be such that $F(i, t) \geq t$ for all $i \in[K], t \in[T]$ and $C: 2^{[K]} \times[T] \rightarrow \mathbb{R}$ be a function that satisfies $C(\emptyset, t)=0$ for all $t, C(S, T)=1$ for all S, $C(S, T+1)=0$ for all S, and C satisfies the recursion:

$$
C(S, t)=1+\frac{1}{|S|} \sum_{i \in S} C(S \backslash\{j \in S \mid F(j, t) \leq F(i, t)\}, F(i, t)+1)
$$

Then $C(\{1, \ldots, K\}, t) \leq \log _{2}(K+1)$ for all t.
Proof. We define the auxiliary function $Z(N)=\sup _{t,|S| \leq N} C(S, t)$. Observe $Z(0)=0, Z(1)=1$, and $Z(N)$ is non-decreasing with N. Now suppose for purposes of induction that $Z(n) \leq \log _{2}(n+1)$ for $n<N$. Then we have

$$
\begin{aligned}
Z(N) & \leq 1+\sup _{N^{\prime} \leq N} \frac{1}{N^{\prime}} \sup _{t,|S|=N^{\prime}} \sum_{i \in S} C(S-\{j \in S \mid F(j, t) \leq F(i, t)\}, F(i, t)+1) \\
& \leq 1+\sup _{N^{\prime} \leq N} \frac{1}{N^{\prime}} \sup _{t,|S|=N^{\prime}} \sum_{i \in S} Z\left(N^{\prime}-|\{j \in S \mid F(j, t) \leq F(i, t)\}|\right)
\end{aligned}
$$

Now since $Z(n)$ is non-decreasing in n, this is bounded by:

$$
\begin{aligned}
& \leq 1+\sup _{N^{\prime} \leq N} \frac{1}{N^{\prime}} \sum_{i=1}^{N^{\prime}} Z\left(N^{\prime}-i\right) \\
& \leq 1+\sup _{N^{\prime} \leq N} \frac{1}{N^{\prime}} \sum_{i=1}^{N^{\prime}} \log _{2}\left(N^{\prime}-i+1\right)
\end{aligned}
$$

Now we apply Jensen inequality to the concave function $\log _{2}(n)$:

$$
\begin{aligned}
& \leq 1+\sup _{N^{\prime} \leq N} \log _{2}\left(\frac{1}{N^{\prime}} \sum_{i=1}^{N^{\prime}} N^{\prime}-i+1\right) \\
& \leq 1+\sup _{N^{\prime} \leq N} \log _{2}\left(\left(N^{\prime}+1\right) / 2\right) \\
& =\log _{2}(N+1)
\end{aligned}
$$

To conclude, note that clearly $C(\{1, \ldots, K\}, t) \leq Z(K)$ for all t.

E Other applications of the combiner

In this section we discuss a couple of direct applications of our combiner algorithms to other settings.

E. 1 Adapting to different norms

For any ℓ_{p}-norm, $p \in(1,2]$, there is an algorithm that guarantees regret $\sup _{u \in \mathcal{B}} \frac{\|u\|_{p}}{\sqrt{p-1}} \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|_{q}^{2}}$ where q is such that $\frac{1}{p}+\frac{1}{q}=1$ (such bounds can be obtained by e.g., the adaptive FTRL analysis described in [19], or see [24] for a non-adaptive version). However, it is not clear which p-norm yields the best regret guarantee until we have seen all the costs. Fortunately, these are monotone regret bounds, so by making a discrete grid of $O(\log d) p$-norms in a d-dimensional space we can obtain the best of all these bounds in hindsight up to an additional factor of $\log d$ in the regret. Specifically:
Theorem 16. Let $K=\lfloor(\log d) / 2\rfloor$, let $q_{0}=2$ and $\frac{1}{q_{i}}=\frac{1}{q_{i-1}}-\frac{1}{\log d}$ for $i \leq K$. Define p_{i} by $\frac{1}{q_{i}}+\frac{1}{p_{i}}=1$. For each $i \in[K]$, let \mathcal{A}_{i} be an online learning algorithm that guarantees regret $\sup _{u \in \mathcal{B}} \frac{\|u\|_{p_{i}}}{\sqrt{p_{i}-1}} \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|_{q_{i}}^{2}}$. Then combining these algorithms using Algorithm 2 yields a worstcase regret bound of:

$$
\mathbb{E}\left[\mathcal{R}_{\mathcal{A}}(\mathcal{B}, \vec{c})\right] \leq O\left((\log \log d) \cdot \inf _{p} \sup _{u \in \mathcal{B}} \frac{\|u\|_{p}}{\sqrt{p-1}} \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|_{q}^{2}}\right)
$$

E. 2 Simultaneous Adagrad and dimension-free bounds

The adaptive online gradient descent algorithm of [15] obtains the regret bound $D_{2} \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|_{2}^{2}}$, where D_{2} is the ℓ_{2}-diameter of \mathcal{B}. In contrast, the Adagrad algorithm obtains the bound $D_{\infty} \sum_{i=1}^{d} \sqrt{\sum_{t=1}^{T} c_{t, i}^{2}}$ where D_{∞} is the ℓ_{∞}-diameter of \mathcal{B} and $c_{t, i}$ is the i th component of c_{t} [10]. Adagrad's bound can be extremely good when the c_{t} are sparse, but might be much worse than the adaptive online gradient descent bound otherwise. However, both bounds are clearly monotone, so by applying our combiner construction, we have:
Theorem 17. There is an algorithm \mathcal{A} such that for any sequence of vectors \vec{c}, the regret is at most:

$$
\mathbb{E}\left[\mathcal{R}_{\mathcal{A}}(\mathcal{B}, \vec{c})\right] \leq O\left(\min \left\{D_{2} \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|_{2}^{2}}, D_{\infty} \sum_{i=1}^{d} \sqrt{\sum_{t=1}^{T} c_{t, i}^{2}}\right\}\right)
$$

F Proof of Theorem 13

Theorem 13. There is an algorithm \mathcal{A} for the unconstrained setting such that for any $u \in \mathbb{R}^{d}$ and any $\alpha \in(0,1)$, we have

$$
\mathcal{R}_{\mathcal{A}}(u, \vec{c} \mid H)=O\left(\inf _{w \in \Delta_{K}}\left\{\|u\|(\log T)\left(\frac{\sqrt{\log K}}{\alpha}+\sqrt{\frac{B_{\alpha}^{H(w)}}{\alpha}}\right)\right\}\right)
$$

Proof. Algorithm \mathcal{A} instantiates one d-dimensional parameter-free OLO algorithm \mathcal{A}^{\prime} that outputs x_{t}, gets costs c_{t}, and guarantees regret for some user specified ϵ :

$$
\sum_{t=1}^{T}\left\langle c_{t}, x_{t}-u\right\rangle \leq \epsilon+O\left(\|u\| \log (T)+\|u\| \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|^{2} \log \frac{T}{\epsilon}}\right)
$$

Where the O hides absolute constants. Such algorithms are described in several recent works [7, 8, 27, 17, 20]. Also, algorithm \mathcal{A} instantiates K one-dimensional learning algorithms, \mathcal{A}_{i} for the hint sequence $\overrightarrow{h^{(i)}}$. At time t, the i th such learner outputs $y_{t}^{(i)}$, gets cost $-\left\langle c_{t}, h_{t}^{(i)}\right\rangle$ and guarantees regret:

$$
\begin{aligned}
\sum_{t=1}^{T}\left\langle c_{t}, h_{t}^{(i)}\right\rangle\left(y^{(i)}-y_{t}^{(i)}\right) & \leq \frac{\epsilon}{K}+O\left(\left|y^{(i)}\right| \log (T)+\left|y^{(i)}\right| \sqrt{\sum_{t=1}^{T}\left\langle c_{t}, h_{t}^{(i)}\right\rangle^{2} \log \frac{K T}{\epsilon}}\right) \\
& \leq \frac{\epsilon}{K}+O\left(\left|y^{(i)}\right| \log (T)+\left|y^{(i)}\right| \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|^{2} \log \frac{K T}{\epsilon}}\right)
\end{aligned}
$$

These one-dimensional learners may simply be instances of the d-dimensional learner restricted to one dimension. The algorithm \mathcal{A} responds with the predictions $\hat{x}_{t}=x_{t}-\sum_{i=1}^{K} y_{t}^{(i)} h_{t}^{(i)}$ and set $\epsilon=1$. The regret is:

$$
\begin{aligned}
& \sum_{t=1}^{T}\left\langle c_{t}, \hat{x}_{t}-u\right\rangle=\sum_{t=1}^{T}\left\langle c_{t}, x_{t}-u\right\rangle-\sum_{i=1}^{K} \sum_{t=1}^{T}\left\langle c_{t}, h_{t}^{(i)}\right\rangle y_{t}^{(i)} \\
& \quad=\inf _{y^{(1)}, \ldots, y^{(K)} \in \mathbb{R}}\left\{\sum_{t=1}^{T}\left\langle c_{t}, x_{t}-u\right\rangle+\sum_{i=1}^{K} \sum_{t=1}^{T}\left\langle c_{t}, h_{t}^{i}\right\rangle\left(y^{(i)}-y_{t}^{(i)}\right)-\sum_{t=1}^{T}\left\langle c_{t}, \sum_{i=1}^{K} y^{(i)} h_{t}^{(i)}\right\rangle\right\} \\
& \leq O\left(\operatorname { i n f } _ { y ^ { (1) } , \ldots , y ^ { (K) } \in \mathbb { R } } \left\{1+\|u\| \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|^{2} \log T}+\sum_{i=1}^{K}\left(\frac{1}{K}+\left|y^{(i)}\right| \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|^{2} \log (K T)}\right)\right.\right. \\
& \left.\left.\quad+\|u\| \log (T)+\sum_{i=1}^{K}\left|y^{(i)}\right| \log (T)-\sum_{t=1}^{T}\left\langle c_{t}, \sum_{i=1}^{K} y^{(i)} h_{t}^{(i)}\right\rangle\right\}\right) \\
& \quad \leq O\left(2+\inf _{\sum_{i}\left|y^{(i)}\right| \leq\|u\| \sqrt{\frac{\log T}{\log (K T)}}}^{\leq}\left\{2\|u\| \log (T)+2\|u\| \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|^{2} \log T}-\sum_{t=1}^{T}\left\langle c_{t}, \sum_{i=1}^{K} y^{(i)} h_{t}^{(i)}\right\rangle\right\}\right)
\end{aligned}
$$

Let w be an arbitrary element of Δ_{K}. We set $y^{(i)}=\|u\| \frac{w^{(i)}}{\sqrt{\alpha\left|B_{\alpha}^{H(w)}\right|+\frac{\log (K T)}{\log T}}}$. Notice that this implies $\sum\left|y^{(i)}\right| \leq\|u\| \sqrt{\frac{\log T}{\log (K T)}}$. Also, we have

$$
\begin{gathered}
-\sum_{t=1}^{T}\left\langle c_{t}, H(w)_{t}\right\rangle \leq-\sum_{t=1}^{T} \alpha\left\|c_{t}\right\|^{2}+2\left|B_{\alpha}^{H(w)}\right|, \quad \text { and } \\
-\sum_{t=1}^{T}\left\langle c_{t}, \sum_{i=1}^{K} y^{(i)} h_{t}^{(i)}\right\rangle \leq-\frac{\|u\|}{\sqrt{\alpha\left|B_{\alpha}^{H(w)}\right|+\frac{\log (K T)}{\log T}}} \sum_{t=1}^{T} \alpha\left\|c_{t}\right\|^{2}+2\|u\| \sqrt{\frac{\left|B_{\alpha}^{H(w)}\right|}{\alpha}} .
\end{gathered}
$$

Thus the regret bound for \mathcal{A} becomes

$$
\begin{aligned}
\mathcal{R}_{\mathcal{A}}(u, \vec{c} \mid H) \leq & O\left(2+w\|u\| \log (T)+2\|u\| \sqrt{\frac{\left|B_{\alpha}^{H(w)}\right|}{\alpha}}\right. \\
& \left.+2\|u\| \sqrt{\sum_{t=1}^{T}\left\|c_{t}\right\|^{2} \log T}-\frac{\|u\|}{\sqrt{\alpha\left|B_{\alpha}^{H(w)}\right|+\frac{\log (K T)}{\log T}}} \sum_{t=1}^{T} \alpha\left\|c_{t}\right\|^{2}\right) \\
\leq & O\left(2+\frac{\|u\|(\log T) \sqrt{\alpha\left|B_{\alpha}^{H(w)}\right|+\frac{\log (K T)}{\log T}}}{\alpha}+2\|u\| \sqrt{\frac{\left|B_{\alpha}^{H(w)}\right|}{\alpha}}\right) \\
= & O\left(\frac{\|u\| \sqrt{(\log T) \log (K T)}}{\alpha}+\|u\|(\log T) \sqrt{\frac{\left|B_{\alpha}^{H(w)}\right|}{\alpha}}\right)
\end{aligned}
$$

Since w was chosen arbitrarily in Δ_{K}, the bound holds for all $w \in \Delta_{K}$ and so we are done.

[^0]: ${ }^{1}$ All phases except maybe the last phase have exactly K sub-phases.

