
Appendices for Retrieval-Augmented Generation for
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A Implementation Details

For Open-domain QA we report test numbers using 15 retrieved documents for RAG-Token models.
For RAG-Sequence models, we report test results using 50 retrieved documents, and we use the
Thorough Decoding approach since answers are generally short. We use greedy decoding for QA as
we did not find beam search improved results. For Open-MSMarco and Jeopardy question generation,
we report test numbers using ten retrieved documents for both RAG-Token and RAG-Sequence,
and we also train a BART-large model as a baseline. We use a beam size of four, and use the Fast
Decoding approach for RAG-Sequence models, as Thorough Decoding did not improve performance.

B Human Evaluation

Figure 4: Annotation interface for human evaluation of factuality. A pop-out for detailed instructions
and a worked example appear when clicking "view tool guide".

Figure 4 shows the user interface for human evaluation. To avoid any biases for screen position,
which model corresponded to sentence A and sentence B was randomly selected for each example.
Annotators were encouraged to research the topic using the internet, and were given detailed instruc-
tions and worked examples in a full instructions tab. We included some gold sentences in order to
assess the accuracy of the annotators. Two annotators did not perform well on these examples and
their annotations were removed from the results.

C Training setup Details

We train all RAG models and BART baselines using Fairseq [45].2 We train with mixed precision
floating point arithmetic [40], distributing training across 8, 32GB NVIDIA V100 GPUs, though
training and inference can be run on one GPU. We find that doing Maximum Inner Product Search
with FAISS is sufficiently fast on CPU, so we store document index vectors on CPU, requiring ⇠ 100
GB of CPU memory for all of Wikipedia. After submission, We have ported our code to HuggingFace
Transformers [66]3, which achieves equivalent performance to the previous version but is a cleaner
and easier to use implementation. This version is also open-sourced. We also compress the document
index using FAISS’s compression tools, reducing the CPU memory requirement to 36GB. Scripts to
run experiments with RAG can be found at https://github.com/huggingface/transformers/
blob/master/examples/rag/README.md and an interactive demo of a RAG model can be found
at https://huggingface.co/rag/

2https://github.com/pytorch/fairseq
3https://github.com/huggingface/transformers
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D Further Details on Open-Domain QA

For open-domain QA, multiple answer annotations are often available for a given question. These
answer annotations are exploited by extractive models during training as typically all the answer
annotations are used to find matches within documents when preparing training data. For RAG, we
also make use of multiple annotation examples for Natural Questions and WebQuestions by training
the model with each (q, a) pair separately, leading to a small increase in accuracy. For TriviaQA,
there are often many valid answers to a given question, some of which are not suitable training targets,
such as emoji or spelling variants. For TriviaQA, we filter out answer candidates if they do not occur
in top 1000 documents for the query.

CuratedTrec preprocessing The answers for CuratedTrec are given in the form of regular expres-
sions, which has been suggested as a reason why it is unsuitable for answer-generation models [20].
To overcome this, we use a pre-processing step where we first retrieve the top 1000 documents for
each query, and use the answer that most frequently matches the regex pattern as the supervision
target. If no matches are found, we resort to a simple heuristic: generate all possible permutations for
each regex, replacing non-deterministic symbols in the regex nested tree structure with a whitespace.

TriviaQA Evaluation setups The open-domain QA community customarily uses public develop-
ment datasets as test datasets, as test data for QA datasets is often restricted and dedicated to reading
compehension purposes. We report our results using the datasets splits used in DPR [26], which are
consistent with common practice in Open-domain QA. For TriviaQA, this test dataset is the public
TriviaQA Web Development split. Roberts et al. [52] used the TriviaQA official Wikipedia test set
instead. Févry et al. [14] follow this convention in order to compare with Roberts et al. [52] (See
appendix of [14]). We report results on both test sets to enable fair comparison to both approaches.
We find that our performance is much higher using the official Wiki test set, rather than the more
conventional open-domain test set, which we attribute to the official Wiki test set questions being
simpler to answer from Wikipedia.

E Further Details on FEVER

For FEVER classification, we follow the practice from [32], and first re-generate the claim, and
then classify using the representation of the final hidden state, before finally marginalizing across
documents to obtain the class probabilities. The FEVER task traditionally has two sub-tasks. The
first is to classify the claim as either "Supported", "Refuted" or "Not Enough Info", which is the task
we explore in the main paper. FEVER’s other sub-task involves extracting sentences from Wikipedia
as evidence supporting the classification prediction. As FEVER uses a different Wikipedia dump to
us, directly tackling this task is not straightforward. We hope to address this in future work.

F Null Document Probabilities

We experimented with adding "Null document" mechanism to RAG, similar to REALM [20] in order
to model cases where no useful information could be retrieved for a given input. Here, if k documents
were retrieved, we would additionally "retrieve" an empty document and predict a logit for the null
document, before marginalizing over k + 1 predictions. We explored modelling this null document
logit by learning (i) a document embedding for the null document, (ii) a static learnt bias term, or
(iii) a neural network to predict the logit. We did not find that these improved performance, so in
the interests of simplicity, we omit them. For Open MS-MARCO, where useful retrieved documents
cannot always be retrieved, we observe that the model learns to always retrieve a particular set of
documents for questions that are less likely to benefit from retrieval, suggesting that null document
mechanisms may not be necessary for RAG.

G Parameters

Our RAG models contain the trainable parameters for the BERT-base query and document encoder of
DPR, with 110M parameters each (although we do not train the document encoder ourselves) and
406M trainable parameters from BART-large, 406M parameters, making a total of 626M trainable
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Table 7: Number of instances in the datasets used. *A hidden subset of this data is used for evaluation

Task Train Development Test

Natural Questions 79169 8758 3611
TriviaQA 78786 8838 11314
WebQuestions 3418 362 2033
CuratedTrec 635 134 635
Jeopardy Question Generation 97392 13714 26849
MS-MARCO 153726 12468 101093*
FEVER-3-way 145450 10000 10000
FEVER-2-way 96966 6666 6666

parameters. The best performing "closed-book" (parametric only) open-domain QA model is T5-11B
with 11 Billion trainable parameters. The T5 model with the closest number of parameters to our
models is T5-large (770M parameters), which achieves a score of 28.9 EM on Natural Questions [52],
substantially below the 44.5 that RAG-Sequence achieves, indicating that hybrid parametric/non-
parametric models require far fewer trainable parameters for strong open-domain QA performance.
The non-parametric memory index does not consist of trainable parameters, but does consists of 21M
728 dimensional vectors, consisting of 15.3B values. These can be easily be stored at 8-bit floating
point precision to manage memory and disk footprints.

H Retrieval Collapse

In preliminary experiments, we observed that for some tasks such as story generation [11], the
retrieval component would “collapse” and learn to retrieve the same documents regardless of the
input. In these cases, once retrieval had collapsed, the generator would learn to ignore the documents,
and the RAG model would perform equivalently to BART. The collapse could be due to a less-explicit
requirement for factual knowledge in some tasks, or the longer target sequences, which could result
in less informative gradients for the retriever. Perez et al. [46] also found spurious retrieval results
when optimizing a retrieval component in order to improve performance on downstream tasks.

I Number of instances per dataset

The number of training, development and test datapoints in each of our datasets is shown in Table 7.
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