
We thank all reviewers for the many helpful comments to our paper. A common suggestion from most reviewers is to1

further elucidate how our theory helps develop better RL algorithms. We highlight two such algorithmic ideas below.2

Recursive perturbation. Figure 1(e) in the appendix showed that in the Humanoid environment, the marginal distri-3

butions of st may take as many as 20 · E[T ] steps to converge to the steady state (where E[T ] is the average episode4

length), while Figure 1(f) showed that the marginal distributions of HalfCheetah do not converge at all (because5

E[T ] ≡ 1000 in HalfCheetah, a situation where the marginal distributions will be strongly phased, as discussed in6

Section 4). These observations illustrate the necessity to apply the ε-perturbation trick in real-world RL practice.7

In Section F.2 of the appendix we introduced an augmented variant of ε-perturbation. The idea is to recursively8

apply the one-shot perturbation to already perturbed models, which in the limit is equivalent to a perturbation with9

self-looping probability ε. We empirically found that recursive perturbation with ε = 1 − 1/E[T ] appears to force10

convergence of the marginal distribution at t = 3E[T ] in various environments. Figure 2(b) in the appendix already11

showed such a result on a synthetic but challenging environment. Figure (A) and (B) below further demonstrate the12

same observation in Humanoid and HalfCheetah. Comparing Figure (A) with Figure 1(e), and Figure (B) with Figure13

1(f), we can see clearly the effectiveness of the recursive perturbation on these two popular RL environments.14

15

Episode-length-adaptive policy gradient. Our steady-state policy gradient theorem (i.e. Theorem 5) showed a pro-16

portionality factor of Eπ[T ] − 1 between the true policy gradient ∇Jepi and the classic policy gradient estimator17

F (θ) = Es,a∼π[Qπ(s, a)∇ log π(s, a; θ)|s 6∈ S⊥], and we have argued in Section 5 (line 320-326) that this pro-18

portionality factor can change dramatically in practical RL training, and that while it will not change the gradient19

direction, using F (θ) to estimate the policy gradient is equivalent to applying a learning rate β = α
Eπ [T ]−1 to the truly20

unbiased estimator, where β is dynamically drifting along with the changes of episode length during the training.21

Figure (C) and (D) above revealed how quickly the drifting episode length can hurt the quality of gradient estimations22

in the Hopper Environment. As with Figure 3 in appendix, the shaded area gives 90% confidence intervals of the true23

changes of policy performance in iterations with α = 5 × 10−4. The red dotted curve is the predicted performance24

change by assuming the proportionality factor as a constant absorbed in the learning rate, which quickly leads to bias25

after only tens of iterations, as Figure C shows. The bias becomes quite significant after 100 iterations, as Figure26

(D) shows. On the other hand, the orange curves are the estimated performance change by following the unbiased27

estimator given by Theorem 5, which leads to much less bias (see Section F.3 for more details about this experiment).28

Meanwhile, we try to give in this response a better summary of the theoretical implications of our paper:29

1. (a) We identified two formal properties (Definition 1) in the learning environments of finite-horizon decision tasks.30

(b) We proved that these properties imply existence of nondegenerate stationary distribution in finite-horizon tasks.31

2. (a) We proposed a perturbation trick (one-shot version in Definition 2, recursive version in Section F.2) and proved32

that the perturbed model (of learning environment of finite-horizon task) is ergodic. (b) The guaranteed (instead33

of assumed) ergodicity implies that few-step sampling is sound in the perturbed model of all finite-horizon tasks.34

3. (a) We analyzed the Bellman equation under the steady state, which connects, for any function, its mean values over35

the state space and over the episode space. (b) As two special cases of 3(a), we showed Jepi(π) = Javg(π) ·Eπ[T ]36

and ρπ = µ1
epi, which in turn help unify RL formulations between continual and episodic tasks (Table 1).37

4. (a) We analyzed the differentiated Bellman equation under the steady state, which leads to ∇Jepi = (Eθ[T ]− 1) ·38

Es,a∼ρθ [. . . ]. (b) 4(a) implies two sources of bias in existing policy gradient algorithms as discussed above, i.e. the39

fluctuating marginal distribution in tasks like HalfCheetah and the drifting proportionality factor.40

To Reviewer 3: We fully agree that continual and episodic RL are equally important, yet please note that the eight41

results of this particular paper (see the list above) apply only to episodic RL with finite horizon. Although we did use42

infinite-horizon MDP as an approach, the problems we solved seem to have limited overlap with infinite-horizon RL.43

To Reviewer 4: We hope the summary above better explained what the paper accomplished. The positioning of the44

paper is actually general, with 6 out of the 8 result items applicable to both policy-based and value-based methods45

(e.g. parallel few-step sampling was used in both methods [14]). Please see Section B for more discussion on this.46


