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1 Ancillary results

1.1 VC-dimension of ellipsoids

For any PSD matrix M , we denote by EM =
{
x ∈ Rd : dM (x,µ) ≤ 1

}
the µ-centered ellipsoid

with semiaxes of length λ−1/2
1 , . . . , λ

−1/2
d , where λ1, . . . , λd ≥ 0 are the eigenvalues of M . We

recall the following classical VC-dimension bound (see, e.g., [3]).

Theorem 5. The VC-dimension of the classH = {EM : M ∈ Rd,M � 0} of (possibly degenerate)
ellipsoids in Rd is d2+3d

2 .

1.2 Generalization error bounds

The next result is a simple adaptation of the classical VC bound for the realizable case (see, e.g., [5,
Theorem 6.8]).

Theorem 6. There exists a universal constant c > 0 such that for any familyH of measurable sets
E ⊂ Rd of VC-dimension d <∞, any probability distribution D on Rd, and any ε, δ ∈ (0, 1), if S is
a sample of m ≥ cd ln(1/ε)+ln(1/δ)

ε points drawn i.i.d. from D, then for any E∗ ∈ H we have:

D
(
E4E∗

)
≤ ε and D

(
E′ \ E∗

)
≤ ε

with probability at least 1− δ with respect to the random draw of S, where E is any element ofH
such that E ∩ S = E∗ ∩ S, and E′ is any element ofH such that E∗ ∩ S ⊆ E′ ∩ S.

The first inequality is the classical PAC bound for the zero-one loss, which uses the fact that the
VC dimension of {E4E∗ : E ∈ H} is the same as the VC dimension ofH. The second inequality
follows immediately from the same proof by noting that, for any E∗ ∈ H the VC dimension of
{E \ E∗ : E ∈ H} is not larger than the VC dimension ofH because, for any sample S and for any
F,G ∈ H, (F \ E∗) ∩ S 6= (G \ E∗) ∩ S implies F ∩ S 6= G ∩ S.

1.3 Concentration bounds

We recall standard concentration bounds for non-positively correlated binary random variables,
see [2]. Let X1, . . . , Xn be binary random variables. We say that X1, . . . , Xn are non-positively
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correlated if for all I ⊆ {1, . . . , n} we have:

P
(
∀i ∈ I : Xi = 0

)
≤
∏
i∈I

P(Xi = 0) and P
(
∀i ∈ I : Xi = 1

)
≤
∏
i∈I

P(Xi = 1) (1)

Lemma 4 (Chernoff bounds). Let X1, . . . , Xn be non-positively correlated binary random variables.
Let a1, . . . , an ∈ [0, 1] and X =

∑n
i=1 aiXi. Then, for any ε > 0, we have:

P
(
X < (1− ε)E[X]

)
< e−

ε2

2 E[X] (2)

P
(
X > (1 + ε)E[X]

)
< e−

ε2

2+εE[X] (3)

1.4 Yao’s minimax principle

We recall Yao’s minimax principle for Monte Carlo algorithms. Let A be a finite family of determin-
istic algorithms and I a finite family of problem instances. Fix any two distributions p over I and q
over A, and any δ ∈ [0, 1/2]. Let minA∈A EI∼p[Cδ(I,A)] be the minimum, over every algorithm A
that fails with probability at most δ over the input distribution p, of the expect cost of A over the input
distribution itself. Similarly, let maxI∈I EA∼q[Cδ(I, A)] be the expected cost of the randomized
algorithm defined by q under its worst input from I, assuming it fails with probability at most δ.
Then (see [4], Proposition 2.6):

max
I∈I

Eq[Cδ(I, A)] ≥ 1

2
min
A∈A

Ep[C2δ(I, A)] (4)

2 Supplementary material for Section 5

2.1 Monochromatic Tessellation

We give a formal version of the claim about the monochromatic tessellation of Section 5:
Theorem 7. Suppose we are given an ellipsoid E such that 1

dΦE ⊂ conv(SC) ⊂ E for some stretch
factor Φ > 0. Then for a suitable choice of βi, ρ, b, the tessellation R of the positive orthant of E
(Definition 3) satisfies:

(1) |R| ≤ max
{

1, O
(
dΦ
γ lndΦ

γ

)d}
(2) E ∩ Rd+ ⊆ ∪R∈RR
(3) for every R ∈ R, the set R ∩ E is monochromatic

In order to prove Theorem 7, we define the tessellation and prove properties (1-3) for γ ≤ 1/2. For
γ > 1

2 the tessellation is defined as for γ = 1
2 , and one can check all properties still hold. In the proof

we use a constant c =
√

5 and assume γ < c2−2c, which is satisfied since c2−2c = 5−2
√

5 > 1/2.

First of all, we define the intervals Ti. The base i-th coordinate is:

βi =
γ

c
√

2d

Li
Φd

(5)

Note that, for all i,

Li
βi

=
Φcd
√

2d

γ
(6)

Define:

α =
γ

c
√

2Φd
(7)

and let:

b = max

(
0,

⌈
log1+α

(cΦd√2d

γ

)⌉)
(8)

2



(The parameter ρ of the informal description of Section 5 is exactly 1 +α). Finally, define the interval
set along the i-th axis as:

Ti =


{[

0, βi
]}

if b = 0{[
0, βi

]
,
(
βi, βi(1 + α)

]
, . . . ,

(
βi(1 + α)b−1, βi(1 + α)b

]}
if b ≥ 1

(9)

Proof of (1). By construction, |Ti| = b+ 1. Thus, |R| =
∏
i∈[d] |Ti| = (b+ 1)d. Thus, if b = 0 then

|R| = 1, else by (8) and 6,

b =

 ln
(
cΦd
√

2d
γ

)
ln(1 + α)

 (10)

≤

⌈
2

α
ln
(cΦd√2d

γ

)⌉
since ln(1 + α) ≥ α/2 as α ≤ 1 (11)

=

⌈
2
√

2cΦd

γ
ln
cΦd
√

2d

γ

⌉
definition of α (12)

= O

(
dΦ

γ
ln
dΦ

γ

)
since dΦ ≥ 1, γ ≤ 1/2 (13)

in which case |R| = O
(
dΦ
γ ln dΦ

γ

)d
. Taking the maximum over the two cases proves the claim.

Proof of (2). We show for any x ∈ E∩Rd+ there existsR ∈ R containing x. Clearly, if x ∈ E∩Rd+,
then 〈x,ui〉 ∈ [0, Li] for all i ∈ [d]. But Ti covers, along the i-th direction ui, the interval from 0 to

βi(1 + α)b = βi(1 + α)max(0,dlog1+α(Li/βi)e) ≥ βi(1 + α)dlog1+α(Li/βi)e ≥ Li (14)

Therefore some R ∈ R contains x.

Proof of (3). Given any hyperrectangle R ∈ R, we show that the existence of x,y ∈ R ∩ E with
x ∈ C and y /∈ C leads to a contradiction. For the sake of the analysis we conventionally set the
origin at the center µ of E, i.e. we assume µ = 0.

We define Ein = 1
ΦdE and let M = UΛU> be its PSD matrix, where U =

[
u1, . . . ,ud] and

Λ = diag(λ1, . . . , λd). Note that λi = 1
`2i

= Φ2d2

L2
i

where `i = Li
Φd is the length of the i-th semiaxis

of Ein. For any R ∈ R, let Ri be the projection of R on ui (i.e. Ri is one of the intervals of Ti
defined in (9)). Let D = D(R) = {i ∈ [d] : 0 /∈ Ri}. We let UD and U¬D be the matrices obtained
by zeroing out the columns of U corresponding to the indices in [d] \D and D, respectively. Observe
that if x,y ∈ R ∩ E then:

〈x− y,ui〉2 < α2 〈x,ui〉2 ∀i ∈ D (15)

〈x− y,ui〉2 ≤ β2
i ∀i /∈ D (16)

Now suppose C has margin at least γ for some γ ∈ (0, c2 − 2c], and suppose x,y ∈ R ∩ E with
x ∈ C and y /∈ C. Through a set of ancillary lemmata proven below, this leads to the absurd:

γ2

c2
< dW (y,x)2 Lemma 5 (17)

≤ dM (y,x)2 Lemma 6 (18)

< α2dM (x,µ)2 +
γ2

2c2
Lemma 7 (19)

≤ γ2

2c2
+
γ2

2c2
Lemma 8 (20)

In the rest of the proof we prove the four lemmata.

Lemma 5. γ
c < dW (y,x).
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Proof. Let z be the point w.r.t. which the margin of C holds. By the margin assumption,

dW (y, z) >
√

1 + γ and dW (x, z) ≤ 1 (21)

By the triangle inequality then,

dW (y,x) ≥ dW (y, z)− dW (x, z) >
√

1 + γ − 1 (22)

One can check that for γ ≤ c2 − 2c we have 1 + γ ≥ (1 + γ
c )2. Therefore

dW (y,x) >
√

(1 + γ/c)2 − 1 =
γ

c
(23)

as desired.

Lemma 6. dW (·) ≤ dM (·).

Proof. By the assumptions of the theorem, Ein ⊆ convµ(C). Moreover, by the assumptions on
dW (·), the unit ball of dW (·) contains conv(C). Thus, the unit ball of dW (·) contains the unit ball of
dM (·). This implies W �M , thus ‖ · ‖W ≤ ‖ · ‖M and dW (·) ≤ dM (·).

Lemma 7. dM (y,x)2 < α2dM (x,µ)2 + γ2

2c2 .

Proof. We decompose dM (y,x)2 along the colspaces of UD and U¬D:

dM (y,x)2 = ‖M1/2(y − x)‖22 (24)

= ‖M1/2(y − x)‖2UDU>D + ‖M1/2(y − x)‖2U¬DU>¬D (25)

Next, we bound the two terms of (25). To this end, we need to show that for all D ⊆ [d] and v ∈ Rd:

‖M1/2v‖2UDUDᵀ =
∑
i∈D

λi 〈v,ui〉2 (26)

Let indeed JD = diag(1D) be the selection matrix corresponding to the indices of D. Then
UD = UJD, and so UᵀUD = UᵀUJD = JD. This gives:

‖M1/2v‖2UDUDᵀ = vᵀ(UΛ1/2Uᵀ)UDUD
ᵀ(UΛ1/2Uᵀ)v definition of M and ‖ · ‖· (27)

= vᵀUΛ1/2JDJDΛ1/2Uᵀv since UᵀUD = JD (28)

= vᵀUJDΛ1/2Λ1/2JDU
ᵀv since Λ, JD are diagonal (29)

= vᵀUDΛUD
ᵀv since UJD = UD (30)

= ‖UDᵀv‖2Λ by definition (31)

=
∑
i∈D

λi 〈v,ui〉2 (32)

Now we can bound the first term of (25):

‖M1/2(y − x)‖2UDU>D =
∑
i∈D

λi 〈y − x,ui〉2 by (32) (33)

< α2
∑
i∈D

λi 〈x,ui〉2 by (15) (34)

= α2‖M1/2x‖2UDU>D by (32) (35)

≤ α2‖M1/2x‖2UU> (36)

= α2‖M1/2x‖22 since UU> = I (37)

= α2d2
M (x,µ) since µ = 0 (38)
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And for the second term of (25), we have:

‖M1/2(y − x)‖2U¬DU>¬D =
∑
i/∈D

λi 〈y − x,ui〉2 by (32) (39)

≤
∑
i/∈D

λiβ
2
i by (16) (40)

=
∑
i/∈D

Φ2d2

L2
i

(
γ

c
√

2d

Li
Φd

)2

by definition of λi and βi (41)

=
∑
i/∈D

γ2

2dc2
(42)

≤ γ2

2c2
(43)

Summing the bounds on the two terms shows that dM (y,x)2 < α2dM (x,µ)2 + γ2

2c2 , as claimed.

Lemma 8. α2dM (x,µ)2 ≤ γ2

2c2 .

Proof. By construction we have x ∈ E and E = Φd · Ein. Therefore 1
Φdx ∈ Ein, that is:

1 ≥ dM
( 1

Φd
x,µ

)2

=
1

Φ2d2
dM (x,µ)2 (44)

where we used the fact that dM (·,µ)2 = ‖ · ‖2M since µ = 0. Rearranging terms, this proves that
dM (x,µ)2 ≤ Φ2d2. Multiplying by α2, we obtain:

α2dM (x,µ)2 ≤
(

γ√
2cΦd

)2

Φ2d2 =
γ2

2c2
(45)

as desired.

The proof of the theorem is complete.

2.2 Low-stretch separators and proof of Theorem 3

In this section we show how to compute the separator of Theorem 3. In fact, computing the separator
is easy; the nontrivial part is Theorem 3 itself, that is, showing that such a separator always exists.

To compute the separator we first compute the MVEE EJ = (M?,µ?) of SC (see Section 5). We
then solve the following semidefinite program:

max
α∈R,µ∈Rd,M∈Rd×d

α

s.t. M � αM?〈
M, (x− µ)(x− µ)>

〉
≤ 1 ∀x ∈ SC〈

M, (y − µ)(y − µ)>
〉
> 1 ∀y ∈ SC

(46)

where, for any two symmetric matrices A and B, 〈A,B〉 = tr(AB) is the usual Frobenius inner
product, implying 〈M, (x− µ)(x− µ)>〉 = dM (x,µ)2. In words, the constraint M � αM? says
that E must fit into EJ if we scale EJ by a factor Φ = 1/

√
α. The other constraints require E to

contain all of SC but none of the points of SC . The objective function thus minimizes the stretch Φ
of E.

In the rest of this paragraph we prove Theorem 3.
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Proof of Theorem 3 (sketch). To build the intuition, we first give a proof sketch where the
involved quantities are simplified. The analysis is performed in the latent space Rd with inner product
〈u,v〉 = u>Wv. Setting conventionally z = 0, C then lies in the unit ball B0 and all points of
X \ C lie outside

√
1 + γ B0. For simplicity we assume γ � 1 so that

√
1 + γ ' 1 + γ, but we

can easily extend the result to any γ > 0. Now fix the subset SC ⊆ C, and let EJ = EJ(SC) be the
MVEE of SC . Observe the following fact: B0 trivially satisfies (1), but in general violates (2); in
contrast, EJ trivially satisfies (2), but in general violates (1). The key idea is thus to “compare” B0

and EJ and take, loosely speaking, the best of the two. To see how this works, suppose for instance
EJ has small radius, say less than γ/4. In this case, E = EJ yields the thesis. Indeed, since the center
µ? of EJ is in B0, then any point of E is within distance 1 + γ/4 ≤

√
1 + γ of the center of B0,

and lies inside
√

1 + γ B0. Thus EJ separates SC from X \ C, satisfying (1). At the other extreme,
suppose EJ is large, say with all its d semiaxes longer than γ/4. In this case, E = B0 yields the thesis:
indeed, by hypothesis E fits entirely inside 4/γEJ, satisfying (2). Unfortunately, the general case is
more complex, since EJ may be large along some axes and small along others. In this case, both B0

and EJ fail to satisfy the properties. This requires us to choose the axes and the center of E more
carefully. We show how to do this with the help of Figure 1.

B0

z

U

B

EJ

µ?

U

E

µ

B0

z

Figure 1: Left: the MVEE EJ of SC and the affine subspace U + µ? (marked simply as U ) spanned by its
largest semiaxes. There is no guarantee that EJ ⊆

√
1 + γ B0. Right: the separator E, centered in the center µ

of B, with the largest semiaxis in U and the smallest one in U⊥. We can guarantee that SC ⊂ E ⊂
√
1 + γ B0.

Let {u1, . . . ,ud} be the orthonormal basis defined by the semiaxes of EJ and `?1, . . . , `
?
d be the

corresponding semiaxes lengths. We define a threshold ε = γ3
/d2, and partition {u1, . . . ,ud} as

AP = {i : `?i > ε} and AQ = {i : `?i ≤ ε}. Thus AP contains the large semiaxes of EJ and
AQ the small ones. Let U,U⊥ be the subspaces spanned by {ui : i ∈ AP } and {ui : i ∈ AQ},
respectively. Consider the subset B = B0 ∩ (µ? + U). Note that B is a ball in at most d dimensions,
since it is the intersection of a d-dimensional ball and an affine linear subspace of Rd. Let µ and `
be, respectively, the center and radius of B. We set the center of E at µ, and the lengths `i of its
semiaxes as follows:

`i =

{ `√
1−γ if i ∈ AP
`?i√
ε

if i ∈ AQ
(47)

Loosely speaking, we are “copying” the semiaxes from either B0 or EJ depending on `?i . In particular,
the large semiaxes (in AP ) are set so to contain all of B and exceed it by a little, taking care of not
intersecting

√
1 + γ B0. Instead, the small semiaxes (in AQ) are so small that we can safely set them

to 1/
√
ε times those of EJ, so that we add some “slack” to include SC without risking to intersect√

1 + γ B0. Now we are done, and our low-stretch separator is (M,µ) where M =
∑d
i=1`

−2
i uiui

ᵀ.
This the ellipsoidE that yields Theorem 3. In the next paragraph, we show how we can find efficiently
all points in E that belong to C.
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2.3 Proof of Theorem 3 (full).

We prove the theorem for γ ≤ 1/5 and use the fact that whenever C has weak margin γ then it also
has weak margin γ′ for all γ′ > γ. As announced, the analysis is carried out in the latent space Rd
equipped with the inner product 〈u,v〉 = u>Wv. All norms ‖u‖, distances d(u,v), and (cosine of)
angles 〈u,v〉

/(
‖u‖ ‖v‖

)
are computed according to this inner product unless otherwise specified.

Let B0 be the unit ball centered at the origin, which we conventionally set at z, the point in the
convex hull of C according to which the margin is computed. Then, by assumption, C ⊂ B0, and
x /∈
√

1 + γ B0 for all x /∈ C. For ease of notation, in this proof be denote the MVEE by E? rather
than EJ. Let then (E?,µ?) be the MVEE of SC ; note that µ? ∈ conv(SC) ⊆ B0. We let u1, . . . ,ud
be the orthonormal eigenvector basis given by the axes of E? and λ?1, . . . , λ

?
d the corresponding

eigenvalues. Note that if mini λ
?
i ≥ 5/γ2 then E? has radius ≤ γ/

√
5 and thus, since µ? ∈ B0 and

γ ≤ 1/5, its distance from B0 is at most 1 + γ/
√

5 =
√

1 + 2γ/
√

5 + γ2
/5 <

√
1 + γ. In this case we

can simply set E = E? and the thesis is proven. Thus, from now on we assume mini λ
?
i < 5/γ2.

B0

z

U

B

E?
µ?

U

E

µ

B0

z

µ

x

q

p

E

Figure 2: Left: the separating ball B0 of C, the MVEE E? of SC , and the affine subspace U + µ? spanned by
its largest semiaxes. Middle: E is our separator centered in the center µ of the ball B = U ∩ B0. Right: a point
x ∈ SC with its projections onto U and U⊥ with respect to the origin, which we conventionally set at µ (the
center of E).

Now let:

ε =
γ3

32d2
(48)

and partition (the indices of) the basis {u1, . . . ,ud} as follows:

AP = {i : λ?i < 1/ε2}, AQ = [d] \AP (49)

Since mini λ
?
i < 5/γ2 and 5/γ2 ≤ 1/ε2, then by construction the set AP is not empty. We now

define the ellipsoid E. Let U,U⊥ be the subspaces spanned by {ui : i ∈ AP } and {ui : i ∈ AQ}
respectively, and let B = B0 ∩ (µ? + U). Note that B is a ball, since it is the intersection of a ball
and an affine linear subspace. Let µ and ` be, respectively, the center and radius of B and define

λi =

{
(1−

√
5γ/4)`−2 i ∈ AP

ελ?i i ∈ AQ
M =

d∑
i=1

λiuiui
ᵀ (50)

Then our ellipsoidal separator is E = {x ∈ Rd : dM (x,µ) ≤ 1}. See Figure 2 for a pictorial
representation. We now prove that E satisfies: (1) SC ⊂ E, (2) E ⊆ 64

√
2d2

γ3 E?(SC), (3) E ⊂√
1 + γ B0.
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Proof of (1). Set the center µ of E as the origin. For all i ∈ [d] let Ui = uiui
ᵀ and define the

following matrices:

P0 =
∑
i∈AP

Ui, Q0 =
∑
i∈AQ

Ui (51)

P =
∑
i∈AP

λiUi, Q =
∑
i∈AQ

λiUi (52)

P? =
∑
i∈AP

λ?iUi, Q? =
∑
i∈AQ

λ?iUi (53)

We want to show that d2
M (x,µ) ≤ 1 for all x ∈ SC . Note that dM (x,µ)2 equals (recall that µ = 0):

xᵀPx+ xᵀQx (54)

Let us start with the second term of (54). By definition of Q? and since µ?ᵀQ? = (µ? − µ)
ᵀ
Q? = 000

because µ? − µ ∈ U ,

xᵀQx = εxᵀQ?x = ε (x− µ?)ᵀQ?(x− µ?) ≤ ε <
γ

4
(55)

where the penultimate inequality follows from x ∈ E?.

We turn to the first term of (54). If we let p, q be the projections of x− µ = x onto U,U⊥, so that

‖p‖2 = xᵀP0x, ‖q‖2 = xᵀQ0x (56)

then by definition of the λi we have:

xᵀPx =
1−

√
5γ/4

`2
‖p‖2 (57)

We can thus focus on bounding ‖p‖. Since B is a ball of radius `, then ‖p‖ ≤ `+ d(p, B), where
d(p, B) is the distance of p from its projection on B —see Figure 3, left.

B0

E

µ

x p

d(p, B)

‖q‖

p

E

a

b

a

b

Figure 3: Left: a point x ∈ SC ⊂ B0 which lies in E as well. Right: for a fixed a > 0, the ratio b/a is
maximized when the segment of length a lies on the line passing through the center of B0, in which
case b/a = sin θ

1−cos θ for some θ ∈ (0, π/2).

Now, since x ∈ B0, the ratio d(p,B)
‖q‖ is maximized when ` → 0 (i.e., B has a vanishing radius), in

which case d(p, B) ≤ sin θ and ‖q‖ ≥ 1− cos θ, where θ ∈ (0, π/2]; see Figure 3 right. Then:

‖q‖
d(p, B)

≥ 1− cos θ

sin θ
= tan

θ

2
≥ θ

2
≥ sin θ

2
≥ d(p, B)

2
(58)

where we used the tangent half-angle formula and the Taylor expansion of tan θ. This yields
d(p, B) ≤

√
2 ‖q‖2. Thus:

‖p‖ ≤ `+
√

2‖q‖ (59)
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But since λ?i ≥ 1/ε2 for all i ∈ AQ:

‖q‖2 = xᵀQ0x ≤ ε2 xᵀQ?x = ε2(x− µ?)ᵀQ?(x− µ?) ≤ ε2 (60)

Therefore:

xᵀPx ≤
1−

√
5γ/4

`2
(
`+
√

2ε
)2 ≤ (1−

√
5γ/4)

(
1 +

√
2ε/`
)2

(61)

Next, we show that
√

2ε
` ≤

1
2

√
5γ/4. First,

√
2ε =

√
2
γ3

32d2
=
γ
√
γ

4d
(62)

We now temporarily set µ? as the origin. We want to show that the projection of 1/dE? on U is
contained in B. Now, the projection of an ellipsoid on the subspace spanned by a subset of its axes is
a subset of the ellipsoid itself, and U is by definition spanned by a subset of the axes of E?. Therefore
the projection P of 1/dE? on U satisfies P ⊆ 1/dE?. Suppose then by contradiction that P 6⊆ B.
Since B = U ∩ B0, this implies that 1/dE? /∈ B0. But by John’s theorem, 1/dE? ⊆ conv(SC), and
therefore conv(SC) /∈ B0, which is absurd. Therefore P ⊆ B.

Let us get back to the proof, with µ as the origin. On the one hand, the definitions of AP and U imply
that the largest semiaxis of E? of length `? = 1/

√
mini λ?i lies in U , thus P has radius at least 1

d`
?.

On the other hand B has radius `, and we have seen that P ⊆ B. Therefore, ` ≥ 1
d`
?. Finally, by

our assumption on mini λ
?
i , we have mini λ

?
i < 5/γ2 and so `? > γ/

√
5. Therefore, ` ≥ γ/

√
5d, which

together with (62) guarantees
√

2ε
` ≤

√
5γ
4 = 1

2

√
5γ/4. Thus, continuing (61):

xᵀPx ≤ (1−
√

5γ/4)
(

1 +
1

2

√
5γ/4

)2

(63)

Now (1− x)(1 + x
2 )2 < 1− 3

4x
2 for all x > 0, thus with x =

√
5γ/4 >

√
γ we get:

xᵀPx < 1− 3

4
γ (64)

By summing (55) and (64), we get:

xᵀPx+ xᵀQx < 1− 3

4
γ +

γ

4
< 1 (65)

Proof of (2). Comparing the eigenvalues of E and E?, and using ` ≤ 1 and γ ≤ 1/5, we obtain:

λi
λ?i
≥

{
(1−
√

5γ/4)/`2

1/ε2 ≥ ε2

2 i ∈ AP
ε > ε2

2 i ∈ AQ
(66)

Thus the semiaxes lengths of E are at most
√

2/ε times those of E?. Now let E?+ be the set obtained
by scaling E? by a factor 2

√
2/ε = 64

√
2d2/γ3 about its origin µ?. Note that µ? ∈ conv(SC) and, by

item (1), conv(SC) ⊆ E, which implies µ? ∈ E. Now, E?+ contains any set of the form y + 1
2E

?
+

if the latter contains µ?; this includes the set
√

2
ε E

? centered in µ, which in turn contains E as we
already said.

Proof of (3). We prove that d(x,B0)2 < γ for all x ∈ E. Since B0 is the unit ball, this implies
E ⊂

√
1 + γ B0. Consider then any such x. Let again p, q be the projections of x on U and U⊥

respectively. Because B ⊆ B0, d(x,B0)2 ≤ d(x, B)2 = d(p, B)2 + ‖q‖2. See again Figure 3, left,
but with x possibly outside B0. For the first term, note that

d(p, B) ≤ max
i∈AP

√
1/λi − ` (67)

By definition of λi, this yields:

d(p, B)2 ≤

 `√
1−

√
5γ/4

− `

2

≤

 1√
1−

√
5γ/4

− 1

2

(because ` ≤ 1)
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Now we show that the right-hand side is bounded by 3
4γ. Consider f(x) = 1√

1−x − 1 for x ∈ [0, 1/2].

Now ∂2f
∂x2 = 3

4 (1− x)−5/2 > 0, so f is convex. Moreover, f(1/2) =
√

2− 1 < 0.83 · 1/2, and clearly
f(0) = 0 ≤ 0.83 · 0. By convexity then, for all x ∈ [0, 1/2] we have f(x) ≤ 0.83x which implies
f(x)2 < 0.75x2. By substituting x =

√
5γ/4, for all γ ≤ 1/5 we obtain:

d(p, B)2 ≤

 1√
1−

√
5γ/4

− 1

2

<
3

4
· 5

4
γ =

15

16
γ (68)

Let us now turn to q. By definition of Q0, of Q, and of λi for i ∈ AQ, we have:

‖q‖2 = xᵀQ0x ≤ max
i∈AQ

1

λi
xᵀQx = max

i∈AQ

1

ελ?i
xᵀQx (69)

But xᵀQx ≤ 1 since x ∈ E, and recalling that λ?i ≥ 1/ε2 for all i ∈ AQ, we obtain:

‖q‖2 ≤ 1

ε(1/ε2)
= ε <

γ

16
(70)

Finally, by summing (68) and (70):

d(x,B0)2 ≤ d(p, B)2 + ‖q‖2 < γ (71)

The proof is complete.

3 Supplementary material for Section 6

3.1 Lemma 9

Lemma 9. Let b > 0 be a sufficiently large constant. Let S be a sample of points drawn independently
and uniformly at random from X . Let C = arg maxCj∈C |S ∩ Cj |, let SC = S ∩ C, and suppose
|SC | ≥ bd2 ln k. If E is any (possibly degenerate) ellipsoid in Rd such that SC = C ∩E, then with
probability at least 1/2 we have |C∩E| ≥ |X| 1

4k . The same holds if we require thatE∩(S \SC) = ∅,
i.e., that E separates SC from S \ SC .

Proof. Let n = |X| for short, and for any ellipsoid E let EX = E ∩ X . We show that, with C
defined as above, (i) with probability at least 1− 1/4 we have |C| ≥ n/2k, and (ii) with probability
at least 1− 1/4, if |C| ≥ n/2k then |EX4C| ≤ 1/2|C| where4 denotes symmetric difference. By a
union bound, then, with probability at least 1/2 we have |E ∩ C| ≥ |C| − |EX4C| ≥ 1

2 |C| ≥ n/4k.

(i). Let S be the multiset of samples drawn from X , and for every cluster Ci ∈ C let Ni be the
number of samples in Ci. Let s = kbd2 ln k; note that |S| ≤ s since there are at most k clusters.
Now fix any Ci with |Ci| < n

2k . Then E[Ni] ≤ s |Ci|n < bd2 ln k
2 , and by standard concentration

bounds (Lemma 4 in this supplementary material), we have P(Ni ≥ bd2 ln k) = exp(−Ω(b ln k)),
which for b large enough drops below 1/4k. Therefore, the probability that Ni ≥ bd2 ln k when taking
s ≤ kbd2 ln k samples is at most 1/4k. By a union bound on all Ci with |Ci| < n/2k, then, |C| ≥ n/2k
with probability 1− 1/4.

(ii). Consider now any Ci with |Ci| ≥ n/2k. We invoke the generalization bounds of Theorem 6 in
this supplementary material with ε = 1/4k and δ = 1/4k, on the hypothesis class H of all (possibly
degenerate) ellipsoids in Rd. For b large enough, the generalization error of any ellipsoid E that
contains SC is, with probability at least 1 − 1/4k, at most 1/4k, which means |EX4Ci| ≤ n/4k ≤
1/2|Ci|, as desired. By a union bound on all clusters, with probability at least 1− 1/4 this holds for all
Ci with |Ci| ≥ n/2k. The same argument holds if we require E to separate S ∩ Ci from S \ Ci, see
again Theorem 6. By a union bound with point (i) above, we have E ∩ C ≤ 1/2|C| with probability
at least 1/2, as claimed.

3.2 Proof of Lemma 3

Let X0 = X and N0 = n, and for all i ≥ 1, let Xi be the set of points not yet labeled at the end
of round i, let Ni = |Xi|, and let Ri = I {Ni ≤ Ni−1(1− 1/4k)}. Recall that SC is large enough
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so that, by Lemma 9 in this supplementary material, we have P(Ri = 1 |Xi−1) ≥ 1/2 for all i. For
every t ≥ 1 let ρt =

∑t
i=1Ri. Note that:

Nt ≤ N0(1− 1/4k)ρt < ne−
ρt
4k (72)

If ρt ≥ 4k ln(1/ε), then Nt < εn and RECUR(X, k, γ, ε) stops. The number of rounds executed by
RECUR(X, k, γ, ε) is thus at most rε = min{t : ρt ≥ 4k ln(1/ε)}.
Now, for all i ≥ 1 consider the σ-algebra Fi−1 generated by X0, . . . , Xi−1, and define: Zi = RiBi,
where B1, B2, . . . are Bernoulli random variables where each Bi has parameter 1

/(
2E[Ri | Fi−1]

)
.

Obviously, Zi ≤ Ri, and thus for all t we deterministically have:

ρt =

t∑
i=1

Ri ≥
t∑
i=1

Zi (73)

Now note that:

E[Zi | Fi−1] = E[Ri | Fi−1]
1

2E[Ri | Fi−1]
=

1

2
(74)

Now we can prove the theorem. For the first claim, simply note that E[rε] ≤ 8k ln(1/ε), as this is
the expected number of fair coin tosses to get 4k ln(1/ε) heads.

For the second claim, consider any t ≥ 8k lnn+ 6a
√
k lnn. Letting ζt =

∑t
i=1 Zt, the event r0 ≥ t

implies ζt < 4k lnn = t
2 − 3a

√
k lnn = E[ζt]− δ where δ = 3a

√
k lnn. By Hoeffding’s inequality

this event has probability at most e−2δ2/t, and one can check that for all a ≥ 1 we have 2δ2

t ≥ a lnn.

4 Supplementary material for Section 7

4.1 Proof of Theorem 4

We state and prove two distinct theorems which immediately imply Theorem 4.

Theorem 8. For all 0 < γ < 1/7, all d ≥ 2, and every (possibly randomized) learning algorithm,
there exists an instance on n ≥ 2( 1+γ

8γ )
d−1
2 points and |C| = 3 latent clusters such that (1) all

clusters have margin γ, and (2) to return with probability 2/3 a clustering Ĉ such that4(Ĉ, C) = 0
the algorithm must make Ω(n) same-cluster queries in expectation.

Proof. The idea is the following. We define a single set of points X ⊂ Rd and randomize over the
choice of the latent PSD matrix W ; the claim of the theorem follows by applying Yao’s minimax
principle. Specifically, we let X be a Θ(

√
γ)-packing of points on the unit sphere in Rd. We show

that, for x ∈ X drawn uniformly at random, setting W = (1 + γ) diag(x2
1, . . . , x

2
d) makes x an

outlier, as its distance dW (x,0) from the origin is 1 + γ, while every other point is at distance ≤ 1.
Since there are roughly (1/γ)d such points x in our set, the bound follows.

We start by defining the pointsX in terms of their entry-wise squared vectors. Consider S+
d = Rd+∩Sd

where Sd = {x ∈ Rd : ‖x‖2 = 1} is the unit sphere in Rd. We want to show that there exists a
set of 1

2 (1/ε)d−1 points in S+
d whose pairwise distance is bigger than ε/2, where ε will be defined

later. To see this, recall that the packing number of the unit ball Bd = {x ∈ Rd : ‖x‖2 ≤ 1}
isM(B, ε) ≥ (1/ε)d —see, e.g., [6]. For ε/2 and d − 1, this implies there exists Y ⊆ Bd−1 such
that |Y | ≥ (2/ε)d−1 and ‖y − y′‖2 > ε/2 for all distinct y,y′ ∈ Y . Now, consider the lifting
function f : Bd−1 → Rd defined by f(y) = (

√
1− ‖y‖22, y1, . . . , yd−1). Define the lifted set

Z = {f(y) : y ∈ Y }. Clearly, every z ∈ Z satisfies ‖z‖2 = 1 and z0 ≥ 0, so z lies on the northern
hemisphere of the sphere Sd. Moreover, ‖f(y) − f(y′)‖2 ≥ ‖y − y′‖2 for any two y,y′ ∈ Y .
Hence, we have a set Z of (2/ε)d−1 points on the d-dimensional sphere such that ‖z − z′‖2 > ε/2 for
all distinct z, z′ ∈ Z. But a hemisphere is the union of 2d−1 orthants, hence some orthant contains at
least 2−(d−1)(2/ε)d−1 = (1/ε)d−1 of the points of Z. Without loss of generality we may assume this
is the positive orthant and denote the set as Z+.
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We now define the input set X ⊆ Rd as follows:

X = X+ ∪X− = {
√
z : z ∈ Z+} ∪ {−

√
z : z ∈ Z+}

Note that n = |X| = 2|Z+| = 2(1/ε)d−1. Next, we show how every z ∈ Z+ defines a clustering
instance satisfying the constraints of the thesis. For any z∗ ∈ Z+; let w = (1 + γ)z∗ and
W = diag(w1, . . . , wd), which is PSD as required. Define the following three clusters:

C ′ = {−
√
z∗} C ′′ = {

√
z∗} C = X \ (C ′ ∪ C ′′)

where, for f : R→ R, f(x) =
(
f(x1), . . . , f(xd)

)
. Since C ′ and C ′′ are singletons, they trivially

have weak margin γ. We now show that C has weak margin γ w.r.t. to µ = 000; that is, dW (x,µ)2 >
1 + γ for x = ±

√
z∗ and dW (x,µ)2 ≤ 1 otherwise. First, note that dW (x,µ)2 =

〈
w,x2

〉
. Now,

dW (x,µ)2 =

{
(1 + γ) 〈z∗, z∗〉 = 1 + γ if x ∈ C ′, C ′′

(1 + γ)
〈
z∗,x2

〉
if x ∈ C (75)

However, by construction of Z+, we have that for all x ∈ C and z = x2,

(ε/2)2 ≤ ‖z − z∗‖22 = ‖z‖22 − 2 〈z, z∗〉+ ‖z∗‖22 = 2(1− 〈z, z∗〉)

which implies
〈
z∗,x2

〉
≤ 1 − (ε/2)2/2 = 1 − ε2/8 = 1/(1+γ) for ε =

√
8γ/(1+γ). Therefore (75)

gives dW (x,µ)2 = (1 + γ)
〈
z∗,x2

〉
≤ 1. This proves C has weak margin γ as desired.

The size of X is:

n ≥ 2
( 1√

8γ/(1+γ)

)d−1

= 2
(1 + γ

8γ

) d−1
2

Now the distribution of the instances is defined by taking z∗ from the uniform distribution over Z+.
Consider any deterministic algorithm running over such a distribution. Note that same-cluster queries
always return +1 unless at least one of the two queried points is not in C. As C contains all points in
X but the symmetric pair

√
z∗,−

√
z∗ for a randomly drawn z∗, a constant fraction of the points in

X must be queried before one element of the pair is found with probability bounded away from zero.
Thus, any deterministic algorithm that returns a zero-error clustering with probability at least δ for
any constant δ > 0 must perform Ω(n) queries. By Yao’s principle for Monte Carlo algorithms then
(see Section 1.4 above), any randomized algorithm that errs with probability at most 1−δ

2 ≤ 1
2 for

any constant δ > 0 must make Ω(n) queries as well.

Theorem 9. For all γ > 0, all d ≥ 48(1 + γ)2, and every (possibly randomized) learning algorithm,
there exists an instance on n = Ω

(
exp(d/(1 + γ)2)

)
points and |C| = 2 latent clusters such that

(1) all clusters have margin at least γ, and (2) to return with probability 2/3 a clustering Ĉ such that
4(Ĉ, C) = 0 the algorithm must make Ω(n) same-cluster queries in expectation.

Proof. We exhibit a distribution of instances that gives a lower bound for every algorithm, and then
use Yao’s minimax principle. Let p = 1

2(1+γ) . Consider a set of vectors x1, . . . ,xn where every entry
of each vector xj,i is i.i.d. and it is equal to 1 with probability. p. DefineX = {x1, . . . ,xn}; note that
in general |X| ≤ n since the points might not be all distinct. Let x? = xn, C = {x1, . . . ,xn−1},
C ′ = {x?}. The latent clustering is C = {C,C ′}, and the matrix and center of C are respectively
W = diag(x?) and c = 0. The algorithms receive in input a random permutation of X; clearly, if it
makes o(|X|) queries, then it has vanishing probability to find x?, which is necessary to return the
latent clustering C.

Now we claim that, if d ≥ 48(1 + γ)2, then we can set n = Ω
(

exp
(

d
48(1+γ)2

))
and with constant

probability we will have (i) |X| = Ω(n), and (ii) C,C ′ have margin γ. This is sufficient, since the
theorem then follows by applying Yao’s minimax principle.

Let us first bound the probability that |X| < n. Note that for any two points xi,xi′ with i 6= i′ we
have P(xi = xi′) = ((1− p)2 + p2)d < (1− 1

2(1+γ) )d < e−
d

2(1+γ) . Therefore, by a simple union

bound over all pairs, P(|X| < n) < n2e−
d

2(1+γ) .
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Next, we want show that, loosely speaking, dW (x, c)2 ' dp for x ∈ C ′ whereas dW (x, c)2 ' dp2

for x ∈ C; this will give the margin.

Now, for any x,

dW (x, c)2 =

d∑
i=1

x?i (xi − 0)2 =

{ ∑d
i=1 x

?
i xi ∼ B(d, p2) x ∈ C∑d

i=1 x
? ∼ B(d, p) x ∈ C ′

(76)

Where in the last equality we use the fact that the entries are unary, and where with the notation
B(d, p) we refer to a vector of length d where each entry is equal to 1 with probability p. Let µ = dp2

and µ′ = dp, let ε = 1/(1+
√

2), and define

φ = µ(1 + ε), φ′ = µ′(1− ε√p) (77)

By standard tail bounds,

P(dW (x, c)2 ≥ φ) ≤ e−
ε2µ
3 for x ∈ C (78)

P(dW (x, c)2 < φ′) < e−
ε2pµ′

3 = e−
ε2µ
3 for x ∈ C ′ (79)

By a union bound on all points, the margin γC of C fails to satisfy the following inequality with

probability at most |X|e−
ε2µ
3 ≤ ne−

ε2µ
3 :

1 + γC =
minx/∈C dW (x, c)2

maxx∈C dW (x, c)2
≥ φ′

φ
=
dp(1− ε√p)
dp2(1 + ε)

=
1− ε√p
p(1 + ε)

≥ 1

2p
= 1 + γ (80)

where the penultime inequality holds since 1−ε√p
1+ε ≥

1
2 for our values of p and ε. Note that, since

p = 1
2(1+γ) and n ≤ 1

c exp
(

d
48(1+γ)2

)
+ 1,

ne−
ε2µ
3 = ne−

dp2

12 = ne
− d

48(1+γ)2 (81)

By one last union bound, the probability that |X| = n and γC ≥ γ is at least

1− ne−
d

48(1+γ)2 − n2e−
d

2(1+γ) (82)

If d ≥ 48
(1+γ)2 , then we can let n = Ω

(
e

d
48(1+γ)2

)
while ensuring the above probability is bounded

away from 0.

The rest of the proof and the application of Yao’s principle is essentially identical to the proof of
Theorem 8 above.

5 Comparison with SCQ-k-means

In this section we compare our algorithm to SCQ-k-means of [1]. We show that, in our setting, SCQ-k-
means fails even on very simple instances, although it can still work under (restrictive) assumptions
on γ, W , and the centers.

SCQ-k-means works as follows. First, the center of mass µC of some cluster C is estimated using
O
(
poly(k, 1/γ)

)
SCQ queries; second, all points in X are sorted by their distance from µC and the

radius of C is found via binary search. The binary search is done using same-cluster queries between
the sorted points and any point already known to be in C. The margin condition ensures that, if
we have an accurate enough estimate of µC , then the binary search will be successful (there are no
inversions of the sorted points w.r.t. their cluster). This approach thus yields a O(lnn) SCQ queries
bound (the number of queries to estimate µC is independent of n).

It is easy to see that this algorithm relies crucially on (1) each cluster C must be spherical, and (2)
the center of the sphere must coincide with the centroid µC . In formal terms, the setting of [1] is
a special cases of ours where for all C we have WC = Id and c = Ex∈C [x]. If any of these two
assumptions does not hold, then it is easy to construct instances where [1] fails to recover the clusters
and, in fact, achieves error very close to a completely random labeling. Formally:
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Lemma 10. For any fixed d ≥ 2, any p ∈ (0, 1), and any sufficiently small γ > 0, there are
arbitrarily large instances on n points and k = 2 clusters on which SCQ-k-means incurs error
4(Ĉ, C) ≥ 1−p

2 with probability at least 1− p.

Sketch of the proof. We describe the generic instance on n points for d = 2. The latent clustering C
is formed by two clusters C1, C2 of size respectively n1 = n 1+p

2 and n2 = n 1−p
2 . In C1, half of the

points are in (1, 0) and half in (−1, 0). In C2, all points are in (0,
√

1+γ
2 ). (One can in fact perturb

the instance so that all points are distinct without impairing the proof). For both clusters, the center
coincide with their center of mass, µ1 = (0, 0) and µ2 = (0,

√
1+γ
2 ). For both clusters, the latent

metric is given by the PSD matrix W = ( .25 0
0 1 ). It is easy to see that dW (x,µ1)2 = 1/4 if x ∈ C1

and dW (x,µ1)2 = (1+γ)/4 if x ∈ C2, and so C1 has margin exactly γ. On the other hand C2 has
margin γ since dW (x,µ2)2 = 0 if x ∈ C2 and dW (x,µ2)2 > 0 otherwise.

C1

C2

Figure 4: A bad instance for SCQ-k-means. With good probability, the algorithm classifies all points in a single
cluster, incurring error ' 1/2, the same as a random labeling.

Now consider SCQ-k-means. The algorithm starts by sampling at least k ln(k)
γ4 points from X and

setting µ̂ to the average of the points with the majority label. By standard concentration bounds then,
for γ small enough, with probability at least 1− p the majority cluster will be C1 and the estimate µ̂
of its center of mass (0, 0) will be sufficiently close to µ1 that the ordering of all points in X by their
Euclidean distance w.r.t. µ̂ will set all of C2 before all of C1. But since n2 = n 1−p

2 , the median of
the sorted sequence will be a point of C1. Thus the binary search will make its first query on a point
of C1 and will continue thereafter classifying all of X as belonging to C1. Thus the algorithm will
output the clustering Ĉ = {X, ∅} which gives4(Ĉ, C) = 1−p

2 .

Next, we show that the approach [1] still works if one relaxes the assumption W = I , at the price
of strengthening the margin γ. Let λmax and λmin > 0 be, respectively, the largest and smallest
eigenvalues of W . The condition number κW of W is the ratio λmax

/
λmin. If κW is not too large,

then W does not significantly alter the Euclidean metric, and the ordering of the points is preserved.
Formally:

Lemma 11. Let κW be the condition number of W . If every cluster C has margin at least κW − 1
with respect to its center of mass µC , and if we know µC , then we can recover C with O(lnn) SCQ
queries.

Proof. Fix any clusterC and letµ = µC . For any z ∈ Rd we have λmin‖z‖22 ≤ ‖z‖2W ≤ λmax‖z‖22
where λmin and λmax are, respectively, the smallest and largest eigenvalue of W . Sort all other points
x by their Euclidean distance ‖x− µ‖2 from µ. Then, for any x ∈ C and any y /∈ C we have:

‖y − µ‖22
‖x− µ‖22

≥ λmin

λmax

‖y − µ‖2W
‖x− µ‖2W

=
1

κW

d(y,µ)2

d(x,µ)2
>

1 + γ

κW
(83)

Hence, if γ ≥ κW − 1, there is r ≥ 0 such that ‖x− µ‖2 ≤ r for all x ∈ C and ‖y − µ‖2 ≥ r all
y /∈ C. We can thus recover C via binary search as in [1].

As a final remark, we observe that the above approach is rather brittle, since κW is unknown (because
W is), and if the condition κW ≤ 1+γ fails, then once again the binary search can return a clustering
far from the correct one.

14



6 Comparison with metric learning

In this section we show that metric learning, a common approach to latent cluster recovery and related
problems, does not solve our problem even when combined with same-cluster and comparison queries.
Intuitively, we want to learn an approximate distance d̂ that preserves the ordering of the distances
between the points. That is, for all x,y, z ∈ X , d(x,y) ≤ d(x, z) implies d̂(x,y) ≤ d̂(x, z). If
this holds then d and d̂ are equivalent from the point of view of binary search. To simplify the task,
we may equip the algorithm with an additional comparison query CMP, which takes in input two pairs
of points x,x′ and y,y′ from X and tells precisely whether d(x,x′) ≤ d(y,y′) or not. It turns out
that, even with SCQ+CMP queries, learning such a d̂ requires to query essentially all the input points.

Theorem 10. For any d ≥ 3, learning any d̂ such that, for all x,y, z ∈ X , if d(x,y) ≤ d(x, z)

then d̂(x,y) ≤ d̂(x, z), requires Ω(n) SCQ+CMP queries in the worst case, even with an arbitrarily
large margin γ.

Proof. We reduce the problem of learning the order of pairwise distances induced by W , which we
call ORD, to the problem of learning a separator hyperplane, which we call SEP and whose query
complexity is linear in n.

Problem SEP is as follows. The inputs are a set X = {x1, . . . ,xn} ⊂ Rd (the observations) and a
setH = {h1, . . . ,hk} ⊂ Rd+ (the hypotheses). We require that hj ∈ Rd+. We have oracle access to
σ : X → {+1,−1} such that σ(·) = sgn〈h, ·〉 for some h ∈ H. The output is the h ∈ H that agrees
with σ. We assumeH, X support a margin: ∃ε > 0, possibly dependent on the instance, such that
sgn〈h,x〉 = sgn〈h,x′〉 for all x′ with ‖x− x′‖ ≤ ε. (Note that this is not the cluster margin γ).

Let QORD(n) and QSEP(n) be the query complexities of ORD and SEP on n points. We show:

Lemma 12. QORD(3n) ≤ QSEP(n).

Proof. Let X = {x1, . . . ,xn} ⊆ Rd be the input points for SEP and let h ∈ Rd+ be the target
hypothesis. By scaling the dataset we can assume ‖xi‖ ≤ ε for any desired ε (even dependent on n).
We define an instance of ORD on n′ = 3n points as follows. First, W = diag(h). Second, the input
set is X ′ = S1 ∪ . . . ∪ Sn where for i = 1, . . . , n we define Si = {ai, bi, ci} with:

ai = 6i · 1 (84)
bi = 2 · ai (85)
ci = 3 · ai + xi (86)

We first show that a solution to ORD gives a solution of SEP. Suppose indeed that for all pairs of
points {q,p}, {x,y} we know whether dW (q,p) ≤ dW (x,y). This is equivalent to knowing the
output of CMP({q,p}, {x,y}), which is

CMP({q,p}, {x,y}) = sgn
〈
h, (q − p)2 − (x− y)2

〉
(87)

Consider then the point q = ci,p = x = bi,y = ai for each i. Then:
CMP({q,p}, {x,y}) = sgn

〈
h, (ai − bi)2 − (bi − ci)2

〉
(88)

= sgn
〈
h, (ai)

2 − (−ai − xi)2
〉

(89)

= sgn
〈
h, 2 · 6ixi − x2

i

〉
(90)

= sgn
〈
h,xi

(
1− xi

2 · 6i
)〉

(91)

By the margin hypothesis, for ε small enough this equals sgn(〈h,xi〉), i.e., the label of xi in SEP.

We now show that all the other queries reveal no information about the solution of SEP. Suppose then
the points are not in the form q = ci,p = x = bi,y = ai. Without loss of generality, we can assume
that q > p and q ≥ x > y. It is then easy to see that, for ε small enough, (q − p)2 − (x− y)2 > 0
or (q − p)2 − (x− y)2 < 0. This holds independently of the xi and of W and therefore gives no
information about the solution of SEP.

It follows that, if we can solve ORD in f(3n) CMP queries, then we can solve SEP in f(n) queries.
Finally, note that adding SCQ queries does not reduce the query complexity (e.g., let X lie in a single
cluster). For the same reason, we can even assume an arbitrarily large cluster margin γ.
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It remains to show that SEP requires Ω(n) CMP queries in the worst case. This is well known, but we
need to ensure thatH ⊂ Rd+ and that any h ∈ H supports a margin as described above.

Consider the following set X = {x1, . . . ,xn} ⊆ R3:

xi = (1− δ,− cos(θi),− sin(θi)) (92)

where θi = i π2n and δ is sufficiently small. LetH = {h1, . . . ,hn}, where

hj = (1, cos(θj), sin(θj)) (93)

Note thatH ⊂ Rd+ as required. Clearly:

〈hj ,xi〉 =

{
−δ if j = i
1− (δ + cos(θi − θj)) if j 6= i

(94)

By choosing δ = 1−cos(π/2n)
2 we have sgn 〈h,xi〉 = −1 if and only if i = j. Clearly, any algorithm

needs to probe Ω(n) labels to learn h with constant probability for some h ∈ H. Finally, note that
any h supports a margin, as required.
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