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Abstract

Deep learning methods for graphs achieve remarkable performance across a variety
of domains. However, recent findings indicate that small, unnoticeable pertur-
bations of graph structure can catastrophically reduce performance of even the
strongest and most popular Graph Neural Networks (GNNs). Here, we develop
GNNGUARD, a general algorithm to defend against a variety of training-time
attacks that perturb the discrete graph structure. GNNGUARD can be straight-
forwardly incorporated into any GNN. Its core principle is to detect and quantify
the relationship between the graph structure and node features, if one exists, and
then exploit that relationship to mitigate negative effects of the attack. GNN-
GUARD learns how to best assign higher weights to edges connecting similar nodes
while pruning edges between unrelated nodes. The revised edges allow for robust
propagation of neural messages in the underlying GNN. GNNGUARD introduces
two novel components, the neighbor importance estimation, and the layer-wise
graph memory, and we show empirically that both components are necessary for a
successful defense. Across five GNNs, three defense methods, and four datasets,
including a challenging human disease graph, experiments show that GNNGUARD
outperforms existing defense approaches by 15.3% on average. Remarkably, GN-
NGUARD can effectively restore state-of-the-art performance of GNNs in the face
of various adversarial attacks, including targeted and non-targeted attacks, and can
defend against attacks on heterophily graphs.

1 Introduction

Deep learning on graphs and Graph Neural Networks (GNNs), in particular, have achieved remarkable
success in a variety of application areas [1, 2, 3, 4, 5]. The key to the success of GNNs is the neural
message passing scheme [6] in which neural messages are propagated along edges of the graph
and typically optimized for performance on a downstream task. In doing so, the GNN is trained
to aggregate information from neighbors for every node in each layer, which allows the model to
eventually generate representations that capture useful node feature as well as topological structure
information [7]. While the aggregation of neighbor nodes’ information is a powerful principle of
representation learning, the way that GNNs exchange that information between nodes makes them
vulnerable to adversarial attacks [8].

Adversarial attacks on graphs, which carefully rewire the graph topology by selecting a small number
of edges or inject carefully designed perturbations to node features, can contaminate local node
neighborhoods, degrade learned representations, confuse the GNN to misclassify nodes in the graph,
and can catastrophically reduce the performance of even the strongest and most popular GNNs [9, 10].
The lack of GNN robustness is a critical issue in many application areas, including those where
adversarial perturbations can undermine public trust [11], interfere with human decision making [12],
and affect human health and livelihoods [13]. For this reason, it is vital to develop GNNs that are
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robust against adversarial attacks. While the vulnerability of machine learning methods to adversarial
attacks has raised many concerns and has led to theoretical insights into robustness [14] and the
development of effective defense techniques [9, 12, 15], adversarial attacks and defense on graphs
remain poorly understood.

Poisoned
node

Adversarial attack

Ground-truth label 1
Ground-truth label 2

Predict

Classifier with GNNGuard
GNNGuard[GNN]

Poisoned node is classified correctly

Predict

Classifier with no defense
GNN

Edge Perturbed edge
Poisoned node is classified incorrectly

A

B

Figure 1: A. Small, adversarial perturbations
of the graph structure and node features lead
GNN to misclassify target u. B. The GNN,
when integrated with GNNGUARD, correctly
predicts u’s label.

Present work. Here, we introduce GNNGUARD1, an ap-
proach that can defend any GNN model against a variety
of training-time attacks that perturb graph structure (Fig-
ure 1). GNNGUARD takes as input an existing GNN
model. It mitigates adverse effects by modifying the
GNN’s neural message passing operators. In particular,
it revises the message passing architecture such that the
revised model is robust to adversarial perturbations while
at the same time the model keeps it representation learn-
ing capacity. To this end, GNNGUARD develops two key
components that estimate neighbor importance for every
node and coarsen the graph through an efficient memory
layer. The former component dynamically adjusts the rel-
evance of nodes’ local network neighborhoods, prunes
likely fake edges, and assigns less weight to suspicious
edges based on network theory of homophily [16]. The
latter components stabilizes the evolution of graph struc-
ture by preserving, in part the memory from a previous
layer in the GNN.

We compare GNNGUARD to three state-of-the-art GNN defenders across four datasets and under a
variety of attacks, including direct targeted, influence targeted, and non-targeted attacks. Experiments
show that GNNGUARD improves state-of-the-art methods by up to 15.3% in defense performance.
Importantly, unlike existing GNN defenders [17, 18, 19, 20], GNNGUARD is a general approach and
can be effortlessly combined with any GNN architecture. To that end, we integrate GNNGUARD into
five GNN models. Remarkably, results show that GNNGUARD can effectively restore state-of-the-art
performance of even the strongest and most popular GNNs [3, 21, 7, 22, 23], thereby demonstrating
broad applicability and relevance of GNNGUARD for graph machine-learning. Finally, GNNGUARD
is the first technique that shows a successful defense on heterophily graphs [24]. In contrast, previous
defenders, e.g., [17, 18, 19, 20], focused on homophily graphs [16]. Results show that GNNGUARD
can be easily generalized to graphs with abundant structural equivalences where connected nodes can
have different node features yet similar structural roles within their local topology [25].

2 Related Work

Adversarial attacks in continuous and discrete space. Adversarial attacks on machine learning
have received increasing attention in recent years [14, 26, 27]. The attackers add small perturbations
on the samples to completely alter the output of the machine learning model. The deliberately
manipulated perturbations are often designed to be unnoticeable. Modern studies have shown
that machine leaning models, especially deep neural networks, are highly fragile to adversarial
attacks [13, 28, 29]. The majority of existing works focus on grid data or independent samples [30]
whilst a few work investigate adversarial attack on graphs.

Adversarial attacks on graphs. Based on the goal of the attacker, adversarial attacks on graphs [31,
32] can be divided into poisoning attackspoisoning attackspoisoning attackspoisoning attackspoisoning attackspoisoning attackspoisoning attackspoisoning attackspoisoning attackspoisoning attackspoisoning attackspoisoning attackspoisoning attackspoisoning attackspoisoning attackspoisoning attackspoisoning attacks (e.g., Nettack [8]) that perturb the graph in training-time and
evasion attacksevasion attacksevasion attacksevasion attacksevasion attacksevasion attacksevasion attacksevasion attacksevasion attacksevasion attacksevasion attacksevasion attacksevasion attacksevasion attacksevasion attacksevasion attacksevasion attacks (e.g., RL-S2V [32]) that perturb the graph in testing-time. GNNGUARD is designed
to improve robustness of GNNs against poisoning attacks. There are two types of poisoning attacks: a
targeted attack and a non-targeted attack [33]. The former deceives the model to misclassify a specific
node (i.e., target node) [8] while the latter degrades the overall performance of the trained model [30].
The targeted attack can be categorized into direct targeted attack where the attacker perturbs edges
touching the target node and the influence targeted attack where the attacker only manipulates edges
of the target node’s neighbors. Nettack [8] generates perturbations by modifying graph structure (i.e.,
structure attack) and node attributes (i.e., feature attack) such that perturbations maximally destroy

1Code and datasets are available at https://github.com/mims-harvard/GNNGuard.
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downstream GNN’s predictions. Bojcheshki et al. [34] derive adversarial perturbations that poison
the graph structure. Similarly, Zügner et al. [30] propose a non-targeted poisoning attacker by using
meta-gradient to solve bi-level problem. In contrast, our GNNGUARD is a defense approach that
inspects the graph and recovers adversarial perturbations.

Defense on graphs. While deep learning on graphs has shown exciting results in a variety of
applications [6, 23, 35, 36, 37], little attention has been paid to the robustness of such models, in
contrast to an abundance of research for image (e.g., [38]) and text (e.g., [39]) adversarial defense.
We briefly overview the state-of-the-art defense methods on graphs. GNN-Jaccard [17] is a defense
approach that pre-processes the adjacency matrix of the graph to identify the manipulated edges.
While GNN-Jaccard can defend targeted adversarial attacks on known and already existing GNNs,
there has also been work on novel, robust GNN models. For example, RobustGCN [19] is a novel
GNN that adopts Gaussian distributions as the hidden representations of nodes in each convolutional
layer to absorb the effect of an attack. Similarly, GNN-SVD [18] uses a low-rank approximation
of adjacency matrix that drops noisy information through an SVD decomposition. Tang et al. [20]
improve the robustness of GNNs against poisoning attack through transfer learning but has a limitation
that requires several unperturbed graphs from the similar domain during training. However, all these
approaches have drawbacks (see Section 4.3) that prevent them from realizing their potential for
defense to the fullest extent. For instance, none of them consider how to defend heterophily graphs
against adversarial attacks. GNNGUARD eliminates these drawbacks, successfully defending targeted
and non-targeted poisoning attacks on any GNN without decreasing its accuracy.

3 Background and Problem Formulation

Let G = (V, E ,X) denote a graph where V is the set of nodes, E is the set of edges and X =
{x1, ...,xn},xu ∈ RM is the M -dimensional node feature for node u ∈ V . Let N = |V| and
E = |E| denote the number of nodes and edges, respectively. Let A ∈ RN×N denote an adjacency
matrix whose element Auv ∈ {0, 1} indicates existence of edge euv that connects node u and v. We
use Nu to denote immediate neighbors of node u, including the node itself (u ∈ Nu). We use N ∗u
to indicate u’s neighborhood, excluding the node itself (u /∈ N ∗u ). Without loss of generality, we
consider node classification task, wherein a GNN f classifies nodes into C labels. Let ŷu = fu(G)
denote prediction for node u, and let yu ∈ {1, . . . , C} denote the associated ground-truth label for
node u. To degrade the performance of f , an adversarial attacker perturbs edges in G, resulting in the
perturbed version of G, which we call G′ = (V, E ′,X) (A′ is adjacency matrix of G′).
Background on graph neural networks. Graph neural networks learns compact, low-dimensional
representations, i.e., embeddings, for nodes such that representation capture nodes’ local network
neighborhoods as well as nodes’ features [6, 3, 40]. The learned embeddings can be used for a variety
of downstream tasks [3]. Let hk

u ∈ RDk denote the embedding of node u in the k-th layer of GNN,
k = {1, . . . ,K}. The Dk stands for the dimension of hk

u. Note that h0
u = xu. The computations

in the k-th layer consist of a message-passing function MSG, an aggregation function AGG, and an
update function UPD. This means that a GNN f can be specified as f = (MSG,AGG,UPD) [6, 36].
Given a node u and its neighbor v ∈ Nu, the messaging-passing function MSG specifies what
neural message mk

uv needs to be propagated from v to u. The message is calculated by mk
uv =

MSG(hk
u,h

k
v ,Auv), where MSG receives node embeddings of u and v along with their connectivity

information euv. This is followed by the aggregation function AGG that aggregates all messages
received by u. The aggregated message m̂k

u is computed by m̂k
u = AGG({mk

uv; v ∈ N ∗u}). Lastly,
the update function UPD combines u’s embedding hk

u and the aggregated message m̂k
u to generate

the embedding for next layer as hk+1
u = UPD(hk

u, m̂
k
u). The final node representation for u is hK

u ,
i.e., the output of the K-th layer.

Background on poisoning attacks. Attackers try to fool a GNN by corrupting the graph topology
during training [41]. The attacker carefully selects a small number of edges and manipulates them
through perturbation and rewiring. In doing so, the attacker aims to fool the GNN into making
incorrect predictions [20]. The attacker finds optimal perturbation A′ through optimization [30, 8]:

argmin
A′∈PG∆

Lattack(f(A′,X; Θ∗),y) s.t. Θ∗ = argmin
Θ
Lpredict(f(A′,X; Θ),y) (1)

where y denotes ground-truth labels, Lattack denotes the attacker’s loss function, and Lpredict denotes
GNN’s loss. The Θ∗ refers to optimal parameters and f(A′,X; Θ∗) is prediction of f with parameters
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Θ∗ on the perturbed graph A′ and node features X . To ensure that attacker perturbs only a small
number of edges, a budget ∆ is defined to constrain the number of perturbed edges: ||A′−A||0 6 ∆
and PG∆ are perturbations that fit into budget ∆. Let T be target nodes that are intended to be
mis-classified, and let A be attacker nodes that are allowed to be perturbed. We consider three types
of attacks. (1) Direct targeted attacks.Direct targeted attacks.Direct targeted attacks.Direct targeted attacks.Direct targeted attacks.Direct targeted attacks.Direct targeted attacks.Direct targeted attacks.Direct targeted attacks.Direct targeted attacks.Direct targeted attacks.Direct targeted attacks.Direct targeted attacks.Direct targeted attacks.Direct targeted attacks.Direct targeted attacks.Direct targeted attacks. The attacker aims to destroy prediction for target node u by
manipulating the incident edges of u [8, 17]. Here, T = A = {u}. (2) Influence targeted attacks.Influence targeted attacks.Influence targeted attacks.Influence targeted attacks.Influence targeted attacks.Influence targeted attacks.Influence targeted attacks.Influence targeted attacks.Influence targeted attacks.Influence targeted attacks.Influence targeted attacks.Influence targeted attacks.Influence targeted attacks.Influence targeted attacks.Influence targeted attacks.Influence targeted attacks.Influence targeted attacks.
The attacker aims to destroy prediction for target node u by perturbing the edges of u’s neighbors.
Here, T = {u} and A = N ∗u . (3) Non-targeted attacks.Non-targeted attacks.Non-targeted attacks.Non-targeted attacks.Non-targeted attacks.Non-targeted attacks.Non-targeted attacks.Non-targeted attacks.Non-targeted attacks.Non-targeted attacks.Non-targeted attacks.Non-targeted attacks.Non-targeted attacks.Non-targeted attacks.Non-targeted attacks.Non-targeted attacks.Non-targeted attacks. The attacker aims to degrade overall GNN
classification performance [30, 42]. Here, T = A = Vtest where Vtest denotes the test set.

3.1 GNNGUARD: Problem Formulation

GNNGUARD is a defense mechanism that is easy to integrate into any GNN f , resulting in a new
GNN f ′ that is robust to poisoning attacks. This means that f ′ can make correct predictions even
when trained on poisoned graph G′. Given a GNN f = (MSG,AGG,UPD), GNNGUARD will return
a new GNN f ′ = (MSG′,AGG′,UPD′), where MSG′ is the message-passing function, AGG′ is the
aggregation function, and UPD′ is the update function. The f ′ solves the following defense problem.
Problem (Defense Against Poisoning Attacks on Graphs). In a poisoning attack, the attacker
injects adversarial edges in G, meaning that the attack changes training data, which can decrease the
performance of GNN considerably. Let G′ denote the perturbed version of G that is poisoned by the
attack. We seek GNN f ′ such that for any node u ∈ G′:

min f ′u(G′)− fu(G), (2)

where f ′u(G′) = ŷ′u is the prediction when GNN f ′ is trained on G′. Here, fu(G) = ŷu denotes a
hypothetical prediction that the GNN would made if it had access to clean graph G.

It is worth noting that, in this paper, we learn a defense mechanism for semi-supervised node
classification. GNNGUARD is a general framework for defending any GNN on various graph
mining tasks such as link prediction. Since there exists a variety of GNNs that achieve competitive
performance on G, an intuitive idea is to force f ′u(G′) to approximate fu(G) and, in doing so, ensure
that f ′ will make correct predictions on G′. For this reason, we design f ′ to learn neural messages on
G′ that, in turn, are similar to the messages that a hypothetical f would learn on G. However, since it
is impossible to access clean graph G, Eq. (2) can not be directly optimized. The key to restore the
structure of G is to design a message-passing scheme that can detect fake edges, block them and then
attend to true, unperturbed edges. To this end, the impact of perturbed edges in G′can be mitigated by
manipulating the flow of neural messages and thus, the structure of G can be restored.

4 GNNGUARD

Next, we describe GNNGUARD, our GNN defender against poisoning attacks. Recent studies [31, 17]
found that most damaging attacks add fake edges between nodes that have different features and
labels. Because of that, the core defense principle of GNNGUARD is to detect such fake edges and
alleviate their negative impact on prediction by remove them or assigning them lower weights in
neural message passing. GNNGUARD has two key components: (1) neighbor importance estimation,
and (2) layer-wise graph memory, the first component being an essential part of a robust GNN
architecture while the latter is designed to smooth the defense.

4.1 Neighbor Importance Estimation

GNNGUARD estimates an importance weight for every edge euv to quantify how relevant node u is
to another node v in the sense that it allows for successful routing of GNN’s messages. In contrast
to attention mechanisms (e.g., GAT [21, 43]), GNNGUARD determines importance weights based
on the hypothesis that similar nodes (i.e., nodes with similar features or similar structural roles) are
more likely to interact than dissimilar nodes [16]. To this end, we quantify similarity skuv between u
and its neighbor v in the k-th layer of GNN as follows:

skuv = d(hk
u,h

k
v), d(hk

u,h
k
v) = (hk

u � hk
v)/(||hk

u||2||hk
v ||2), (3)

where d is a similarity function and � denotes dot product. In this work, we use cosine similarity
to calculate d [44]. In homophily graphs, skuv measures the similarity between node features; in
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Figure 2: A. Illustration of neural message passing in u’s local network neighborhood in the k-th layer of GNN
f . B. The message flow in f ′, which is the GNN f endowed by GNNGUARD defense. We first calculate defense
coefficients ωk

uv based on node representations hk
u and hk

v . The defense coefficients are then used to control the
message stream such as blocking the message from v but strengthening messages from v′ and v′′. Thick blue
arrow indicates the higher weights during message aggregation. To stabilize the evolution of graph structure,
current defense coefficients (e.g., ωk

uv) keep a partial memory of the previous layer (e.g., ωk−1
uv ).

heterophily graphs, it measures the similarity of nodes’ structural roles. Larger similarity skuv indicates
that edge euv is strongly supported by node features (or local topology) of the edge’s endpoints. We
normalize skuv at the node-level within u’s neighborhood Nu. The problem here is to specify what is
the similarity of the node to itself. We normalize node similarities as:

αk
uv =

{
skuv/

∑
v∈N∗u

skuv × N̂k
u/(N̂

k
u + 1) if u 6= v

1/(N̂k
u + 1) if u = v,

(4)

where N̂k
u =

∑
v∈N∗u

||skuv||0. We refer to αk
uv as an importance weight representing the contribution

of node v towards node u in the GNN’s passing of neural messages in poisoned graph G′. In
doing so, GNNGUARD assigns small importance weights to suspicious neighbors, which reduce
the interference of suspicious nodes in GNN’s operation. Further, to alleviate the impact of fake
edges, we prune edges that are likely forged. Building on network homophily and findings [17] that
fake edges tend to connect dissimilar nodes, we prune edges using importance weights. For that, we
define a characteristic vector ckuv = [αk

uv, α
k
vu] describing edge euv . Although skuv = skvu, it is key to

note that αk
uv 6= αk

vu because of self-normalization in Eq. (4). GNNGUARD calculates edge pruning
probability for euv through a non-linear transformation as σ(ckuvW ). Then, it maps the pruning
probability to a binary indicator 1P0 : σ(ckuvW ) where P0 is a user-defined threshold:

1P0(σ(ckuvW )) =

{
0 if σ(ckuvW ) < P0

1 otherwise. (5)

Finally, we prune edges by updating importance weight αk
uv to α̂k

uv as follows:

α̂k
uv = αk

uv1P0
(σ(ckuvW )), (6)

meaning that the perturbed edges connecting dissimilar nodes will likely be ignored by the GNN.

4.2 Layer-Wise Graph Memory

Neighbor importance estimation and edge pruning change the graph structure between adjacent GNN
layers. This can destabilize GNN training, especially if a considerable number of edges gets pruned
in a single layer (e.g., due to the weight initialization). To allow for robust estimation of importance
weights and smooth evolution of edge pruning, we use layer-wise graph memory. This unit, applied
at each GNN layer, keeps partial memory of the pruned graph structure from the previous layer
(Figure 2). We define layer-wise graph memory as follows:

ωk
uv = βωk−1

uv + (1− β)α̂k
uv, (7)

where ωk
uv represents defense coefficient for edge euv in the k-th layer and β is a memory coefficient

specifying memory, i.e., the amount of information from the previous layer that should be kept in the
current layer. Memory coefficient β ∈ [0, 1] is a learnable parameter and is set to β = 0 in the first
GNN layer, meaning that ω0

uv = α̂0
uv . Using defense coefficients, GNNGUARD controls information

flow across all neural message passing layers. It strengthens messages from u’s neighbors with higher
defense coefficients and weakens messages from u’s neighbors with lower defense coefficients.
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4.3 Overview of GNNGUARD

GNNGUARD is shown in Algorithm 1. The method is easy to plug into an existing GNN to
defend the GNN against poisoning attacks. Given a GNN f = (MSG,AGG,UPD), GNNGUARD
formulates a revised version of it, called f ′ = (MSG′,AGG′,UPD′). In each layer, f ′ takes current
node representations and (possibly attacked) graph G′. It estimates importance weights α̂uv and
generates defense coefficients ωuv by combining importance weights from the current layer and
defense coefficients from the previous layer. In summary, aggregation function AGG′ in layer k
is: AGG′ = AGG({ωk

uv �mk
uv; v ∈ N ∗u}). The update function UPD′ is: UPD′ = UPD(ωk

uu �
hk
u,AGG({ωk

uv �mk
uv; v ∈ N ∗u})). The message function MSG′ remains unchanged MSG′ = MSG

as neural messages are specified by the original GNN f . Taken together, the guarded f ′ attends
differently to different node neighborhoods and propagates neural information only along most
relevant edges. Our derivations here are for undirected graphs with node features but can be extended
to directed graphs and edge features (e.g., include them into calculation of characteristic vectors).

Algorithm 1: GNNGUARD.
Input: GNN model of interest f = (MSG,AGG,UPD); Poisoned graph G′ = (V, E ′,X), (A′ is adjacency

matrix of E ′); Trainable parameters Θ,W , and β
Initialize parameters Θ,W , and β; initialize node representations h0

u = xu ∀u ∈ V
for layer k ← 1 to K do

for u ∈ V do
Calculate αk

uv using Eq. (4) for all v ∈ Nu // Neighbor Importance Estimation

ckuv = [αk
uv, α

k
vu]

α̂k
uv = αk

uv1P0(σ(ckuvW )) using Eq. (6)
ωk
uv = βωk−1

uv + (1− β)α̂k
uv using Eq. (7) // Layer-Wise Graph Memory

mk
uv = MSG′(hk

u,h
k
v ,A

′
uv) using Section 4.3 // Neural Message Passing

m̂k
u = AGG′({ωk

uv �mk
uv; v ∈ N ∗u}) using Section 4.3

hk+1
u = UPD′(ωk

uu � hk
u, m̂

k
u) using Section 4.3

end
end

Any GNN model. State-of-the-art GNNs use neural message passing comprising of MSG, AGG, and
UPD functions. As we demonstrate in experiments, GNNGUARD can defend such GNN architectures
against adversarial attacks. GNNGUARD works with many GNNs, including Graph Convolutional
Network (GCN) [3], Graph Attention Network (GAT) [21], Graph Isomorphism Network (GIN) [7],
Jumping Knowledge (JK-Net) [22], GraphSAINT [23], GraphSAGE [40], and SignedGCN [45].

Computational complexity. GNNGUARD is practically efficient because it exploits the sparse
structure of real-world graphs. The time complexity of neighbor importance estimation is O(DkE)
in layer k, where Dk is the embedding dimensionality and E is the graph size, and the complexity of
layer-wise graph memory is O(E). This means that time complexity of GNNGUARD grows linearly
with the size of the graph as node embeddings are low-dimensional, Dk � E. Finally, the time
complexity of a GNN endowed with GNNGUARD is on the same order as that of the GNN itself.

Further related work on adversarial defense for graphs. We briefly contrast GNNGUARD with
existing GNN defenders. Compared to GNN-Jaccard [17], which examines fake edges as a GNN
preprocessing step, GNNGUARD dynamically updates defense coefficients at every GNN layer for
defense. In contrast to RobustGCN [19], which is limited to GCN, a particular GNN variant, and
is challenging to use with other GNNs, GNNGUARD provides a generic mechanism that is easy to
use with many GNN architectures. Further, in contrast to GNN-SVD [18], which uses only graph
structure for defense, GNNGUARD takes advantage of information encoded in both node features and
graph structure. Also, [18] is designed specifically for the Nettack attacker [8] and so is less versatile.
Another technique [20] uses transfer learning to detect fake edges. While that is an interesting idea,
it requires a large number of clean graphs from the same domain to successfully train the transfer
model. On the contrary, GNNGUARD takes advantage of correlation between node features and
graph structure and does not need any external data. Further, recent studies (e.g., [46, 47]) focus on
theoretical certificates for GNN robustness instead of defense mechanisms. That is an important but
orthogonal direction to this paper, where the focus is on a practical adversarial defense framework.
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Table 1: Defense performance (multi-class classification accuracy) against direct targeted attacks.
Model Dataset No Attack Attack GNN-Jaccard RobustGCN GNN-SVD GNNGUARD

Cora 0.826 0.250 0.525 0.215 0.475 0.705
Citeseer 0.721 0.175 0.435 0.230 0.615 0.720
ogbn-arxiv 0.667 0.235 0.305 0.245 0.370 0.425GCN
DP 0.682 0.215 0.340 0.315 0.395 0.430

Cora 0.827 0.245 0.295 0.215 0.365 0.625
Citeseer 0.718 0.265 0.575 0.230 0.575 0.765
ogbn-arxiv 0.669 0.210 0.355 0.245 0.445 0.520GAT
DP 0.714 0.205 0.320 0.315 0.335 0.445

Cora 0.831 0.270 0.375 0.215 0.375 0.645
Citeseer 0.725 0.285 0.570 0.230 0.570 0.755
ogbn-arxiv 0.661 0.315 0.425 0.245 0.475 0.640GIN
DP 0.719 0.245 0.410 0.315 0.405 0.460

Cora 0.834 0.305 0.445 0.215 0.425 0.690
Citeseer 0.724 0.275 0.615 0.230 0.610 0.775
ogbn-arxiv 0.678 0.335 0.375 0.245 0.325 0.635JK-Net
DP 0.726 0.220 0.335 0.315 0.360 0.450

Cora 0.821 0.225 0.535 0.235 0.460 0.695
Citeseer 0.716 0.195 0.470 0.350 0.395 0.770
ogbn-arxiv 0.683 0.245 0.365 0.245 0.315 0.375

Graph
SAINT

DP 0.739 0.205 0.315 0.295 0.330 0.485

5 Experiments

We start by describing the experimental setup. We then present how GNNGUARD compares to
existing GNN defenders (Section 5.1), provide an ablation study and a case study on citation network
(Section 5.2), and show how GNNGUARD can be used with heterophily graphs (Section 5.3).

Datasets. We test GNNGUARD on four graphs. We use two citation networks with undirected edges
and binary features: Cora [48] and Citeseer [49]. We also consider a directed graph with numeric
node features, ogbn-arxiv [50], representing a citation network of CS papers published between 1971
and 2014. We use a Disease Pathway (DP) [51] graph with continuous features describing a system
of interacting proteins whose malfunction collectively leads to diseases. The task is to predict for
every protein node what diseases the protein might cause. Details are in Appendix D.

Setup. (1) Generating adversarial attacks.Generating adversarial attacks.Generating adversarial attacks.Generating adversarial attacks.Generating adversarial attacks.Generating adversarial attacks.Generating adversarial attacks.Generating adversarial attacks.Generating adversarial attacks.Generating adversarial attacks.Generating adversarial attacks.Generating adversarial attacks.Generating adversarial attacks.Generating adversarial attacks.Generating adversarial attacks.Generating adversarial attacks.Generating adversarial attacks. We compare our model to baselines under three kinds
of adversarial attacks: direct targeted attack (Nettack-Di [8]), influence targeted attack (Nettack-
In [8]), and non-targeted attack (Mettack [30]). In Mettack, we set the perturbation rate as 20% (i.e.,
∆ = 0.2E) with ‘Meta-Self’ training strategy. In Nettack-Di, ∆ = N̂0

u . In Nettack-In, we perturb 5
neighbors of the target node and set ∆ = N̂0

v for all neighbors. In the targeted attack, we select 40
correctly classified target nodes (following [8]): 10 nodes with the largest classification margin, 20
random nodes, and 10 nodes with the smallest margin. We run the whole attack and defense procedure
for each target node and report average classification accuracy. (2) GNNs.GNNs.GNNs.GNNs.GNNs.GNNs.GNNs.GNNs.GNNs.GNNs.GNNs.GNNs.GNNs.GNNs.GNNs.GNNs.GNNs. We integrate GNNGUARD
with five GNNs (GCN [3], GAT [21], GIN [7], JK-Net [22], and GraphSAINT [23]) and present
the defense performance against adversarial attacks. (3) Baseline defense algorithms.Baseline defense algorithms.Baseline defense algorithms.Baseline defense algorithms.Baseline defense algorithms.Baseline defense algorithms.Baseline defense algorithms.Baseline defense algorithms.Baseline defense algorithms.Baseline defense algorithms.Baseline defense algorithms.Baseline defense algorithms.Baseline defense algorithms.Baseline defense algorithms.Baseline defense algorithms.Baseline defense algorithms.Baseline defense algorithms. We compare
GNNGUARD to three state-of-the-art graph defenders: GNN-Jaccard [17], RobustGCN [19], and
GNN-SVD [18]. Hyperparameters and model architectures are in Appendix E.

5.1 Results: Defense Against Targeted and Non-Targeted Attacks

(1) Results for direct targeted attacks.Results for direct targeted attacks.Results for direct targeted attacks.Results for direct targeted attacks.Results for direct targeted attacks.Results for direct targeted attacks.Results for direct targeted attacks.Results for direct targeted attacks.Results for direct targeted attacks.Results for direct targeted attacks.Results for direct targeted attacks.Results for direct targeted attacks.Results for direct targeted attacks.Results for direct targeted attacks.Results for direct targeted attacks.Results for direct targeted attacks.Results for direct targeted attacks. We observe in Table 1 that Nettack-Di is a strong attacker
and dramatically cuts down the performance of all GNNs (cf. “Attack” vs. “No Attack” columns).
However, the proposed GNNGUARD outperforms state-of-art defense methods by 15.3% in the accu-
racy on average. Further, it successfully restores the performance of GNNs to the level comparable
to when there is no attack. We also observe that RobustGCN fails to defend against Nettack-Di,
possibly because the Gaussian layer in RobustGCN cannot absorb big effects when all fake edges
are in the vicinity of a target node. In contrast, GNN-SVD works well here because it is sensitive
to high-rank noise caused by the perturbation of many edges that are incident to a single node. (2)
Results for influence targeted attacks.Results for influence targeted attacks.Results for influence targeted attacks.Results for influence targeted attacks.Results for influence targeted attacks.Results for influence targeted attacks.Results for influence targeted attacks.Results for influence targeted attacks.Results for influence targeted attacks.Results for influence targeted attacks.Results for influence targeted attacks.Results for influence targeted attacks.Results for influence targeted attacks.Results for influence targeted attacks.Results for influence targeted attacks.Results for influence targeted attacks.Results for influence targeted attacks. As shown in Table 2, GNNGUARD achieves the best classifica-
tion accuracy comparing to other baseline defense algorithms. Taking a closer look at the results, we
we can find that Nettack-In is relatively less threaten than Nettack-Di indicating part of the perturbed
information was scattered during neural message passing. (3) Results for non-targeted attacks.Results for non-targeted attacks.Results for non-targeted attacks.Results for non-targeted attacks.Results for non-targeted attacks.Results for non-targeted attacks.Results for non-targeted attacks.Results for non-targeted attacks.Results for non-targeted attacks.Results for non-targeted attacks.Results for non-targeted attacks.Results for non-targeted attacks.Results for non-targeted attacks.Results for non-targeted attacks.Results for non-targeted attacks.Results for non-targeted attacks.Results for non-targeted attacks. Table
2 shows that Mettack has a considerable negative impact on GNN performance, decreasing the
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Table 2: Defense performance (multi-class classification accuracy) against influence targeted (top) and non-
targeted (bottom) attacks. Tables with full results for other GNN models are in Appendix A (influence targeted
attacks) and Appendix B (non-targeted attacks).

Model Dataset No Attack Attack GNN-Jaccard RobustGCN GNN-SVD GNNGUARD

Cora 0.831 0.525 0.635 0.605 0.615 0.775
Citeseer 0.725 0.480 0.675 0.575 0.630 0.845
ogbn-arxiv 0.661 0.570 0.605 0.620 0.525 0.710GIN
DP 0.719 0.505 0.585 0.565 0.605 0.695

Cora 0.831 0.588 0.702 0.571 0.692 0.722
Citeseer 0.725 0.565 0.638 0.583 0.615 0.711
ogbn-arxiv 0.661 0.424 0.459 0.436 0.459 0.486GIN
DP 0.719 0.537 0.559 0.528 0.513 0.571

Table 3: Ablation study on ogbn-arxiv dataset. ‘Memory’ denotes layer-wise graph memory (Section 4.2) while
‘pruning‘ denotes edge pruning operation (Section 4.1).

Model No Defense GNNGUARD w/o pruning GNNGUARD w/o memory Full GNNGUARD

GCN 0.235 0.350 0.405 0.425
GAT 0.210 0.315 0.475 0.520
GIN 0.315 0.540 0.610 0.640
JK-Net 0.335 0.565 0.625 0.635
GraphSAINT 0.245 0.305 0.360 0.375

accuracy of even the strongest GNN by 18.7% on average. Moreover, we see that GNNGUARD
achieves a competitive performance and outperforms baselines in 19 out of 20 settings. In summary,
experiments show the GNNGUARD consistently outperforms all baseline defense techniques. Fur-
ther, GNNGUARD can defend a variety of GNNs against different types of attacks, indicating that
GNNGUARD is a powerful GNN defender against adversarial poisoning.

5.2 Results: Ablation Study and Inspection of Defense Mechanism

(1) Ablation study.Ablation study.Ablation study.Ablation study.Ablation study.Ablation study.Ablation study.Ablation study.Ablation study.Ablation study.Ablation study.Ablation study.Ablation study.Ablation study.Ablation study.Ablation study.Ablation study. We conduct an ablation study to evaluate the necessity of every component of
GNNGUARD. For that, we took the largest dataset (ogbn-arxiv) and the most threatening attack
(Nettack-Di) as an example. Results are in Table 3. We observe that full GNNGUARD behaves
better and has smaller standard deviation than limited GNNGUARD w/o layer-wise graph memory,
suggesting that graph memory can contribute to defense performance and stabilize model training.
(2) Node classification on clean datasets.Node classification on clean datasets.Node classification on clean datasets.Node classification on clean datasets.Node classification on clean datasets.Node classification on clean datasets.Node classification on clean datasets.Node classification on clean datasets.Node classification on clean datasets.Node classification on clean datasets.Node classification on clean datasets.Node classification on clean datasets.Node classification on clean datasets.Node classification on clean datasets.Node classification on clean datasets.Node classification on clean datasets.Node classification on clean datasets. In principle, we don’t know if the input graph has been
attacked or not. Because of that, it is important that a successful GNN defender can deal with
poisoned graphs and also does not harm GNN performance on clean datasets. Appendix C shows
classification accuracy of GNNs on clean graphs. Across all datasets, we see that, when graphs
are not attacked, GNNs with turned-on GNNGUARD achieve performance comparable to that of
GNNs alone, indicating that GNNGUARD will not weaken learning ability of GNNs when there
is no attack. (3) Defense under different attack intensity.Defense under different attack intensity.Defense under different attack intensity.Defense under different attack intensity.Defense under different attack intensity.Defense under different attack intensity.Defense under different attack intensity.Defense under different attack intensity.Defense under different attack intensity.Defense under different attack intensity.Defense under different attack intensity.Defense under different attack intensity.Defense under different attack intensity.Defense under different attack intensity.Defense under different attack intensity.Defense under different attack intensity.Defense under different attack intensity. We investigate defense performance as a
function of attack strength. Table 4 shows attack and defense results on Cora under Mettack with
increasing attack rates. It is expected that GCN accuracy decays as attacks intensify. Nevertheless,
GNNGUARD effectively defends GCN and can do so especially under strong attack. GCN with
GNNGUARD outperforms GCN with no defense by 19.8% when 25% of the edges are attacked.

A case study of attack and defense. We report an example of attack and defense illustrating how
GNNGUARD works. Let’s examine the paper “TreeP: A Tree Based P2P Network Architecture” by
Hudzia et al. [52] that received four citations. The topic/label of this paper (i.e., node u in ogbn-arxiv
graph G) and its cited works (i.e., neighbors) is Internet Technology (IT). GIN [7] trained on clean
ogbn-arxiv graph makes a correct prediction for the paper with high confidence, fu(G) = 0.536.
Then, we poison the paper using Nettack-Di attacker, which adds four fake citations between the
paper and some very dissimilar papers from the Artificial Intelligence (AI) field. We re-trained GIN
on perturbed graph G′ and found the resulting classifier misclassifies the paper [52] into topic AI with
confidence of fu(G′) = 0.201, which is high on this prediction task with 40 distinct topics/labels.
This fragility is especially worrisome as the attacker has only injected four fake citations and was
already able to easily fool a state-of-the-art GNN. We then re-trained GIN with GNNGUARD defense
on the same perturbed graph and, remarkably, the paper [52] was correctly classified to IT with high
confidence (f ′u(G′) = 0.489) even after the attack. This example illustrates how easily an adversary
can fool a GNN on citation networks.
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Table 4: Attack and defense accuracy on Cora dataset.

Attack Rate (% edges) No Defense GNNGUARD

5% 0.771 0.776
10% 0.716 0.749
15% 0.651 0.739
20% 0.578 0.714
25% 0.531 0.729

GNNGuard can work on 
graphs with heterophily

Structural 
roles

Figure 3: Synthetic heterophily graph.
Node colors indicate structural roles.

Table 5: Performances of heterophily graphs. N/A means the method does not apply to the heterophily setting.
Model No Attack Attack GNN-Jaccard RobustGCN GNN-SVD GNNGUARD

GCN 0.834 0.385 N/A 0.525 0.595 0.715
GAT 0.851 0.325 N/A 0.575 0.635 0.770
GIN 0.891 0.450 N/A 0.575 0.650 0.775
JK-Net 0.889 0.425 N/A 0.575 0.640 0.735
GraphSAINT 0.876 0.415 N/A 0.575 0.625 0.755

5.3 Results: Defense of Heterophily Graphs

GNNGUARD with heterophily. Next, we evaluate GNNGUARD on graphs with structural roles,
a prominent type of heterophily. To measure the local topology of nodes, we use graphlet degree
vectors [53] which reflect nodes’ structural properties, e.g., triangles, betweenness, stars, etc. To do
so, we revise Eq. (3) by replacing embeddings for nodes u and v (i.e., hk

u and hk
v) with their graphlet

degree vectors (i.e., h̄k
u and h̄k

v), yielding the learned similarity skuv that quantifies structural similarity
between u and v. The graphlet degree vectors are calculated using the orbit counting algorithm [54],
are independent of node attributes, and provide a highly constraining measure of local graph topology.
We test whether the revised GNNGUARD can defend GNNs trained on graphs with heterophily.

Experiments. We synthesize cycle graphs with attached house shapes (see an example in Figure 3),
where labels are defined by nodes’ structural roles [25]. The synthetic graphs contain 1,000 nodes
(no node features, but each node has a 73-dimensional graphlet vector), 3,200 undirected edges, and
6 node labels (i.e., distinct structural roles). We use the strongest performing attacker Nettack-Di
to manipulate each graph. Results are shown in Table 5. We find that GNNGUARD achieves the
highest accuracy of 77.5%. In contrast, GNN performance without any defense is at most 45.0%.
GNNGUARD outperforms the strongest baseline by 19.2%, which is not surprising as existing GNN
defenders cannot defend graphs with heterophily. Taken together, these results show the effectiveness
of GNNGUARD, when used together with an appropriate similarity function, for graphs with either
homophily or heterophily.

6 Conclusion

We introduce GNNGUARD, an algorithm for defending graph neural networks (GNN) against poi-
soning attacks, including direct targeted, influence targeted, and non-targeted attacks. GNNGUARD
mitigates adverse effects by modifying neural message passing of the underlying GNN. This is
achieved through the estimation of neighbor relevance and the use of graph memory, which are two
critical components that are vital for a successful defense. In doing so, GNNGUARD can prune likely
fake edges and assign less weight to suspicious edges, a principle grounded in network theory of
homophily. Experiments on four datasets and across five GNNs show that GNNGUARD outperforms
existing defense algorithms by a large margin. Lastly, we show how GNNGUARD can leverage
structural equivalence and be used with heterophily graphs.
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Broader Impact

Impacts on graph ML research. Graphs are universal structures of real-world complex systems.
Because of strong representation learning capacity, GNNs have brought success in areas, ranging
from disease diagnosis [10] and drug discovery [35] to recommendation system [55]. However,
recent studies found that many GNNs are highly vulnerable to adversarial attacks [56]. Adversarial
attackers inject imperceptible changes into graphs, thereby fooling downstream GNN classifiers into
making incorrect predictions [9]. While there is a rich body of literature on adversarial attacks and
defense on non-graph data (e.g., text [39], and images [56]), much less is known about graphs. In an
effort towards closing this gap, this paper introduces GNNGUARD, a powerful GNN defender that
can be straightforwardly integrated into any existing GNN. Because GNNGUARD works with any
GNN model, its impact on graph ML research is potentially more substantial than that of introducing
another, albeit presumably more robust, GNN model.

A variety of impactful application areas. GNNGUARD can be used in a wide range of applications
by simply integrating GNNGUARD with a GNN model of user choice that is most suitable in a
particular application, as we demonstrate in this paper. Further positive impacts of GNNGUARD
include the following. First, we envision that GNNGUARD will help users (e.g., governments,
companies, and individuals) avoid potential losses that are caused by misjudgments made by attacked
GNNs (e.g., in the face of a massive attack on a financial network) [9]. Second, it would be interesting
to explore the possibility of deploying GNNGUARD for key GNN applications in biomedical domain,
where, for example, a GNN diagnostics system could predict false diagnosis if it was trained on the
attacked knowledge graph [57]. Finally, our model has implications for fairness and explainability of
GNNs [36]), which is key to increase users’ trust in GNN predictions. Lastly, GNNGUARD can be
used for debugging GNN models and understanding of black-box GNN optimization.

The need for thoughtful use of GNNGUARD. It is possible to think of a situation where one would
use GNNGUARD to get insights into black-box GNN optimization and then use those insights to
improve existing attack algorithms, thereby identifying and potentially exploiting new, currently
unknown vulnerabilities of GNNs. Because of this possibility and the fact that GNNs are becoming
increasingly popular in real-world ML systems, it is important to conduct research to get insights into
possible attacks and defense of GNNs.
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[21] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

[22] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
ICML, 2018.

[23] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
Graphsaint: Graph sampling based inductive learning method. ICLR, 2020.

[24] Dingxiong Deng, Fan Bai, Yiqi Tang, Shuigeng Zhou, Cyrus Shahabi, et al. Label propagation
on k-partite graphs with heterophily. TKDE, 2019.

[25] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning structural node
embeddings via diffusion wavelets. In KDD.

[26] Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish Singla. Policy teaching
via environment poisoning: Training-time adversarial attacks against reinforcement learning.
ICML, 2020.

[27] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. KDD, 2020.

11



[28] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li.
Boosting adversarial attacks with momentum. In CVPR, 2018.

[29] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for
detecting out-of-distribution samples and adversarial attacks. In NIPS, 2018.

[30] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In ICLR, 2019.

[31] Wei Jin, Yaxin Li, Han Xu, Yiqi Wang, and Jiliang Tang. Adversarial attacks and defenses on
graphs: A review and empirical study. arXiv:2003.00653, 2020.

[32] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial
attack on graph structured data. ICML, 2018.

[33] Xuanqing Liu, Si Si, Xiaojin Zhu, Yang Li, and Cho-Jui Hsieh. A unified framework for data
poisoning attack to graph-based semi-supervised learning. NeurIPS, 2019.

[34] Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node embeddings via
graph poisoning. In ICML, 2019.

[35] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13), 2018.

[36] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. In NeurIPS, 2019.

[37] Pablo Gainza, Freyr Sverrisson, Frederico Monti, Emanuele Rodola, D Boscaini, MM Bronstein,
and BE Correia. Deciphering interaction fingerprints from protein molecular surfaces using
geometric deep learning. Nature Methods, 17(2), 2020.

[38] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. ICLR, 2015.

[39] Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems.
EMNLP, 2017.

[40] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, 2017.

[41] Xiao Zang, Yi Xie, Jie Chen, and Bo Yuan. Graph universal adversarial attacks: A few bad
actors ruin graph learning models. arXiv:2002.04784, 2020.

[42] Kaidi Xu, Hongge Chen, Sijia Liu, Pin Yu Chen, Tsui Wei Weng, Mingyi Hong, and Xue Lin.
Topology attack and defense for graph neural networks: An optimization perspective. In IJCAI,
2019.

[43] John Boaz Lee, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and Eunyee Koh. Attention
models in graphs: A survey. ACM TKDD, 13(6).

[44] Octavian-Eugen Ganea. Non-Euclidean Neural Representation Learning of Words, Entities
and Hierarchies. PhD thesis, ETH Zurich, 2019.

[45] Tyler Derr, Yao Ma, and Jiliang Tang. Signed graph convolutional networks. In ICDM, 2018.

[46] Daniel Zügner and Stephan Günnemann. Certifiable robustness and robust training for graph
convolutional networks. In KDD, 2019.

[47] Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations.
In NeurIPS, 2019.

[48] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating
the construction of internet portals with machine learning. Information Retrieval, 3(2), 2000.

[49] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI Magazine, 29(3), 2008.

12



[50] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
NeurIPS, 2020.

[51] Monica Agrawal, Marinka Zitnik, and Jure Leskovec. Large-scale analysis of disease pathways
in the human interactome. In Pacific Symposium on Biocomputing, volume 23, 2018.

[52] Benoit Hudzia, M-Tahar Kechadi, and Adrian Ottewill. Treep: A tree based p2p network
architecture. In ICCC, 2005.
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