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1 Proofs

1.1 Proof of Theorem 4.2

Theorem. If the following conditions are satisfied

[C1] (Complexity) `O ◦ T ◦ H is weak VC-major with dimension d <∞.

[C2] (Consistency) h0 ∈ argmin
h∈H,T∈T

2RO(T ◦ h).

[C3] (Identifiability) η def
== inf

h∈H,T∈T :R(h)>0

RO(T ◦ h)− infT∈T RO(T ◦ h0)

R(h)
> 0.

Then,H is T -learnable. That is, for any δ ∈ (0, 1), with probability of at least 1− δ, we have:

R(ERM(S(m))) ≤ 2b

η

√2Γm(d)

m
+

4Γm(d)

m
+

√
2 log(4/δ)

m


where Γm(d) is defined in [1] as:

Γm(d)
def
== log

2

d∧m∑
j=0

(
m

j

) = d logm(1 + o(1)) as m→∞ (1)

where d ∧m = min{d,m}. This implies R(ERM(S(m)))→ 0 in probability as m→∞.

We need several intermediate results to prove this. First, we introduce the definition of the averaged
Rademacher complexity.
Definition 1.1 (Averaged Rademacher Complexity [2]). The averaged Rademacher complexity [2]
of `O ◦ T ◦ H with respect to m samples is defined as

Rm(`O ◦ T ◦ H)
def
== Eε,x,o

[
1

m
sup

h∈H,h∈T

∣∣∣∣∣
m∑
i=1

ε(i)`O(h(x(i)), T, (x(i), o(i)))

∣∣∣∣∣
]

(2)

where εi
iid∼ Uniform{−1,+1} are the so-called Rademacher random variables and the expectation

is taken over m i.i.d. samples of ε, x, o .

The first lemma bounds the empirical risk via the averaged Rademacher complexity.
∗Work done while at the Allen Institute for AI and at the University of Illinois at Urbana-Champaign.
2This argmin operator only returns the base hypothesis.
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Lemma 1 (Adapted from the proof of Theorem 26.5 in [3]). In this lemma and its proof, for
convenience, we let the ERM algorithm return the induced hypothesis inH ◦ T (rather than the base
hypothesis only).

Given any δ ∈ (0, 1), with probability of at least 1− δ, we have

RO(ERM(S(m)))− inf
h,T

RO(T ◦ h) ≤ 2Rm(`O ◦ T ◦ H) + 2b

√
2 log(4/δ)

m

Proof. Let T ? ◦ h? be any induced hypothesis in T ×H. Given dataset S(m), we have,

RO(ERM(S(m)))−RO(T ? ◦ h?)
= RO(ERM(S(m)))− R̂O(ERM(S(m))) + R̂O(ERM(S(m)))− R̂O(T ? ◦ h?)︸ ︷︷ ︸

≤0

+ R̂O(T ? ◦ h?)−RO(T ? ◦ h?)
≤ RO(ERM(S(m)))− R̂O(ERM(S(m))) + R̂O(T ? ◦ h?)−RO(T ? ◦ h?)

By Theorem 26.5 (i) of [3], we have that with probability of at least 1− δ/2,

RO(ERM(S(m)))− R̂O(ERM(S(m))) ≤ 2R′m(`O ◦ T ◦ H) + b

√
2 log(4/δ)

m

where R′m(`O ◦ T ◦ H) is defined slightly differently in [3] as:

R′m(`O ◦ T ◦ H)
def
== Eε,x,o

[
1

m
sup

h∈H,h∈T

m∑
i=1

ε(i)`O(h(x(i)), T, (x(i), o(i)))

]
(3)

It can be seen that R′m(`O ◦ T ◦ H) ≤ Rm(`O ◦ T ◦ H) since the two quantities only differ by the
absolute value. Hence

RO(ERM(S(m)))− R̂O(ERM(S(m))) ≤ 2Rm(`O ◦ T ◦ H) + b

√
2 log(4/δ)

m

Also, by Hoeffding’s inequality, we have that with probability of at least 1− δ/2,

R̂O(T ? ◦ h?)−RO(T ? ◦ h?) ≤ b
√

log(4/δ)

2m

Combining the inequalities, we have that with probability of at least 1− δ,

RO(ERM(S(m)))−RO(T ? ◦ h?) ≤ 2Rm(`O ◦ T ◦ H) + 2b

√
2 log(4/δ)

m

Since the above inequality holds for any T ? ◦ h? ∈ T ×H, taking infimum for all T ? ◦ h? gives the
desired result.

The second lemma bounds the averaged Rademacher complexity via the weak VC-major, which is
provided in [1].

Lemma 2 (Adapted from the Theorem 2.1 in [1]). Suppose the weak VC-major dimension of
`O ◦ T ◦ H is d. then,

mRm(`O ◦ T ◦ H) ≤ σ log

(
eb

σ

)√
2mΓm(d) + 4bΓn(d) (4)

where e is the base of the natural logarithm and

σ
def
== sup

h∈H,T∈T

√
Ex,o[`2O(T, (x, h(x), o))] ∈ (0, b] (5)
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Proof. The proof of the Theorem 2.1 in [1] is long and is presented in the section 3 of [1]. Here we
only point out how to use Theorem 2.1 of [1] (equation (2.8) of the paper) to derive our lemma.

First, the Theorem 2.1 of [1] bounds an empirical process (denoted as E[Z(F)] in the paper, where F
is a function class and here we let F = `O ◦ T ◦H) rather than the averaged Rademacher complexity
(denoted as E[Z(F)] in the paper). However, the proof of Theorem 2.1 of [1] aims to bound
the averaged Rademacher complexity E[Z(F)] and then uses the relation E[Z(F)] ≤ 2E[Z(F)]
(Lemma 2.1 of [1]) to obtain the bound for E[Z(F)]. Therefore, the proof of the Theorem 2.1 in [1]
tells:

E[Z(F)] = mRm(`O ◦ T ◦ H) ≤ σ log
( e

σ

)√
2mΓm(d) + 4Γn(d) (6)

Second, in the Theorem 2.1 of [1], it is assumed that the functions in F is bounded in the interval
[0, 1]. Hence, we need scale the annotation loss to `O/b in order to use the theorem (i.e., let f = `O/b
in the definition of E[Z(F)], i.e., equation (1.2) of [1]). Also, in this case, the supreme of variance
(5) is scaled to σ/b. So, the inequality (6) is rewritten as:

E[Z(F)] =
m

b
Rm(`O ◦ T ◦ H) ≤ σ

b
log

(
e

σ/b

)√
2mΓm(d) + 4Γn(d) (7)

Rearranging the inequality gives the desired result.

Now, we are able to give the proof of the original theorem:

Proof. By consistency [C2], we have

inf
h,T

RO(T ◦ h) = inf
T
RO(T ◦ h0)

Therefore, by lemma 1, we have that with probability of at least 1− δ,

RO(ERM(S(m)))− inf
T
RO(T ◦ h0) ≤ 2Rm(`O ◦ T ◦ H) + 2b

√
2 log(4/δ)

m

By identifiability [C3], we have that with probability of at least 1− δ,

R(ERM(S(m))) ≤ 1

η

(
2R(`O ◦ T ◦ H) + 2b

√
2 log(4/δ)

m

)
(8)

By [C1] and lemma 2, we bound the Rademacher Complexity by

Rm(`O ◦ T ◦ H) ≤ σ log

(
eb

σ

)√
2Γm(d)

m
+ 4

b

m
Γn(d)

≤ b

√
2Γm(d)

m
+ 4

b

m
Γn(d)

(9)

Now the result follows by combining (8) and (9).

1.2 Proof of Proposition 4.3

Proposition. Suppose the Natarajan dimension ofH is dH <∞ and the weak-VC major dimension
of `O ◦ T is dT <∞. Then, the weak-VC major dimension of `O ◦ H, d, can be bounded:

d ≤ 2 ((dH + dT ) log(6(dH + dT )) + 2dH log c) where c = |Y|

Proof. First, we translate weak-VC major to the language of standard VC-dimension [6]: For
a fixed u ∈ R and every h ∈ H, T ∈ T , we define an binary classifier: fh,T,u(x, o) =
1 {`O(h(x), T, (x, o)) > u} and denote Fu := {fh,T,u : h ∈ H, T ∈ T } as the set of such
classifiers. Then Cu shatters a set in X ×O if and only if Fu shatters (in VC theory) the same set, so
`O ◦ T ◦ H is weak VC-major with dimension d if d = maxu∈R VC(Fu) <∞, where VC(·) is the
VC dimension for hypothesis class of binary classifiers.
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Let M be the maximum number of distinct ways to classify d points in X byH. Then for d points in
X ×O, suppose there are at mostM ways to assign multi-class labels Y to each point. By Natarajan’s
lemma [5] of multiclass classification, we have

M ≤ ddHc2dH (10)

For each way of assignment, it produces a set of d points in X × Y ×O, and for these d points, by
Sauer-Shelah lemma, there are at most

dT∑
i=0

(
d

i

)
≤
(

ed
dT

)dT
ways to classify if `O(ŷ, T, (x, o)) > u by T , so in total we have

2d ≤M
dT∑
i=0

(
d

i

)
≤M

(
ed
dT

)dT
where e is the base of the natural logarithm. Therefore, M ≥ 2d (dT /ed)

dT . Then, by (10)

ddHc2dH ≥M ≥ 2d
(
dT
ed

)dT
Taking logarithm in both side, we have

dH log d+ 2dH log c ≥ d log 2 + dT (log dT − log d− 1)

Rearrange the inequality,

d log 2 + dT (log dT − 1) ≤ (dH + dT ) log d+ 2dH log c

≤ (dH + dT )

(
d

6(dH + dT )
+ log(6(dH + dT ))− 1

)
+ 2dH log c

= d/6 + (dH + dT ) (log(6(dH + dT ))− 1) + 2dH log c

≤ d/6 + (dH + dT ) log(6(dH + dT )) + 2dH log c

where the second step follows from the first-order Taylor series expansion of logarithm function at
the point 6(dH + dT ). Therefore,

d ≤ (dH + dT ) log(6(dH + dT )) + 2dH log c− dT (log(dT ))

log 2− 1/6

≤ 2 ((dH + dT ) log(6(dH + dT )) + 2dH log c)

where the last step follows from log 2− 1/6 < 1/2.

1.3 Proof of Corollary 4.4

The first two conclusions of corollary 4.4 are straightforward. We prove the last statement:
Example. Suppose the instance is embedded in a vector space X = Rp. Consider the problem
(Example 5.1.3 in [4]) of binary classification with uniform noise rate which is modeled as a Logistic
regression: P(O 6= y|x, y) = S(wTx) where S is the sigmoid function and w is the parameter. Then
the cross-entropy loss becomes: −1{o 6= ŷ} log(S(wTx))− 1{o = ŷ} log(1− S(wTx)). We have
dT ≤ 2p+ 2.

Proof. Given 2p+ 3 points in X ×Y ×O, without loss of generality, suppose there are at least p+ 2
points such that o 6= y. For these points, the value of annotation loss only depends on S(wTx). For
any u ∈ R, the classifier

fh,T,u(x, o) = 1 {`O(h(x), T, (x, o)) > u} = 1
{

log(S(wTx)) < −u
}

is a linear classifier with decision boundary wTx = e−u. Since the VC dimension of hyperplanes
of dimension p is p + 1, we know these linear classifiers cannot classify p + 2 points arbitrarily.
Therefore, the original 2p+ 3 points cannot be classified arbitrarily, and we have dT ≤ 2p+ 2.
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1.4 Proof of Theorem 5.2

Theorem (Separation). For all x ∈ X , we denote the induced distribution families by label yi as
Di(x)

def
== {(T (x))i : T ∈ T } ⊆ DO (recall that (T (x))i is the ith row of T (x)), and the set of all

possible predictions of the label asH(x)
def
== {h(x) : h ∈ H} ⊆ Y . Suppose

γ
def
== inf

(x,i,j):p(x,yi)>0,j 6=i,yj∈H(x)
KL(Di(x) ‖ Dj(x)) > 0 (11)

ThenH is learnable from the observations of (X,O) with η ≥ γ > 0 via the ERM of cross-entropy
loss. We call γ the separation degree.

Moreover, if (11) is not satisfied, then there exists a sequence of transitions {T (k)}k ∈ T and
distributions {D(k)

X }k over X such that limk η
(k) = 0 , where η(k) is defined the same as η in [C3],

with the expectation (in the definition of the risk functions) being taken according to T (k) and D(k)
X .

Proof. Denote the cross-entropy of two distributions D1 and D2 as H(D1, D2) and the entropy of a
distribution D as H(D). Let `O be the cross-entropy loss, for a fixed x ∈ X we have that

Eo[`O(h(x), T, (x, o))]−Eo[`O(h0(x), T0, (x, o))]

= H((T0(x))h0(x), (T (x))h(x))−H((T0(x))h0(x), (T0(x))h0(x))

= H((T0(x))h0(x), (T (x))h(x))−H((T0(x))h0(x))

= KL((T0(x))h0(x) ‖ (T (x))h(x))

If h(x) 6= h0(x), then by the separation condition we have that
KL((T0(x))h0(x) ‖ (T (x))h(x)) ≥ γ

Also, if h(x) = h0(x), we have
KL((T0(x))h0(x) ‖ (T (x))h0(x)) ≥ KL((T0(x))h0(x) ‖ (T0(x))h0(x)) = 0

Therefore, for a fixed h ∈ H
RO(h ◦ T )− inf

T∈T
RO(h0 ◦ T )

= Ex,o[`O(h(x), T, (x, o))]−Ex,o[`O(h0(x), T0, (x, o))]

≥ P(h(x) 6= h0(x)) inf
T,h(x)6=h0(x)

(Eo[`O(h(x), T, (x, o))]−Eo[`O(h0(x), T, (x, o))])

+ P(h(x) = h0(x)) inf
T,h(x)=h0(x)

(Eo[`O(h(x), T, (x, o))]−Eo[`O(h0(x), T, (x, o))])

≥ P(h(x) 6= h0(x)) inf
T,h(x)6=h0(x)

(Eo[`O(h(x), T, (x, o))]−Eo[`O(h0(x), T, (x, o))])

= P(h(x) 6= h0(x)) inf
T,h(x)6=h0(x)

KL((T0(x))h0(x) ‖ (T (x))h(x))

≥ P(h(x) 6= h0(x))γ ≥ 0

This shows the consistency condition [C2]. Also, if P(h(x) 6= h0(x)) > 0, notice that P(h(x) 6=
h0(x)) = R(h), we have

η = inf
R(h)>0

RO(h ◦ T )− infT∈T RO(h0 ◦ T )

R(h)
≥ γR(h)

R(h)
= γ > 0

This shows the identifiability condition [C3].

Moreover, if the condition (11) is not satisfied, by definition we have
γ = inf

(x,i,j):p(x,yi)>0,j 6=i,yj∈H(x)
KL(Di(x) ‖ Dj(x))

= inf
(x,i,j):p(x,yi)>0,j 6=i,yj∈H(x),Di∈Di(x),Dj∈Dj(x)

KL(Di ‖ Dj)

= 0

This condition implies that for any k ∈N+, there exists a 5-tuple(
x(k), y

(k)
i , y

(k)
j , D

(k)
i (x(k)), D

(k)
j (x(k))

)
∈ X × Y × Y ×DO ×DO

such that
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• p(x, y(k)i ) > 0

• y(k)i 6= y
(k)
j

• There is a h− ∈ H such that h−(x(k)) = y
(k)
j

• KL(D
(k)
i (x(k)) ‖ D(k)

j (x(k))) < 1
k

Now, let D(k)
X be the point mass distribution with probability one to be x(k), i.e., D(k)

X ({x(k)}) = 1.
Then, we have h0(x(k)) = y

(k)
i since h0 has zero classification error. Also, let T (k)

0 ∈ T be such that
its ith row is D(k)

i , and T (k)
− ∈ T be such that its jth row is D(k)

j . We have

η(k) = inf
h∈H:R(h)>0

RO(h ◦ T )− infT∈T RO(h0 ◦ T )

R(h)

= inf
h∈H:R(h)>0

RO(h ◦ T )−RO(h0 ◦ T (k)
0 )

R(h)

≤
RO(h

(k)
− ◦ T

(k)
− )−RO(h0 ◦ T (k)

0 )

R(h
(k)
− )

≤ KL(D
(k)
i (x(k)) ‖ D(k)

j (x(k)))

≤ 1

k

Let k →∞ and the desired result follows.

1.5 Proof of Proposition 5.5

Proposition (Concentration). A sufficient condition for (11) is that for every 1 ≤ i ≤ c, there exists
a set Si ⊂ O (we call them concentration sets) such that

γC
def
== inf

(i,j,x,T ):T∈T ,p(x)>0,j 6=i
PT (O ∈ Si|x, yi)−PT (O ∈ Sj |x, yi) > 0 (12)

where PT (·) is the conditional probability defined by transition T . Under this condition, we can
relate identifiability and separation degree by η ≥ γ ≥ 2γ2C . Since a condition imposed on all T ∈ T
can be regarded as an assumption imposed on the true transition T0, condition (12) can be rewritten
as:

γC = inf
(i,j):p(x,yi)>0,i6=j

P(O ∈ Si|x, yi)−P(O ∈ Sj |x, yi) > 0 (13)

Also, in this case, one can ensure learnability by the ERM which minimizes the following transition-
independent annotation loss

`O(h(x), T, (x, o))
def
== 1{o /∈ Sh(x)} (14)

For this annotation loss, we can bound the identifiability level by η ≥ γC .
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Proof. First, for any (x, yi) ∈ X × Y with p(x, yi) > 0 and Di ∈ Di(x), Dj ∈ Dj(x), by Pinsker’s
inequality, we have

KL(Di ‖ Dj) ≥ 2‖Di −Dj‖2TV =
1

2
‖Di −Dj‖21

=
1

2

(∑
o∈O
|Di(o)−Dj(o)|

)2

≥ 1

2
(|Di(Si − Sj)−Dj(Si − Sj)|+ |Di(Sj − Si)−Dj(Sj − Si)|)2

≥ 1

2
(Di(Si − Sj)−Dj(Si − Sj)−Di(Sj − Si) +Dj(Sj − Si))2

=
1

2
(Di(Si − Sj)−Di(Sj − Si) +Dj(Sj − Si)−Dj(Si − Sj))2

=
1

2
(Di(Si)−Di(Sj) +Dj(Sj)−Dj(Si))

2

≥ 1

2
(2γC)2 = 2γ2C

where Di(·) is the probability measure over O defined by Di, and Si − Sj is the set subtraction:

Si − Sj
def
== {o : o ∈ Si ∧ o /∈ Sj} ⊂ O. Taking infimum on both sides of the inequality gives the

first result. Another proof for this result can be found in the proof of Proposition 5.8.

Next, consider the annotation loss `O(h(x), T, (x, o)) = 1{o /∈ Sh(x)} and its ERM. Then we have

Ex,o[`O(h(x), T, (x, o))]−Ex,o[`O(h0(x), T, (x, o))]

= P(o /∈ Sh(x))−P(o /∈ Sh0(x))

≥ P(h(x) 6= h0(x)) inf
x:h(x)6=h0(x)

(
P(o ∈ Sh0(x))−P(o ∈ Sh(x))

)
≥ P(h(x) 6= h0(x))γC = R(h)γC

Therefore,

η = inf
R(h)>0

RO(h ◦ T )− infT∈T RO(h0 ◦ T )

R(h)
≥ γCR(h)

R(h)
= γC > 0

as claimed.

1.6 Proof of Proposition 5.8

Proposition (Evidence). A sufficient condition for (11) is that there exists Lipschitz (with respect to
L1-norm) functions Φij : Rc → R(1 ≤ i 6= j ≤ c) (we call them evidence) with Lipschitz constants
Lij such that

γij
def
== inf

p(x,yi)>0,yj∈H(x),Di∈Di(x),Dj∈Dj(x)
Φij (Di)− Φij (Dj) > 0 (15)

In this case, the separation degree can be bounded by γ ≥ 1
2 mini6=j

(
γij
Lij

)2
.

Proof. Since Φij is Lipschitz, then for any a, b ∈ Rs, we have

|Φij(a)− Φij(b)| ≤ Lij‖a− b‖1
Hence, given (x, i, j) such that p(x, yi) > 0, j 6= i and yj ∈ H(x), then for any Di ∈ Di(x) and
Dj ∈ Dj(x), by Lipschitz property we have

‖Di −Dj‖1 ≥
1

Lij
|Φij(Di)− Φij(Dj)| ≥

γij
Lij

Therefore, by Pinsker’s inequality, we have

KL(Di ‖ Dj) ≥
1

2
‖Di −Dj‖21 ≥

1

2

(
γij
Lij

)2

≥ 1

2
min
i 6=j

(
γij
Lij

)2

7



Taking infimum on the left hand side of the inequality gives the desired result.

In particular, if Φ represents the inner product with a fixed vector u, i.e., Φ(a) = 〈u, a〉, then Φ is
Lipschitz since for any a, b ∈ Rs, by the Hölder’s inequality, we have

|Φ(a)− Φ(b)| = |〈u, a− b〉| ≤ ‖u‖∞‖a− b‖1
Therefore, we can bound the Lipschitz constant of Φ by L ≤ ‖u‖∞.

To recover the concentration condition, given sets Si ⊂ O(1 ≤ i ≤ c), for any i 6= j, let

Φij(a) =

〈 ∑
k:ok∈Si

êk −
∑

k:ok∈Sj

êk, a

〉
Then Φij(Di) = PDi(O ∈ Si) − PDi(O ∈ Sj) and Φij(Dj) = PDj (O ∈ Si) − PDj (O ∈ Sj).
The concentration condition (13) implies that

inf
p(x,yi)>0,yj∈H(x),Di∈Di(x),Dj∈Dj(x)

Φij(Di)− Φij(Dj) ≥ 2γC > 0

Moreover, since
∥∥∥∑k:ok∈Si

êk −
∑
k:ok∈Sj

êk

∥∥∥
∞

= 1 , the separation degree can be bounded by

γ ≥ 1
2 mini 6=j (γij)

2
= 2γ2C .

1.7 Proof of Proposition 5.10

Proposition. Suppose the separation degrees of yi to yj of O1 and O2 are γi→j1 and γi→j2 respec-
tively. Then, if the joint transition class is constructed as

Di(x) = {λD1 + (1− λ)D2 : D1 ∈ Di1(x), D2 ∈ Di2(x)}
then the separation degrees of yi to yj for the joint supervision satisfies:

γi→j ≤ λγi→j1 + (1− λ)γi→j2

Also, if O1 ∩ O2 = ∅, then the two sides are equal. As a consequence, a necessary condition for yi
being separated from yj by the joint signal O is that yi must be separated from yj by one of O1, O2.

Proof. Given Di ∈ Di(x) and Dj ∈ Dj(x), write Di = λDi1 + (1 − λ)Di2 and Dj = λDj1 +
(1 − λ)Dj2, where Di1 ∈ Di1(x), Dj1 ∈ Dj1(x), Di2 ∈ Di2(x), Dj2 ∈ Dj2(x). The summation
Di = λDi1 + (1 − λ)Di2 means that we combine Di1 and Di2 as distributions over O such that
Di(o) = λ1{o ∈ O1}Di1(o) + (1− λ)1{o ∈ O2}Di2(o) for any o ∈ O.

The first result basically follows from the convexity of KL-divergence: we have

KL(Di ‖ Dj) = KL(λDi1 + (1− λ)Di2 ‖ λDj1 + (1− λ)Dj2)

≤ λKL(Di1 ‖ Dj1) + (1− λ) KL(Di2 ‖ Dj2)
(16)

Hence,
λKL(Di1 ‖ Dj1) + (1− λ) KL(Di2 ‖ Dj2) ≥ inf

x:p(x,yi)>0,yj∈H(x)
KL(Di ‖ Dj) = γi→j

Take infimum again on the left hand side of the inequality, we have

λγi→j1 + (1− λ)γi→j2 ≥ γi→j
More over, if O1 ∩ O2 = ∅, then in (16), we have

KL(λDi1 + (1− λ)Di2 ‖ λDj1 + (1− λ)Dj2)

=
∑
o∈O

(λDi1(o) + (1− λ)Di2(o)) log

(
λDi1(o) + (1− λ)Di2(o)

λDj1(o) + (1− λ)Dj2(o)

)
=
∑
o∈O1

λDi1(o) log

(
λDi1(o)

λDj1(o)

)
+
∑
o∈O2

(1− λ)Di2(o) log

(
(1− λ)Di2(o)

(1− λ)Dj2(o)

)
= λKL(Di1 ‖ Dj1) + (1− λ) KL(Di2 ‖ Dj2)

Hence taking infimum on both sides gives λγi→j1 + (1− λ)γi→j2 = γi→j .

The above discussion shows that if γi→j > 0, then one of γi→j1 and γi→j2 must be positive.
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1.8 Remark 5.11

Finally, we show by a simple example that if O1 ∩ O2 6= ∅, then even if both λγi→j1 and γi→j2 are
positive, we can still have λγi→j = 0.

Consider a binary classification (Y = {±1}) with two noisy annotations (crowdsourcing with two
annotators) O1 and O2. Suppose the transitions of the two annotations are known to the learner and
are given by constant matrices

T1(x) ≡
[
0.6 0.4
0.4 0.6

]
and T2(x) ≡

[
0.4 0.6
0.6 0.4

]
Then, individually, both the annotations can ensure separation. However, suppose λ = 1/2, then in
this case, if the annotations are mixed (i.e., the learner do not distinguish the annotations of different
annotators, and hence O = O1 ∪ O2 = Y), then for any x, y,

P(O = y|x, y) = λP(O1 = y|x, y) + (1− λ)P(O2 = y|x, y) = 1/2

Here we used the condition that 1{O = Ok} is independent with X . Now, it is not possible to learn
Y from the observation of O since O is simply a random noise that is independent of Y .
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