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1 List of Underlying Assumptions

The proofs of Theorem 1 and Theorem 2 rely on a number of assumptions on the model parameters
(n,m, p, θ, α, β, γ). We enumerate them before proceeding with the formal proofs in the following
sections.

• n and m tend to∞.
• m = ω(log n) and logm = o(n). These assumptions rule out extremely tall or wide matrices,

respectively, so that we can resort to large deviation theories in the proofs.
• m = O(n). This is a sufficient condition for reliable estimation of (α, β, θ) for the proposed

computationally-efficient algorithm. If these parameters are known a priori, this assumption
can be disregarded.

• θ = Θ(1).
• α ≥ β ≥ γ. This assumption reflects realistic scenarios in which users within the same group

(or cluster) are more likely to be connected as per the social homophily theory [1].

• α, β, γ = Θ
(

logn
n

)
.
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2 Proof of Theorem 1

Theorem 1 (Information-theoretic limits). Assume that m = ω(log n) and logm = o(n). Let

p? :=
1

(
√

1− θ −
√
θ)2

max

{
3 logm

n
,

log n− 1
6nIg

mδg
,

log n− 1
6nIc1 −

1
3nIc2

mδc

}
. (1)

Fix ε > 0. If p ≥ (1+ε)p?, then there exists a sequence of estimators ψ satisfying limn→∞ P
(δ)
e (ψ) =

0. Conversely, if p ≤ (1− ε)p?, then limn→∞ P
(δ)
e (ψ) 6= 0 for any ψ.

2.1 Achievability proof

Let ψML be the maximum likelihood estimator. Fix ε > 0. Consider the sufficient conditions claimed
in Theorem 1:

p ≥ (1 + ε)3 logm

(
√

1− θ −
√
θ)2n

, (2)

p ≥
(1 + ε)(log n− 1

6nIg)

(
√

1− θ −
√
θ)2mδg

, (3)

p ≥
(1 + ε)(log n− 1

6nIc1 −
1
3nIc2)

(
√

1− θ −
√
θ)2mδc

. (4)

For notational simplicity, let us define Ir := p(
√

1− θ −
√
θ)2. Then, the above conditions can be

rewritten as:
1

3
nIr ≥ (1 + ε) logm, (5)

mδgIr +
1

6
nIg ≥ (1 + ε) log n, (6)

mδcIr +
1

6
nIc1 +

1

3
nIc2 ≥ (1 + ε) log n. (7)

In what follows, we will show that the probability of error when applying ψML tends to zero if all of
the above conditions are satisfied.

Recall that each cluster consists of three groups and the rating vectors of the three groups respect
some dependency relationship, reflected in vA3 = vA1 ⊕ vA2 and vB3 = vB1 ⊕ vB2 . Here, vxi denotes the
rating vector of the ith group in cluster x where i ∈ {1, 2, 3} and x ∈ {A,B}. This then motivates us
to assume that without loss of generality, the ground-truth rating matrix, say M0 ∈M(δ), reads:

M0 :=


1n

6×τ000m 1n
6×τ001m 1n

6×τ010m 1n
6×τ011m 1n

6×τ100m 1n
6×τ101m 1n

6×τ110m 1n
6×τ111m

0n
6×τ000m 0n

6×τ001m 0n
6×τ010m 0n

6×τ011m 1n
6×τ100m 1n

6×τ101m 1n
6×τ110m 1n

6×τ111m
1n

6×τ000m 1n
6×τ001m 1n

6×τ010m 1n
6×τ011m 0n

6×τ100m 0n
6×τ101m 0n

6×τ110m 0n
6×τ111m

0n
6×τ000m 0n

6×τ001m 1n
6×τ010m 1n

6×τ011m 0n
6×τ100m 0n

6×τ101m 1n
6×τ110m 1n

6×τ111m
0n

6×τ000m 1n
6×τ001m 0n

6×τ010m 1n
6×τ011m 0n

6×τ100m 1n
6×τ101m 0n

6×τ110m 1n
6×τ111m

0n
6×τ000m 1n

6×τ001m 1n
6×τ010m 0n

6×τ011m 0n
6×τ100m 1n

6×τ101m 1n
6×τ110m 0n

6×τ111m


(8)

where 0 < τ` < 1 for ` ∈ {0, 1}3, and
∑
`∈{0,1}3 τ` = 1. Here, we divide the columns of M0 into

eight sections T` where

Tb1b2b3 =
{
c ∈ [m] : column c of M0 =

[
1n

6
b11n6 (1⊕ b1)1n

6
b21n6 b31n6 (b2 ⊕ b3)1n

6

]ᵀ}
,

for b1, b2, b3 ∈ {0, 1}3, and we have τ` = |T`|/m. Accordingly, each row vxi is further partitioned
{vxi (`) : ` ∈ {0, 1}3}.
By symmetry, P [ψML(Y,G) 6= M ] is the same for all M ’s as long as the considered matrix respects
the δ-constraint, i.e., belongs to the class ofM(δ) where δ := {δc, δg}. Hence,

P (δ)
e (ψML) := max

M∈M(δ)
P [ψML(Y,G) 6= M ] = P [ψML(Y,G) 6= M0] . (9)
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By applying the union bound together with the definition of MLE, we then obtain

P (δ)
e (ψML) ≤

∑
X 6=M0

P [L(M0) ≥ L(X)] (10)

where L(X) denotes the negative log-likelihood of a candidate matrixX . It turns out that an interested
error event {L(M0) ≥ L(X)} depends solely on two key parameters which dictate the relationship
between X and M0 ∈ M(δ). Let us first introduce some notations relevant to the two parameters.
Let {vxi : x ∈ {A,B}, i ∈ [3]} be the rating vectors w.r.t. M0. Let {uxi : x ∈ {A,B}, i ∈ [3]} be
the counterparts w.r.t. X . The first key parameter, which we denote by kxyij , indicates the number
of users in group i of cluster x whose rating vector vxi ’s are swapped with the rating vectors uyj ’s of
users in group j of cluster y. The second key parameter, which we denote by dxi (`), is the hamming
distance between vxi (`) and uxi (`): dH (vxi (`), uxi (`)) where vxi (`) denotes part of vxi concerning
column block ` ∈ {0, 1}3 (similarly for uxi (`)).

We also find that the following constraint w.r.t. kxyij ’s plays a role in deriving some useful bounds in
Lemma 3 (to be stated later): ∑

y∈{A,B}

∑
j∈[3]

kxyij ≤
5

36
n. (11)

Lemma 1 (to be stated shortly) shows that the constraint comes without losing generality, i.e., the
constraint does not prevent the representation of all of the possible matrices. To figure out what this
means in detail, we first partitionM(δ) into numerous matrix classes:M(δ) =

⋃
T X (T ). Here each

class, which we denote by X (T ), is characterized by a tuple T that concerns the two key parameters:

T =
({
kxyij
}
i,j∈[3], x,y∈{A,B} , {d

x
i (`)}i∈[3], `∈{0,1}3, x∈{A,B}

)
. (12)

Here, the matrix class X (T ) denotes the set of all rating matrices subject to T . Let T (δ) be the set of
such tuples T ’s that also satisfy∑

y∈{A,B}

∑
j∈[3]

kxyij ≤
5

36
n, 0 ≤ dxi (`) ≤ mτ`. (13)

Lemma 1. Consider X ∈ M(δ). Then, there exists T ∈ T (δ) such that X ∈ X (T ). This implies
that M(δ) = T (δ), i.e., the constraint (13) made in T (δ) does not lose any generality in matrix
representation.

We refer to Appendix A.1 for the proof of Lemma 1.

Using the introduced set T (δ) and the tuple T , we can then rewrite the RHS of (10) as:∑
X 6=M0

P [L(M0) ≥ L(X)] =
∑

T∈T (δ)

∑
X∈X (T )

P [L(M0) ≥ L(X)] . (14)

Lemma 2 stated below provides an upper bound on P [L(M0) ≥ L(X)] for X ∈ X (T ) and T ∈ T (δ).

Lemma 2. Let B(p)
i

i.i.d∼ Bern(p) B
(θ)
i

i.i.d∼ Bern(θ), B(α)
i

i.i.d∼ Bern(α), B(β)
i

i.i.d∼ Bern(β) and

B
(γ)
i

i.i.d∼ Bern(γ). Let

B := c1

n1∑
i=1

B
(p)
i

(
2B

(θ)
i − 1

)
+ c2

n1+n2∑
j=n1+1

(
B

(β)
j −B(α)

k

)

+ c3

n1+n2+n3∑
k=n1+n2+1

(
B

(γ)
k −B(α)

k

)
+ c4

n1+n2+n3+n4∑
`=n1+n2+n3+1

(
B

(γ)
` −B(β)

`

)
.

(15)

where n1 := Λ(M0, X), n2 := ηα→βT , n3 := ηα→γT and n4 := ηβ→γT . Here, Λ(M0, X) indicates the
number of distinct entries between M0 and X . Moreover, ηx→yT denotes the number of pairs of users
who are originally connected with x-type edges (in light of M0), but misclassified as y-type edges (in
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view of X) where x, y ∈ {α, β, γ}; see Appendix A.2 for its mathematical definition. Assume that
α, β, γ, p = o(1). Then, for X ∈ X (T ) and T ∈ T (δ), we have

P [L (M0) ≥ L(X)] = P [B ≥ 0] (16)
≤ exp (− (1 + o(1)) (n1Ir + n2Ig + n3Ic1 + n4Ic2)) . (17)

We refer to Appendix A.2 for the proof of Lemma 2.

Applying (17) to the RHS of (14), we then get∑
T∈T (δ)

∑
X∈X (T )

P [L(M0) ≥ L(X)] ≤
∑

T∈T (δ)

|X (T )| exp
(
−(1 + o(1))KT I

)
, (18)

where K := [n1, n2, n3, n4]T and I := [Ir, Ig, Ic1, Ic2]T . We find that partitioning T (δ) further into
T (δ)

1 and the rest T (δ) \ T (δ)
1 serves to ease the proof:

T (δ)
1 :=

{({
kxyij
}
i,j∈[3],x,y∈{A,B} , {d

x
i (`)}i∈[3],`∈{0,1}3,x∈{A,B}

)
: kxyij ≤

τ

5
n, dxi (`) ≤ τm

}
,

where τ is some constant that lies in between 0 and τ`. Using this further split, we can then rewrite
the RHS of (18) as∑

T∈T (δ)\T (δ)
1

|X (T )| exp
(
−(1 + o(1))KT I

)
+

∑
T∈T (δ)

1

|X (T )| exp
(
−(1 + o(1))KT I

)
. (19)

This together with Lemmas 3 and 4 (stated below) yields∑
T∈T (δ)

∑
X∈X (T )

P [L(M0) ≥ L(X)] −→ 0 as n,m→∞. (20)

Applying this to (14) and (10), we conclude that P (δ)
e (ψML)→ 0 as n and m tend to infinity. This

completes the achievability proof of Theorem 1. �

Lemma 3. The first term in (19) is upper-bounded by∑
T∈T (δ)\T (δ)

1

|X (T )| exp
(
−(1 + o(1))KT I

)
≤ 6n26me−Ω(nm)Ir ≤

(
6

n

)n(
26

m

)m
. (21)

We see that the RHS of (21) tends to 0 as n and m go to infinity, thus leading the LHS to converge to
0 in the limit.

We refer to Appendix A.3 for the proof of Lemma 3.

Lemma 4. The second term in (19) is upper-bounded by∑
T∈T (δ)

1

|X (T )| exp
(
−(1 + o(1))KT I

)
≤

∑
T∈T (δ)

1

exp
(
− ε

4
dt logm− ε

2
(kg + kc) log n

)
, (22)

where

kg :=
∑

x∈{A,B}

∑
i,j∈[3]

kxxij ,

kc :=
∑

x∈{A,B}

∑
y∈{A,B}\{x}

∑
i,j∈[3]

kxyij ,

dt :=
∑

x∈{A,B}

∑
`∈{0,1}3

dx1(`) + dx2(`) + dx3(`).

Note that the RHS of (22) converges to 0 as n and m tend to infinity.

We refer to Appendix A.4 for the proof of Lemma 4.
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Remark 1 (Technical distinction). One technical distinction relative to the previous works [2, 3]
arises from the fact that in our setting, the hamming distances (dx1(`), dx2(`), dx3(`)) defined w.r.t.
different groups yet within the same cluster are intimately related. Note that the rating vectors of
X ∈M(δ) are linearly dependent: ux3 = ux1 ⊕ ux2 for x ∈ {A,B}. To carefully compute dx3(`) as a
function of dx1(`) and dx2(`), we introduce another quantity that represents the number of elements
where ux1 and vx1 differ in column block `, which we denote by I`, (also for ux2 , vx2 ):

dxov(`) := |{c ∈ I` : vx1 (c) 6= ux1(c), vx2 (c) 6= ux2(c)}|. (23)

By the dependency structure,

dx3(`) = (dx1(`)− dxov(`)) + (dx2(`)− dxov(`)) = dx1(`) + dx2(`)− 2dxov(`). (24)

This distinction affects all the detailed derivations through the achievability proof. �

2.2 Converse Proof

Define Ir := p(
√

1− θ −
√
θ)2. The goal of the converse proof is to show that P (τ)

e (ψ) 9 0 as
n→∞ for any set of feasible rating matricesM(δ) and estimator ψ, if at least one of the following
conditions is satisfied:

1
3nIr ≤ (1− ε) logm, (Perfect clustering/grouping regime) (25)

δgmIr + 1
6nIg ≤ (1− ε) log n, (Grouping-limited regime) (26)

δcmIr + 1
6nIc1 + 1

3nIc2 ≤ (1− ε) log n, (Clustering-limited regime) (27)

We first seek a lower bound on the infimum of the worst-case probability of error over all estimators.
Let M be a random variable that denotes the hidden rating matrix (to be estimated) and is uniformly
drawn fromM(δ). Denote the success event of estimation of rating matrix by S, which is given by

S :=
⋂

X∈M(δ)

X 6=M0

(L(X) > L(M0)) . (28)

From the definition of worst-case probability of error in (9), we obtain

inf
ψ
P (τ)
e (ψ) = inf

ψ
max

M∈M(δ)
P
[
ψ(Y Ω, G) 6= M

]
≥ inf

ψ
max

M∈M(δ)
P
[
ψ(Y Ω, G) 6= M, M = M

]
= inf

ψ
max

M∈M(δ)
P
[
ψ(Y Ω, G) 6= M |M = M

]
(29)

= inf
ψ

max
M∈M(δ)

∑
X 6=M

P
[
ψ(Y Ω, G) = X |M = M

]
≥ inf

ψ
max

M∈M(δ)

∑
X∈M(δ)

X 6=M

P
[
ψ(Y Ω, G) = X |M = M

]
= max
M∈M(δ)

∑
X∈M(δ)

X 6=M

P
[
ψML(Y Ω, G) = X |M = M

]
(30)

≥
∑

X∈M(δ)

X 6=M0

P
[
ψML(Y Ω, G) = X |M = M0

]
(31)

=
∑

X∈M(δ)

X 6=M0

P [L(X) ≤ L(M0)] (32)

≥ P

 ⋃
X∈M(δ)

X 6=M0

(L(X) ≤ L(M0))

 (33)
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= P [Sc] (34)

where (29) follows because M is uniformly distributed; (30) follows due to the fact that the maximum
likelihood estimator is optimal under uniform prior; (31) follows since M0 ∈ M(δ); (32) follows
by the definition of negative log-likelihood in (78); (33) follows from union bound; and finally (34)
follows from (28). Therefore, in order to show that limn→∞ infψ P

(τ)
e (ψ) 6= 0, it suffices to show

that limn→∞ P [S] = 0.

Next, we show that limn→∞ P [S] = 0 under each of the three conditions stated in (25), (26), (27),
respectively. Before delving into the convergence proof, we present the following key lemma that is
essential for developing the convergence analysis. In this lemma, we use B(µ) to refer to a Bernoulli
random variable with (fixed or asymptotic) parameter µ ∈ [0, 1], that is, P[B(µ) = 1] = 1−P[B(µ) =
0] = µ.

Lemma 5. Assume that α, β, γ, p = Θ
(

logn
n

)
and θ ∈ [0, 1] is a constant. For positive integers

n1, n2, n3, n4 satisfying max
{
pn1,
√
αβn2,

√
αγn3,

√
βγn4

}
= ω(1), consider the sets of inde-

pendent Bernoulli random variables {B(p)
i : i ∈ [n1]}, {B(θ)

i : i ∈ [n1]}, {B(α)
i : i ∈ [n1 + 1 : n3]},

{B(β)
i : i ∈ [n1 + 1 : n2]∪ [n1 +n2 +n3 + 1 : n1 +n2 +n3 +n4}, and {B(γ)

i : i ∈ [n1 +n2 + 1 :
n1 + n2 + n3 + n4]}. Define

B(n1, n2, n3, n4) :=

n1∑
i=1

log

(
1− θ
θ

)
B

(p)
i

(
2B

(θ)
i −1

)
+

n1+n2∑
j=n1+1

log

(
(1− β)α

(1− α)β

)(
B

(β)
j −B

(α)
j

)

+

n1+n2+n3∑
k=n1+n2+1

log

(
(1− γ)α

(1− α)γ

)(
B

(γ)
k −B

(α)
k

)

+

n1+n2+n3+n4∑
`=n1+n2+n3+1

log

(
(1− γ)β

(1− β)γ

)(
B

(γ)
` −B

(β)
`

)
.

Then, the probability that B(n1, n2, n3, n4) being non-negative can be lower bounded by

P [B(n1, n2, n3, n4) ≥ 0] ≥ 1

2
exp
(
−(1+o(1)) (n1Ir+n2Ig+n3Ic1+n4Ic2)

)
. (35)

We refer to Appendix B.1 for the proof of Lemma 5.

Failure Proof for the Perfect Clustering/Grouping Regime. Let T` be a section of columns of
M0 with τ` = |T`|/m = Θ(1), and assume ` = b1b2b3 ∈ {0, 1}3. For c ∈ T`, define M〈c〉 be a
rating matrix, which is identical to M0, except its cth column which is given by[

0n
6

b11n6 b11n6 b21n6 b31n6 (b2 ⊕ b3)1n
6

]
.

We focus on the family of rating matrices {M〈c〉 : c ∈ T`}. It is easy to verify that the type of all
such matrices is given by

T =
({
kxyij = 0

}
i,j∈[3], x,y∈{A,B} ,

{
dAi (`) = 1

}
i∈{1,3},`∈{0,1}3 ,

{
dA2 (`) = 0

}
`∈{0,1}3 ,{

dBi (`) = 0
}
i∈[3],`∈{0,1}3

)
. (36)

Using the definition of the negative log-likelihood in (78) for M〈c〉 with c ∈ T`, we obtain

P
[
L(M〈c〉) > L(M0)

]
= 1− P

[
L(M〈c〉) ≤ L(M0)

]
= 1− P

log

(
1− θ
θ

) Λ(Mc,M0)∑
i=1

B
(p)
i

(
2B

(θ)
i − 1

)
≥ 0


= 1− P

log

(
1− θ
θ

) n
3∑
i=1

B
(p)
i

(
2B

(θ)
i − 1

)
≥ 0

 (37)
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≤ 1− 1

4
exp

(
−(1 + o(1))

n

3
Ir

)
(38)

≤ exp

(
−1

4
exp

(
−(1 + o(1))

n

3
Ir

))
, (39)

where (37) follows from the evaluation of Λ(M〈c〉,M0) for the type of M〈c〉 given in (36), and (38) is
an immediate consequence of Lemma 5 by setting n1 = n

3 , n2 = n3 = n4 = 0.

Next, we can upper bound the success probability of an ML estimator as

P[S] ≤ P

[ ⋂
c∈T`

(
L(M〈c〉) > L(M0)

)]
=
∏
c∈T`

P
[
L(M〈c〉) > L(M0)

]
(40)

≤ exp

(
−1

4
exp

(
−(1 + o(1))

n

3
Ir

))τ`m
(41)

= exp

(
−1

4
τ` exp

(
−(1 + o(1))

n

3
Ir + logm

))
≤ exp

(
−1

4
τ` exp

(
−
(
(1 + o(1))(1− ε)− 1

)
logm

))
(42)

≤ exp

(
−1

4
τ` exp

((
ε− o(1)(1− ε)

)
logm

))
, (43)

where (40) follows from the fact that the events {L(Mc) > L(M0)} are mutually independent for
all c ∈ T`, since each event corresponds to a different column within the block of columns T`;
(41) follows from (39); and finally, (42) follows from (25). Therefore, we get

lim
n,m→∞

P [S] ≤ lim
n,m→∞

exp

(
−1

4
τ` exp

((
ε− o(1)(1− ε)

)
logm

))
= 0, (44)

which shows that if (25) holds, then the recovery fails with high probability.

Failure Proof for the Grouping-Limited Regime. Without loss of generality, assume δgm =
dH
(
vA1 , v

A
2

)
, i.e., the rating vectors of groups GA1 and GA2 that have the minimum inter-group

Hamming distance. In the following, we will introduce a class of rating matrices, which are obtained
by switching two users between groups GA1 and GA2 , and prove that if (26) holds, then with high
probability the ML estimator will fail by selecting one of the rating matrices from this class, instead
of M0.

First, we present the following lemma that guarantees the existence of two subsets of users with
certain properties. The proof of the lemma is presented in Appendix B.2.

Lemma 6. Let α, β = Θ
(

logn
n

)
. Consider groups GA1 and GA2 . As n → ∞, with probability

approaching 1, there exists two subgroups G̃A1 ⊂ GA1 and G̃A2 ⊂ GA2 with size |G̃A1 | ≥ n
log3 n

and

|G̃A2 | ≥ n
log3 n

such that there is no edge between the nodes in G̃A1 ∪ G̃A2 , that is,

E ∩
(

(G̃A1 ∪ G̃A2 )× (G̃A1 ∪ G̃A2 )
)

= ∅.

For given sub-groups G̃A1 and G̃A2 , we define the set of rating matrices

{M〈f,g〉 : f ∈ G̃A1 , g ∈ G̃A2 }

where M〈f,g〉 is identical to M0, except its f th and gth rows, which are swapped. Note that for every
M〈f,g〉 in this class, we have Λ(M〈f,g〉,M0) = 2δgm. Moreover, the groups induced by M〈f,g〉 are
ĜA1 = GA1 ∪ {g} \ {f} and ĜA2 = GA2 ∪ {f} \ {g}, while the other four groups are identical to those
of matrix M0. Therefore, for each M〈f,g〉 we have

8



L(M0)− L(M〈f,g〉)

= log

(
1− θ
θ

) 2δgm∑
i=1

B
(p)
i

(
2B

(θ)
i − 1

)

+ log

(
(1− β)α

(1− α)β

) ∑
h∈GA1 \{f}

(
B

(β)
(g,h) −B

(α)
(f,h)

)
+

∑
h∈GA2 \{g}

(
B

(β)
(f,h) −B

(α)
(g,h)

)
= log

(
1− θ
θ

) 2δgm∑
i=1

B
(p)
i

(
2B

(θ)
i − 1

)
+ log

(
(1− β)α

(1− α)β

) 2(n6−1)∑
j=1

(
B

(β)
j −B(α)

j

)
= B

(
2δgm, 2(

n

6
− 1), 0, 0

)
Then, using Lemma 5, we can write

P
[
L(M〈f,g〉) > L(M0)

]
= 1− P

[
B(2δgm, 2(

n

6
− 1), 0, 0) ≥ 0

]
≤ 1− 1

4
exp

(
−(1 + o(1))

(
2δgmIr + 2

(n
6
− 1
)
Ig

))
≤ exp

(
−1

4
exp

(
−(1 + o(1))

(
2δgmIr + 2

(n
6
− 1
)
Ig

)))
. (45)

Finally, we can bound the success probability of an ML estimator as

P[S] ≤ P

 ⋂
f∈G̃A1 ,g∈G̃A2

(
L(M〈f,g〉) > L(M0)

) =
∏

f∈G̃A1 ,g∈G̃A2

P
[
L(M〈f,g〉) > L(M0)

]
(46)

≤
(

exp

(
−1

4
exp

(
−(1 + o(1))

(
2δgmIr + 2

(n
6
− 1
)
Ig

))))|G̃A1 |·|G̃A2 |
(47)

= exp

(
− n2

4 log6(n)
exp

(
−(1 + o(1))

(
2δgmIr + 2

(n
6
− 1
)
Ig

)))
(48)

≤ exp

(
− n2

4 log6(n)
exp (−2(1 + o(1))(1− ε) log n)

)
(49)

≤ exp

(
−n

2(ε−o(1)(1−ε))

4 log6(n)

)
, (50)

where (46) holds since events {L(M〈f,g〉) > L(M0)} are independent due to the fact that there is no
edge between nodes in G̃A1 ∪ G̃A2 ; (47) follows from (45); we used |G̃A1 | = |G̃A2 | = n

log3 n
in (48);

and (49) follows from the condition in (26). Finally, we obtain

lim
n→∞

P[S] ≤ lim
n→∞

exp

(
−n

2(ε−o(1)(1−ε))

4 log6(n)

)
= 0,

which implies that the ML estimator will fail in finding M0 with high probability.

Failure Proof for the Clustering-Limited Regime. The proof of this case follows the same
structure as that of the grouping-limited regime. Without loss of generality, assume vA1 and vB2
be rating vectors whose minimum hamming distance is δcm, i.e., dH

(
vA1 , v

B
2

)
= δcm. Note that

the corresponding groups defined by such rating vectors, GA1 and GB2 , belong to different clusters.
Similar to Lemma 6, we pick subsets G̃A1 ⊂ GA1 and G̃B2 ⊂ GB2 with |G̃A1 | = |G̃B2 | = n

log3 n
. Note

that the subgraph induced by G̃A1 ∪ G̃B2 is edge-free. Then, we consider the set of all rating matrices

{M〈f,g〉 : f ∈ G̃A1 , g ∈ G̃B2 },

9



where

M〈f,g〉(r, :) =

{
M0(g, :) if r = f,
M0(f, :) if r = g,
M0(r, :) otherwise.

Then, for M〈f,g〉, we have

L(M0)− L(M〈f,g〉)

= log

(
1− θ
θ

) Λ(M〈f,g〉,M0)∑
i=1

B
(p)
i

(
2B

(θ)
i − 1

)

+ log

(
(1− γ)α

(1− α)γ

) ∑
h∈GA1 \{f}

(
B

(γ)
(g,h) −B

(α)
(f,h)

)
+

∑
h∈GB2 \{g}

(
B

(γ)
(f,h) −B

(α)
(g,h)

)
+ log

(
(1− γ)β

(1− β)γ

) ∑
h∈GA2 ∪GA3

(
B

(γ)
(g,h) −B

(β)
(f,h)

)
+

∑
h∈GB1 ∪GB3

(
B

(γ)
(f,h) −B

(β)
(g,h)

)
= B

(
2δcm, 0, 2(

n

6
− 1),

2n

3

)
.

Applying Lemma 5, we get

P
[
L(M〈f,g〉) > L(M0)

]
= 1− P

[
B(2δgm, 2(

n

6
− 1), 0, 0) ≥ 0

]
≤ exp

(
−1

4
exp

(
−(1 + o(1))

(
2δcmIr + 2

(n
6
− 1
)
Ic1 + 2

n

3
Ic2

)))
.

(51)

Therefore, the success probability of the ML estimator can be bounded as

P[S] ≤
∏

f∈G̃A1 ,g∈G̃B2

P
[
L(M〈f,g〉) > L(M0)

]
(52)

≤
(

exp

(
−1

4
exp

(
−(1 + o(1))

(
2δcmIr + 2

(n
6
− 1
)
Ic1 + 2

n

3
Ic2

))))|G̃A1 |·|G̃A2 |
(53)

≤ exp

(
− n2

4 log6(n)
exp (−2(1 + o(1))(1− ε) log n)

)
(54)

≤ exp

(
−n

2(ε−o(1)(1−ε))

4 log6 n

)
, (55)

where (52) is a consequence of independence of the events {L(M〈f,g〉) > L(M0)}; (53) follows from
(51); and in (54) we have used the condition (27). This immediately implies

lim
n→∞

P[S] = 0,

which leads to the failure of the ML estimator.

Since limn→∞ P [S] = 0 is proved under each of the three conditions stated in (25), (26), and (27),
the converse proof of Theorem 1 is concluded. �
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3 Proof of Theorem 2

Theorem 2 (Theoretical guarantees of the proposed algorithm). Assume thatm = ω(log n), logm =

o(n), m = O(n), Ic2 > 2 logn
n and Ig > ω( 1

n ). Then, as long as the sample size is beyond the
optimal sample complexity in Theorem 1 (i.e., mnp > mnp?), then the algorithm presented in
Section 4 (in the main paper) with T = O(log n) iterations ensures the worse-case error probability
tends to 0 as n→∞. That is, the algorithm returns M̂ such that P[M̂ = M ] = 1− o(1).

Proof. We propose a computationally feasible matrix completion algorithm that achieves the optimal
sample complexity characterized by Theorem 1. It consists of four phases described as below.

Phase 1 (Exact Recovery of Clusters): We use the community detection algorithm in [4] on G to
exactly2 recover the two clusters A and B. As proved in [4], the decomposition of the graph into two
clusters is correct with high probability when Ic2 > 2 logn

n . This completes Phase 1.

Phase 2 (Almost Exact Recovery of Groups): The goal of Phase 2 is to decompose the set of users
in cluster A (or cluster B) into three groups, represented by GA1 , GA2 , GA3 (or GB1 , GB2 , GB3 ). It is
worth noting that grouping at this stage is almost exact3, and will be further refined in the next phases.
To this end, we run a spectral clustering algorithm [6] on A and B separately. Let Ĝxi (0) denote the
initial estimate of the ith group of cluster x that is recovered by Phase 2, for i ∈ [3] and x ∈ {A,B}.
It is shown that the groups within each cluster are recovered with a vanishing fraction of errors if
Ig = ω(1/n). It is worth mentioning that there are other clustering algorithms [7–14] that can be
employed for this phase. Examples include: spectral clustering [7–11], semidefinite programming
(SDP) [12], non-backtracking matrix spectrum [13], and belief propagation [14]. This completes
Phase 2.

Phase 3 (Exact Recovery of Rating Vectors): We propose a novel algorithm that optimally recovers
the rating vectors of the groups within each cluster. The algorithm is based on maximum likeli-
hood (ML) decoding of users’ ratings based on the partial and noisy observations. For this model,
the ML decoding boils down to a counting rule: for each item, find the group with the maximum
gap between the number of observed zeros and ones, and set the rating entry of this group to 0. The
other two rating vectors are either both 0 or both 1 for this item, which will be determined based on
the majority of the union of their observed entries. It turns out that the vector recovery is exact with
probability 1−o(1). We first present the proposed algorithm. Then, the theoretical guarantee of the
algorithm is provided.

Define v̂xi as the estimated rating vector of vxi , i.e., the output of Algorithm 1 (see below). Let the cth

element of the rating vector vxi (or v̂xi ) be denoted by vxi (c) (or v̂xi (c)) for i ∈ [3], x ∈ {A,B} and
c ∈ [m]. Let Yr,c be the (r, c)-entry of matrix Y , and Zr,c be its mapping to {+1, 0,−1} for r ∈ [n]
and c ∈ [m]. The pseudocode is given below.

Algorithm 1 Exact Recovery of Rating Vectors

1: function VECRCV (n,m,Z, {Ĝxi (0) : i ∈ [3], x ∈ {A,B}})
2: for c ∈ [m] and x ∈ {A,B} do
3: for i ∈ [3] do ρi,x(c)←

∑
r∈Ĝxi (0) Zr,c

4: j ← arg maxi∈[3] ρi,x(c)

5: v̂xj (c)← 0
6: if

∑
i∈[3]\{j} ρi,x(c) ≥ 0 then

7: for i ∈ [3] \ {j} do v̂xi (c)← 0
8: else
9: for i ∈ [3] \ {j} do v̂xi (c)← 1

10: return {v̂xi : i ∈ [3], x ∈ {A,B}}

2Exact recovery requires the number of wrongly clustered users vanishes as the number of users tends to
infinity. The formal mathematical definition is given in [5, Definition 4].

3Almost exact recovery means that groups are recovered with a vanishing fraction of misclassified users.
The mathematical definition is given in [5, Definition 4].
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Remark 2. Algorithm 1 is one of the technical distinctions, relative to the prior works [2, 3] which
employ the simple majority voting rule under non-hierarchical SBMs. Also our technical novelty
in analysis, reflected in (57) (see below), exploits the hierarchical structure to prove the theoretical
guarantee. �

Let us now prove the exact recovery of the rating vectors of the groups within cluster A. The
proof w.r.t. cluster B follows by symmetry. Without loss of generality, assume that vA1 (c) = 0 for
c ∈ [m/2], and vA1 (c) = 1 for c ∈ m \ [m/2]. In what follows, we will prove that vA1 can be exactly
recovered, i.e., P

[
v̂A1 = vA1

]
= 1 − o(1). Similar proofs can be constructed for vA2 and vA3 . The

probability of error in recovering vA1 is expressed as

P
[
v̂A1 6= vA1

]
= P

 ⋃
c∈[m/2]

{v̂A1 (c) = 1}

 ∪
 ⋃
c∈m\[m/2]

{v̂A1 (c) = 0}


≤

 ∑
c∈[m/2]

P
[
v̂A1 (c) = 1

]+

 ∑
c∈m\[m/2]

P
[
v̂A1 (c) = 0

] (56)

=

 ∑
c∈[m/2]

P

 ⋂
i∈[2]

{
v̂Ai (c) = 1

}
∩
{
v̂A3 (c) = 0

}+ P

 ⋂
i∈{1,3}

{
v̂A1 (c) = 1

}
∩
{
v̂A2 (c) = 0

}
+

 ∑
c∈m\[m/2]

P

 ⋂
i∈[3]

{
v̂Ai (c) = 0

}+ P

{v̂A1 (c) = 0
}
∩

⋂
i∈{2,3}

{
v̂Ai (c) = 1

} (57)

≤

 ∑
c∈[m/2]

P [ρ1,A(c) + ρ2,A(c) ≤ 0] +
∑

c∈[m/2]

P [ρ1,A(c) + ρ3,A(c) ≤ 0]


+

 ∑
c∈m\[m/2]

P [ρ2,A(c) + ρ3,A(c) ≥ 0] +
∑

c∈m\[m/2]

P [ρ2,A(c) + ρ3,A(c) ≥ 0]

 (58)

=


∑

c∈[m/2]

P

 ∑
r1∈ĜA1 (0)

Zr1c +
∑

r2∈ĜA2 (0)

Zr2c ≤ 0


︸ ︷︷ ︸

Term1

+
∑

c∈[m/2]

P

 ∑
r1∈ĜA1 (0)

Zr1c +
∑

r3∈ĜA3 (0)

Zr3c ≤ 0


︸ ︷︷ ︸

Term2



+


∑

c∈m\[m/2]

P

 ∑
r2∈ĜA2 (0)

Zr2c +
∑

r3∈ĜA3 (0)

Zr3c ≥ 0


︸ ︷︷ ︸

Term3

+
∑

c∈m\[m/2]

P

 ∑
r2∈ĜA2 (0)

Zr2c +
∑

r3∈ĜA3 (0)

Zr3c ≥ 0


︸ ︷︷ ︸

Term4


(59)

where (56) follows from the union bound; (57) follows from vA1 ⊕ vA2 = vA3 ; (58) follows from the
ML decoding outlined in Algorithm 1; and (59) follows from the definition of ρi,x(c) on Line 3 in
Algorithm 1.

Next we show that each of the four terms in (59) is o(m−1). We prove that for Term1 and Term3, and
similar proofs can be carried out for Term2 and Term4. Define Ri := ĜAi (0) \GAi and ηi := |Ri| /n.
From the theoretical guarantees (i.e., exact clustering and almost-exact grouping) in Phases 1 and 2,
we have limn→∞ ηi = 0, ∀i ∈ [3] with high probability. Define ni1 :=

(
1
6 − ηi

)
n and ni2 := ηin

for i ∈ [3]. Let {B(p)
i }i.i.d.

∼ Bern(p), and {B(θ)
i }i.i.d.

∼ Bern(θ). Hence, for c ∈ [m/2], Term1 can be
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upper bounded by

P

 ∑
r1∈ĜA1 (0)

Zr1c +
∑

r2∈ĜA2 (0)

Zr2c ≤ 0


= P

 ∑
i∈ĜA1 (0)\R1

Zic +
∑
j∈R1

Zjc +
∑

k∈ĜA2 (0)\R2

Zkc +
∑
`∈R2

Z`c ≤ 0


≤ P

 ∑
i∈ĜA1 (0)\R1

Zic −
∑
j∈R1

|Zjc|+
∑

k∈ĜA2 (0)\R2

Zkc −
∑
`∈R2

|Z`c| ≤ 0


= P

− n11∑
i=1

B
(p)
i

(
2B

(θ)
i − 1

)
−

n11+n12∑
j=n11+1

B
(p)
j

−
n11+n12+n21∑
k=n11+n12+1

B
(p)
k

(
2B

(θ)
k − 1

)
−

n11+n12+n21+n22∑
`=n11+n12+n21+1

B
(p)
` ≤ 0

]
(60)

= P

n11+n21∑
i=1

B
(p)
i

(
2B

(θ)
i − 1

)
≥ −

n11+n21+n12+n22∑
j=n11+n21+1

B
(p)
j

 (61)

where (60) follows since vA1 (c) = 0 for c ∈ [m/2],

Yjc =

{
0 w.p. p(1− θ);
1 w.p. pθ,

and Zjc = −(2Yjc − 1).

The following lemma introduces a large deviation result employed in [2] to further bound (61).

Lemma 7. Let 0 < ε < 1, and 0 < p < 1/2. Suppose X ∼ Binom(εn, p). Then,

P
[
X ≥ κnp

log(1/ε)

]
≤ 2 exp

(
−κnp

2

)
, for any κ ≥ 2e. (62)

Proof. The proof is given by [2, Lemma 7].

Let κ be sufficiently large such that κ > 4e. Thus, the RHS of (61) can be upper bounded by

P

 ∑
r1∈ĜA1 (0)

Zr1c +
∑

r2∈ĜA2 (0)

Zr2c ≤ 0


≤ P

n11+n21∑
i=1

B
(p)
i

(
2B

(θ)
i − 1

)
≥ −

n11+n21+n12+n22∑
j=n11+n21+1

B
(p)
j


≤ P

[
n11+n21∑
i=1

B
(p)
i

(
2B

(θ)
i − 1

)
≥ − κnp

log 1
η1+η2

]
+ P

− n11+n21+n12+n22∑
j=n11+n21+1

B
(p)
j ≤ − κnp

log 1
η1+η2


≤ P

[
n11+n21∑
i=1

B
(p)
i

(
2B

(θ)
i − 1

)
≥ − κnp

log 1
η1+η2

]
+ 2 exp

(
−κnp

2

)
(63)

≤ P

[
log

(
1− θ
θ

)n11+n21∑
i=1

B
(p)
i

(
2B

(θ)
i − 1

)
≥ − log

(
1− θ
θ

)
cnp

log 1
η1+η2

]
+ o(m−1) (64)

≤ exp

(
1

2
log

(
1− θ
θ

)
cnp

log 1
η1+η2

− (1 + o(1))

(
1

3
− (η1 + η2)

)
nIr

)
+ o(m−1) (65)
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≈ exp

(
−(1 + o(1))

(
1

3
− (η1 + η2)

)
nIr

)
+ o(m−1) (66)

≤ exp
(
−(1 + o(1))

(
1 +

ε

4

)
logm

)
+ o(m−1) (67)

= o(m−1) (68)

where (63) follows from Lemma 7; (64) follows since np = Ω(logm); (65) readily follows from
Lemma 2; (66) follows as the first term in the exponent is insignificant compared to the other
term since np = Θ(nIr) and limη1,η2→0+

1
log 1

η1+η2

= 0; and (67) follows since 1
3nIr ≥ (1 +

ε) logm guarantees that
(

1
3−(η1+η2)

)
nIr ≥

(
1+ ε

4

)
logm as long as (η1+η2) is sufficiently small

compared to ε.

Similarly, for c ∈ m \ [m/2], Term3 can be upper bounded by

P

 ∑
r2∈ĜA2 (0)

Zr2c +
∑

r3∈ĜA3 (0)

Zr3c ≥ 0


= P

 ∑
i∈ĜA2 (0)\R2

Zic +
∑
j∈R2

Zjc +
∑

k∈ĜA3 (0)\R3

Zkc +
∑
`∈R3

Z`c ≥ 0


≤ P

 ∑
i∈ĜA2 (0)\R2

Zic +
∑
j∈R2

|Zjc|+
∑

k∈ĜA3 (0)\R3

Zkc +
∑
`∈R3

|Z`c| ≥ 0


= P

n21∑
i=1

B
(p)
i

(
2B

(θ)
i − 1

)
+

n21+n22∑
j=n21+1

B
(p)
j

+

n21+n22+n31∑
k=n21+n22+1

B
(p)
k

(
2B

(θ)
k − 1

)
+

n21+n22+n31+n32∑
`=n21+n22+n31+1

B
(p)
` ≥ 0

]
(69)

= P

n21+n31∑
i=1

B
(p)
i

(
2B

(θ)
i − 1

)
≥ −

n21+n31+n22+n32∑
j=n21+n31+1

B
(p)
j

 (70)

where (69) follows since vA1 (c) = 1 for c ∈ m \ [m/2],

Yjc =

{
0 w.p. pθ;
1 w.p. p(1− θ),

and Zjc = −(2Yjc − 1). Applying similar bounding techniques used for (60), one can show that

P

 ∑
r2∈ĜA2 (0)

Zr2c +
∑

r3∈ĜA3 (0)

Zr3c ≥ 0

 ≤ o(m−1). (71)

Finally, by (68) and (71), the probability of error in recovering vA1 is upper bounded by

P
[
v̂A1 6= vA1

]
≤

 ∑
c∈[m/2]

o(m−1) +
∑

c∈[m/2]

o(m−1)

+

 ∑
c∈m\[m/2]

o(m−1) +
∑

c∈m\[m/2]

o(m−1)


= o(1). (72)

This completes the proof of exact recovery of rating vectors.

Phase 4 (Exact Recovery of Groups): The goal in this last step is to refine the groups which are
almost recovered in Phase 2, thereby obtaining an exact grouping. To this end, we propose an
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iterative algorithm that locally refines the estimates on the user grouping within each cluster for T
iterations. More specifically, at each iteration, the affiliation of each user is updated to the group that
yields the maximum point-wise likelihood w.r.t. the considered user. The exact computation of the
point-wise likelihood requires the knowledge of the model parameters (α, β, θ). But we do not rely
on such knowledge, instead estimate them using the given ratings and graph (Y,G). Hence, we use
an approximated point-wise log-likelihood which can readily be computed as:

|{c : Yr,c = v̂xi (c)}| · log

(
1−θ̂
θ̂

)
+ e

(
{r}, Ĝxi (t− 1)

)
· log

(
(1−β̂)α̂

(1−α̂)β̂

)
(73)

where (α̂, β̂, θ̂) denote the maximum likelihood estimates of (α, β, θ). Here |{c : Yr,c = v̂xi (c)}|
indicates the number of observed rating matrix entries of the user that coincide with the corresponding
entries of the rating vector of that group; and e

(
{r}, Ĝxi (t− 1)

)
denotes the number of edges between

the user and the set of users which belong to that group. The pseudocode is described in Algorithm 2.

Algorithm 2 Local Iterative Refinement of Groups (Set flag = 0)

1: function REFINE (flag, n,m, T, Y,G, {(Ĝxi (0), v̂xi ) : i ∈ [3], x ∈ {A,B}})
2: α̂← 1

6(n/62 )
|{(f, g) ∈ E : f, g ∈ Gxi , x ∈ {A,B}, i ∈ [3]}|

3: β̂ ← 6
n2

∣∣{(f, g) ∈ E : f ∈ Gxi , g ∈ Gxj , x ∈ {A,B}, i ∈ [3], j ∈ [3] \ i
}∣∣

4: θ̂ ← |{(r, c) ∈ Ω : Yrc 6= v̂xi (c), r ∈ Ĝxi (0)}|/|Ω|
5: for t ∈ [T ] and x ∈ {A,B} do
6: for i ∈ [3] do Ĝxi (t)← ∅
7: for r ← 1 to n do
8: j ← arg maxi∈[3] |{c : Yr,c = v̂xi (c)}|· log

(
1−̂θ
θ̂

)
+e
(
{r}, Ĝxi (t− 1)

)
· log

(
(1−β̂)α̂

(1−α̂)β̂

)
9: Ĝxj (t)← Ĝxj (t) ∪ {r}

10: if flag == 1 then
11: {v̂xi : i ∈ [3], x ∈ {A,B}} ← VECRCV (n,m, Y, {Ĝxi (t) : i ∈ [3], x ∈ {A,B}})
12: return {Ĝxi (T ) : i ∈ [3], x ∈ {A,B}}, {v̂xi : i ∈ [3], x ∈ {A,B}}

In order to prove that Algorithm 2 ensures the exact recovery of groups, we intend to show that the
number of misclassified users in each cluster strictly decreases with each iteration. To this end, we
rely on a technique that was employed in many relevant papers [2,3,15]. The technique aims to prove
that the misclassification error rate is reduced by a factor of 2 with each iteration. More specifically,
assuming that the previous phases are executed successfully, if we start with ηn misclassified users
within one cluster, for some small η > 0, then it intends to show that we end up with η

2n misclassified
users with high probability as n→∞ after one iteration of refinement. Hence, with this technique,
running the local refinement for T = log(ηn)

log 2 within the groups of each cluster would suffice to
converge to the ground truth assignments. The proof of such error rate reduction follows the one
in [3, Theorem 2] in which the problem of recovering K communities of possibly different sizes is
studied. By considering the case of three equal-sized communities, the guarantees of exact recovery
of the groups within each cluster readily follows when T = O(log n).

Remark 3. The iterative refinement in Algorithm 2 can be applied only on the groups (when
flag = 0), or on the groups as well as the rating vectors (for flag = 1). Even though the former is
sufficient for reliable estimation of the rating matrix, we show, through our simulation results in the
following section, that the latter achieves a better performance for finite regimes of n and m. �

This completes the proof of Phase 4, and concludes the proof of Theorem 2.
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4 Supplementary Experimental Results

Similar to [2, 3, 16, 17], the performance of the proposed algorithm is assessed on semi-real data
(real graph but synthetic rating vectors). We consider a subgraph of the political blog network [18],
which is shown to exhibit a hierarchical structure [19]. In particular, we consider a tall matrix setting
of n = 381 and m = 200 in order to investigate the gain in sample complexity due to the graph
side information. The selected subgraph consists of two clusters of political parties, each of which
comprises three groups. The three groups of the first cluster consist of 98, 34 and 103 users, while
the three groups of the second cluster consist of 58, 68 and 20 users.

In order to visualize the underlying hierarchical structure of the considered subgraph of the political
blog network, we apply a dimensionality reduction algorithm, called t-Distributed Stochastic Neighbor
Embedding (t-SNE) [20] to visualize high-dimensional data in a low-dimensional space. Fig. 1 shows
two clusters that are colored in red and blue. Each cluster comprises three groups, represented by
circle, triangle and square.

Figure 1: Visualization of a subgraph of the political blog network [18] using t-SNE algorithm [20].
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A Proofs of Lemmas for Achievability Proof of Theorem 1

A.1 Proof of Lemma 1

We prove that the set T (δ) of tuples, characterized by (13), is sufficient to fully represent all X ∈
M(δ). It should be noted that, for a fixed Gxi , one can interpret

∑
y∈{A,B}

∑
j∈[3] k

xy
ij as the number

of users in Gxi whose rating vectors are swapped from vxi to other rating vectors.

Suppose there exists a groupGxi such that
∑
y∈{A,B}

∑
j∈[3] k

xy
ij > 5n

36 . This implies that the number
of users in Gxi whose rating vectors are unaltered is less than or equal to n

36 . Note that the size of
each group is n/6, and the group sizes must be conserved that for any X ∈ M(δ). Consequently,
there must be users whose rating vectors are swapped from other rating vectors to vxi , and the number
of such users is given by ∑

y∈[c]

∑
j∈[g]

kyxji =
∑
y∈[c]

∑
j∈[g]

kxyij >
5n

36
. (74)

Since there are 5 groups other than Gxi , hence, by (74), there exists at least one group Gyj such that

kyxji ≥
n

36
, (75)

where the LHS of (75) gives the number of users in such a groupGyj whose rating vectors are swapped
from vyj of such Gyj to vxi . Switch the roles of Gxi and Gyj . Hence, the number of users in Gxi whose
rating vectors are unaltered is larger than n

36 , which implies that∑
y∈[c]

∑
j∈[g]

kxyij ≤
5n

36
,

as per (13). This completes the proof of Lemma 1. �

A.2 Proof of Lemma 2

We will first calculate L(X). Let eg (X) be the number of edges between groups within clusters and
ec (X) be the number of edges across clusters w.r.t. a rating matrix X . Then, we get

P [Y | X] = (1− p)|Ω|pnm−|Ω|(1− θ)|Ω|−Λ(Y,X)θΛ(Y,X), (76)

P [G | X] = γec(X)(1− γ)(n2 )2−ec(X)βeg(X)(1− β)6(n6 )2−eg(X)

· α|E|−eg(X)−ec(X)(1− α)6(n/62 )−(|E|−eg(X)−ec(X)) (77)

where |Ω| indicates the number of observed entries and Λ(Y,X) denotes the number of distinct
entries between Y and X . By (76) and (77),

L(X) = − logP [Y | X]− logP [G | X]

= log

(
1− θ
θ

)
Λ(Y,X) + log

(
(1− β)α

(1− α)β

)
eg (X) + log

(
(1− γ)α

(1− α)γ

)
ec (X) + c

= c1 Λ(Y,X) + c2 eg (X) + c3 ec (X) + c (78)

where c1 := log
(

1−θ
θ

)
, c2 := log

(
(1−β)α
(1−α)β

)
, c3 := log

(
(1−γ)α
(1−α)γ

)
, and c is some constant which is

irrelevant to X .

By (78), L(X)− L (M0) can be written as

c1 (Λ(Y,X)− Λ(Y,M0)) + c2 (eg (X)− eg (M0)) + c3 (ec (X)− ec (M0)) . (79)

Since Λ(Y,X) indicates the number of distinct entries between Y and X , its mathematical definition
reads

Λ(Y,X) := |{(r, c) : (Y )rc 6= (X)rc}| =
∑

(r,c)∈Ω

1 {(Y )rc 6= (X)rc} .
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Thus, Λ(Y,X)− Λ(Y,M0) can be computed as

Λ(Y,X)− Λ(Y,M0) =
∑

(r,c)∈Ω

1 {(Y )rc 6= (X)rc} −
∑

(r,c)∈Ω

1 {(Y )rc 6= (M0)rc}

=
∑

(r,c)∈Ω:
(M0)rc 6=(X)rc

[1 {(Y )rc = (M0)rc} − 1 {(Y )rc = (X)rc}]

=

Λ(M0,X)∑
l=1

[
B

(p)
l

(
1−B(θ)

l

)
−B(p)

l B
(θ)
l

]

=

Λ(M0,X)∑
l=1

[
B

(p)
l

(
1− 2B

(θ)
l

)]
. (80)

Furthermore, Λ(M0, X) = |{(r, c) : (M0)rc 6= (X)rc}| reads

Λ(M0, X) :=

 ∑
x∈{A,B}

∑
i∈[3]

∑
y∈{A,B}

∑
j∈[3]

kxyij dH
(
vxi , u

y
j

)
+

 ∑
x∈{A,B}

∑
i∈[3]

n
6
−

∑
y∈{A,B}

∑
j∈[3]

k
x[3]
ij

 ∑
`∈{0,1}3

dxi (`)

 , (81)

where dH
(
vxi , u

y
j

)
denotes the hamming distance between two vectors vxi and uyj .

We decompose vectors into `-blocks. The vector vxi (`) is an either all-one or all-zero vector, for
every choice of (x, i, `). Hence, dH

(
vxi (`), vyj (`)

)
is either 0 or δ`. Therefore, dH

(
vxi , u

y
j

)
can be

written as

dH
(
vxi , u

y
j

)
=

∑
`∈{0,1}3

dH
(
vxi (`), uyj (`)

)
=

∑
`∈∆(vxi ,v

y
j )

dH
(
vxi (`), uyj (`)

)
+

∑
`/∈∆(vxi ,v

y
j )

dH
(
vxi (`), uyj (`)

)
(a)
=

∑
`∈∆(vxi ,v

y
j )

dH
(
11×δ` ⊕ v

y
j (`), uyj (`)

)
+

∑
`/∈∆(vxi ,v

y
j )

dH
(
vyj (`), uyj (`)

)
=

∑
`∈∆(vxi ,v

y
j )

(
δ` − dH

(
vyj (`), uyj (`)

))
+

∑
`/∈∆(vxi ,v

y
j )

dH
(
vyj (`), uyj (`)

)
=

∑
`∈∆(vxi ,v

y
j )

δ` −
∑

`∈∆(vxi ,v
y
j )

dyj (`) +
∑

`/∈∆(vyj ,v
y
j )

dyj (`)

=
∑

`∈{0,1}3
dH
(
vxi (`), vyj (`)

)
−

∑
`∈∆(vxi ,v

y
j )

dyj (`) +
∑

`/∈∆(vyj ,v
y
j )

dyj (`)

= dH
(
vxi , v

y
j

)
−

∑
`∈∆(vxi ,v

y
j )

dyj (`) +
∑

`/∈∆(vyj ,v
y
j )

dyj (`), (82)

where ∆(vxi , v
y
j ) indicates the set of subscripts of indices of the column blocks at which the rating

vectors vxi and vyj differ where

∆(vxi , v
y
j ) = {` ∈ {0, 1}3 : vxi (`) 6= vyj (`)}. (83)

Note that (a) holds since whenever ` /∈ ∆(vxi , v
y
j ) we have vxi (`) = vyj (`), and ` ∈ ∆(vxi , v

y
j )

implies vxi (`) and vyj (`) are different in all positions. Thus, (81) can be written as
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Λ(M0, X)

:=

 ∑
x∈{A,B}

∑
i∈[3]

∑
y∈{A,B}

∑
j∈[3]

kxyij

dH
(
vxi , v

y
j

)
−

∑
`∈∆(vxi ,v

y
j )

dxj (`) +
∑

`∈{0,1}3\∆(vxi ,v
y
j )

dxj (`)


+

 ∑
x∈{A,B}

∑
i∈[3]

n
6
−

∑
y∈{A,B}

∑
j∈[3]

kxyij

 ∑
`∈{0,1}3

dxi (`)

 . (84)

We will now evaluate eg (X) − eg (M0) and ec (X) − ec (M0). Let us denote x-type edges that
appear with probability x between users where x ∈ {α, β, γ}. Then, eg (X)− eg (M0) denotes the
difference between the number of β-type edges for X and that of M0, while ec(X)−ec(M0) denotes
the difference between the number of γ-type edges for X and that of M0 where

eg (X)− eg (M0) =

ηα→β
T∑
i=1

B
(α)
i +

ηγ→β
T∑
i=1

B
(γ)
i −

ηβ→α
T +ηβ→γ

T∑
i=1

B
(β)
i , (85)

ec(X)− ec(M0) =

ηα→γ
T∑
i=1

B
(α)
i +

ηβ→γ
T∑
i=1

B
(β)
i −

ηγ→α
T +ηγ→β

T∑
i=1

B
(γ)
i . (86)

From group’s perspective, the number of possible combinations of users within a group should be
preserved because the size of each group is preserved. For the same reason, the number of possible
combinations of users in distinct clusters are also conserved from cluster’s viewpoint. These are
reflected as:

ηα→βT + ηα→γT = ηγ→αT + ηβ→αT , (87)

ηγ→αT + ηγ→βT = ηα→γT + ηβ→γT . (88)

In the case of x < y, where x, y ∈ {α, β, γ}, ηx→yT can be interpreted as the outgoing flow of edges
from groups and clusters; otherwise, it can be interpreted as the ingoing flow of edges to groups and
clusters. Then, due to the preservation law of total number of edges,

ηα→βT + ηβ→γT + ηα→γT = ηβ→αT + ηγ→βT + ηγ→αT . (89)

Thus, by (87), (88) and (89), the RHS of (85) can be rewritten as

ηα→β
T∑
j=1

(
B

(α)
j −B(β)

j

)
+

ηβ→γ
T∑
`=1

(
B

(γ)
` −B(β)

`

)
, (90)

and the RHS of (86) is given by

ηα→γ
T∑
k=1

(
B

(α)
k −B(γ)

k

)
+

ηβ→γ
T∑
`=1

(
B

(β)
` −B(γ)

`

)
. (91)

On the other hand, one can compute

ηα→βT =
∑

x∈{A,B}

∑
i∈[3]


n

6
−

∑
y∈{A,B}

∑
j∈[3]

kxyij


︸ ︷︷ ︸

Term1

∑
j∈[3]

kxxij︸ ︷︷ ︸
Term2

 , (92)

ηα→γT =
∑

x∈{A,B}

∑
i∈[3]

n
6
−

∑
y∈{A,B}\{x}

∑
j∈[3]

kxyij

 ∑
y∈{A,B}\{x}

∑
j∈[3]

kxyij

 , (93)

ηβ→γT =
∑

x∈{A,B}

∑
i∈[3]

n
6
−

∑
y∈{A,B}\{x}

∑
j∈[3]

kxyij

 ∑
y∈{A,B}\{x}

∑
h∈[3]\{i}

∑
j∈[3]

kxyhj

 . (94)
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In (92), Term1 means the number of remaining users in Gxi , and Term2 means the number of users
that moved to other groups within cluster x. Note that (93) and (94) can be interpreted in a similar
manner.

Thus, by (80) and (90) – (94), we obtain

P [L (M0) ≥ L(X)] = P [B ≥ 0]

where B refers to the quantity defined earlier in the statement of Lemma 2. This completes the first
part of the proof (16) in Lemma 2.

Now, we will prove (17). Let

Ui := c1 B
(p)
i

(
2B

(θ)
i − 1

)
, i ∈ [1 : n1], (95)

Wj := c2

(
B

(β)
j −B(α)

j

)
, j ∈ [n1 + 1 : n1 + n2], (96)

Yk := c3

(
B

(γ)
k −B(α)

k

)
, k ∈ [n1 + n2 + 1 : n1 + n2 + n3], (97)

Z` := c4

(
B

(γ)
` −B(β)

`

)
, ` ∈ [n1 + n2 + n3 + 1 : n1 + n2 + n3 + n4]. (98)

By Chernoff bound [21],

P [B > 0] ≤ min
t>0

E
[
etB
]
≤ E

[
e

1
2B
]

= E
[
e

1
2Ui
]n1

E
[
e

1
2Wj

]n2

E
[
e

1
2Yk
]n3

E
[
e

1
2Z`
]n4

. (99)

We will calculate only E
[
e

1
2Ui
]

and E
[
e

1
2Wj

]
, since E

[
e

1
2Yk
]

and E
[
e

1
2Z`
]

can be calculated in a

similar way. One can evaluate E
[
e

1
2Ui
]

and E
[
e

1
2Wj

]
as follows

E
[
e

1
2Ui
]

= 1− p+ p θ exp

(
1

2
log

(
1− θ
θ

))
+ p (1− θ) exp

(
−1

2
log

(
1− θ
θ

))
= 1− p+ 2p

√
θ(1− θ)

= 1− p
(√

1− θ −
√
θ
)2

, (100)

E
[
e

1
2Wj

]
= (1− α)(1− β) + αβ + (1− α)β exp

(
1

2
log

(
(1− β)α

(1− α)β

))
+ α(1− β) exp

(
−1

2
log

(
(1− β)α

(1− α)β

))
= (1− α)(1− β) + αβ + 2

√
αβ(1− α)(1− β)

=
(√

αβ +
√

(1− α)(1− β)
)2

. (101)

Taking a negative log on both sides, we get

− logE
[
e

1
2Ui
]

= − log

(
1− p

(√
1− θ −

√
θ
)2
)

= p
(√

1− θ −
√
θ
)2

+O
(
p2
)

(102)

= (1 + o(1)) Ir, (103)

− logE
[
e

1
2Wj

]
= −2 log

(√
αβ +

√
(1− α)(1− β)

)
= −2 log

(√
αβ +

(
1− 1

2
α+O(α2)

)(
1− 1

2
β +O(β2)

))
(104)

= −2 log

(
1− 1

2
α− 1

2
β +

√
αβ +O(α2 + β2)

)
= α+ β − 2

√
αβ +O

(
α2 + β2

)
(105)
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=
(√

α−
√
β
)2

+O
(
α2 + β2

)
= (1 + o(1)) Ig, (106)

where (102) and (105) hold since log(1 + x) = x+O(x2) for x ' 0; and (104) is due to
√

1− x =
1− 1

2x+O(x2). Similarly, we obtain

− logE
[
e

1
2Yk
]

= − log
(√

αγ +
√

(1− α)(1− γ)
)2

= (1 + o(1))Ic1, (107)

− logE
[
e

1
2Z`
]

= − log
(√

βγ +
√

(1− β)(1− γ)
)2

= (1 + o(1))Ic2. (108)

Thus, we have

P [B > 0] ≤ E
[
e

1
2Ui
]n1

E
[
e

1
2Wj

]n2

E
[
e

1
2Yk
]n3

E
[
e

1
2Z`
]n4

= exp
(
n1 logE

[
e

1
2Ui
]

+ n2 logE
[
e

1
2Wj

]
+ n3 logE

[
e

1
2Yk
]

+ n4 logE
[
e

1
2Z`
])

= exp (− (1 + o(1)) (n1Ir + n2Ig + n3Ic1 + n4Ic2)) . (109)

This completes the proof of (17), and concludes the proof of Lemma 2. �

A.3 Proof of Lemma 3

First, we show that if either kxyij > τ
5n or dxi (`) > τm holds for some (x, y, i, j, `), then

Λ(M0, XT ) = Ω(nm) holds. Suppose there exists x, y, i?, j? such that kxyi?j? >
τ
5n, kxyij ≤ τ

5n for
i ∈ [3] \ {i?} , j ∈ [3] \ {j?} and dxi (`) ≤ τm. Then, the following inequality holds from (84)

Λ(M0, X)

≥
∑

x∈{A,B}

∑
i∈[3]

∑
y∈{A,B}

∑
j∈[3]

kxyij

dH
(
vxi , v

y
j

)
−

∑
`∈∆(vxi ,v

y
j )

dxi (`) +
∑

`∈{0,1}3\∆(vxi ,v
y
j )

dxi (`)


≥ τ

5
n

min {δg, δc} − max
i,j∈[3]

x,y∈{A,B}

|∆(vxi , v
x
j )| · τ

m = Ω(nm). (110)

This is because

dH
(
vxi , v

y
j

)
≥ m ·min {δg, δc} ,

and ∑
`∈∆(vxi ,v

y
j )

dxi (`) ≤ τm · max
i,j∈[3]

x,y∈{A,B}

|∆(vxi , v
x
j )|. (111)

Suppose there exists x, i?, `? such that dxi?,`? > τm, dxi,` < τm for all i ∈ [3]\{i?}, ` ∈ {0, 1}3\{`?}
and kxyij ≤ τ

5n. Since
∑
j∈[3],y∈{A,B} k

xy
ij ≤ 5

36n, the following inequality holds from (84)

Λ(M0, X) ≥
∑

x∈{A,B}

∑
i∈[3]

n
6
−

∑
y∈{A,B}

∑
j∈[3]

kxyij

 ∑
`∈{0,1}3

dxi (`)

 ≥ 1

36
n · τm = Ω(nm).

(112)

Also,
∑
T∈T \T1 |X (T )| ≤ 6n26m holds. Here 6n26m represents the total number of possible

configurations of rating matrices. Since (5), (6) and (7) imply mnIr = Ω(n log n+m logm), the
first term of (19) is upper bounded by∑

T∈T (δ)\T (δ)
1

|X (T )| exp (−(1 + o(1))Λ(M0, X)Ir) ≤ 6n26me−Ω(nm)Ir ≤
(

6

n

)n(
26

m

)m
.

This completes the proof of Lemma 3. �
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A.4 Proof of Lemma 4

We calculate the upper bound on the cardinality of matrix class |X (T )| as

|X (T )| = |
{
kxyij
}
i,j∈[3],x,y∈{A,B} | | {d

x
i (`)}i∈[3],`∈{0,1}3,x∈{A,B} |.

The following inequality holds

|
{
kxyij
}
i,j∈[3],x,y∈{A,B} | ≤

∏
x,y∈{A,B}
i,j∈[3]

( n
6

kxyij

)
, (113)

since we choose {kxyij }j∈[3],y∈{A,B} users from ith group of size n
6 in a cluster x.

Next, | {dxi (`)}i∈[3],`∈{0,1}3,x∈{A,B} | is equal to the number of cases where we first choose
dx1(`) columns in vx1 and (dx2(`) − dxov(`)) columns in vx2 among mδ` columns, and then choose
dxov(`) columns among dx1(`) columns within the column block I` for x ∈ {A,B}. Thus,
| {dxi (`)}i∈[3],`∈{0,1}3,x∈{A,B} | is equal to∏

x∈{A,B}
`∈{0,1}3

(
mδ`

dx1(`), dx2(`)− dxov(`)

)(
dx1(`)

dxov(`)

)
. (114)

By (113) and (114), the following holds

|X (T )| ≤
∏

x∈{A,B}
`∈{0,1}3

m

(
δ`

dx1(`), dx2(`)− dxov(`)

)(
dx1(`)

dxov(`)

) ∏
x,y∈{A,B}
i,j∈[3]

( n
6

kxyij

)

≤
∏

x∈{A,B}
`∈{0,1}3

exp ((dx1(`) + dx2(`)− dxov(`)) logm+ dx1(`))
∏

x,y∈{A,B}
i,j∈[3]

nk
xy
ij (115)

= exp

 ∑
x∈{A,B}

∑
`∈{0,1}3

dx1(`) + dx2(`)− dxov(`)

 logm+
∑

x∈{A,B}

∑
`∈{0,1}3

dx1(`)


× exp

 ∑
x∈{A,B}

∑
i∈[3]

∑
y∈{A,B}

∑
j∈[3]

kxyij

 log n

 (116)

= exp

dt
2

logm+
∑

x∈{A,B}

∑
`∈{0,1}3

dx1(`) + (kg + kc) log n

 , (117)

where (115) follows by
(
a
b

)
≤ ab = exp(b log a) and

(
m
n

)
≤ 2m ≤ em.

Under the conditions of kxyij ≤ τ
5n and dxi (`) ≤ τm, the following inequalities hold from (84), (92),

(93) and (94)

ηα→βT ≥
(

1

6
− τ
)
nkg, (118)

ηα→γT ≥
(

1

6
− 3

5
τ

)
nkc, (119)

ηβ→γT ≥
(

1

3
− 6

5
τ

)
nkc, (120)

Λ(M0, XT ) ≥ (δg − τg)kg + (δc − τc)kc +

(
1

6
− τ
)
ndtotal, (121)

where

τg := max
i,j∈[3]

x,y∈{A,B}

|∆(vxi , v
x
j )| · τ,
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τc := max
i,j∈[3]
x 6=y

|∆(vxi , v
y
j )| · τ.

By (117) – (121), the second term of (19) is upper bounded by∑
T∈T (δ)

1

exp

(
−C1

2
dt − C2kg − C3kc

)
(122)

where

C1 :=

(
1

3
− 2τ

)
nIr − logm− 1, (123)

C2 := (δg − τg)mIr +

(
1

6
− τ
)
nIg − log n, (124)

C3 := (δc − τc)mIr +

(
1

6
− 3

5
τ

)
nIc1 +

(
1

3
− 6

5
τ

)
nIc2 − log n. (125)

For sufficiently large n and m, the following inequalities hold from (5), (6) and (7)

C1 ≥
ε

2
logm, (126)

C2 ≥
ε

2
log n, (127)

C3 ≥
ε

2
log n. (128)

Thus, by (126) –(128), (122) is upper bounded by∑
T∈T (δ)

1

exp
(
− ε

4
dt logm− ε

2
(kg + kc) log n

)
. (129)

Now, we show that (129) converges to 0 as n and m tend to infinity. Let kt := kg + kc. Note that kt
is an even number because ∑

y∈{A,B}

∑
j∈[3]

kxyij =
∑

y∈{A,B}

∑
j∈[3]

kyxji

holds for all i and x since the size of group should be preserved. Also, dt is an even number due to

dt =
∑

x∈{A,B}

∑
`∈{0,1}3

dx1(`) + dx2(`) + dx3(`)

=
∑

x∈{A,B}

∑
`∈{0,1}3

2 (dx1(`) + dx2(`)− dxov(`)).

The maximum value of kt is 6τm and dt is 48τm by the definition of T (δ)
1 . Then, (129) is upper

bounded by ∑
T∈T (δ)

1

exp
(
− ε

4
dt logm− ε

2
kt log n

)

≤ n−ε +m−
ε
2 +

6τn∑
k=2

48τm∑
d=2

n−
ε
2km−

ε
4d · |{T : kt = k}| · |{T : dt = d}|

≤ n−ε +m−
ε
2 +

6τn∑
k=2

48τm∑
d=2

n−
ε
2km−

ε
4d ·

(
k + 29

29

)
·
(
d+ 47

47

)
(130)

≤ n−ε +m−
ε
2 + 276

6τn∑
k=2

48τm∑
d=2

(2n−
ε
2 )k(2m−

ε
4 )d (131)
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= n−ε +m−
ε
2 + 276 · 1− (4n−ε)3τn

1− 4n−ε
· 1− (4m−

ε
2 )24τm

1− 4m−
ε
2

· 4n−ε · 4m− ε2 , (132)

where (130) follows from the fact that the number of cases of
∑n
i=1 xi = r, xi ≥ 0 for all i is equal

to
(
r+n−1
n−1

)
; and (131) is due to

(
a
b

)
≤ 2a. Since (132) goes to zero as n,m→∞, this completes the

proof of Lemma 4. �
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B Proofs of Lemmas for Converse Proof of Theorem 1

B.1 Proof of Lemma 5

We will follow a similar proof technique to that of Lemma 5.2 in [22]. Recall that we denote by B(µ)

a Bernoulli random variable with parameter µ, that is, P[B(µ) = 1] = 1− P[B(µ) = 0] = µ.

For p = Θ
(

logn
n

)
and a constant θ ∈ [0, 1], we can define X(p, θ) = log

(
1−θ
θ

)
B(p)(2B(θ) − 1),

with c′ = log
(

1−θ
θ

)
, that is,

X(p, θ) =

 − log
(

1−θ
θ

)
w.p. p(1− θ),

0 w.p. 1− p,
log
(

1−θ
θ

)
w.p. pθ.

Then, we can evaluate the moment generating function of X(p, θ) at t = 1/2 as

MX(p,θ)

(
1

2

)
= E [exp(X/2)]

= p(1− θ) exp

(
−1

2
log

(
1− θ
θ

))
+ (1− p) + pθ exp

(
1

2
log

(
1− θ
θ

))
= p(1− θ)

√
θ

1− θ
+ (1− p) + pθ

√
1− θ
θ

= 2p
√
θ(1− θ) + 1− p, (133)

which implies

− logMX(p,θ)

(
1

2

)
= (1 + o(1))(

√
1− θ −

√
θ)2p. (134)

We also define X̂ = X̂(p, θ) as a new random variable with the same range asX(p, θ), and probability
mass function given by

fX̂(x) =
exp(x2 )fX(x)

MX( 1
2 )

.

More precisely, we have

X̂(p, θ) =


− log

(
1−θ
θ

)
w.p. p

√
θ(1−θ)

MX( 1
2 )

,

0 w.p. 1−p
MX( 1

2 )
,

log
(

1−θ
θ

)
w.p. p

√
θ(1−θ)

MX( 1
2 )

.

Then it is straightforward to see that

E[X̂(p, θ)] = 0 (135)

Var[X̂(p, θ)] =
2p
√
ν(1− θ)

2p
√
θ(1− θ) + 1− p

(
log

1− θ
θ

)2

= O(p). (136)

Next, for µ, ν = Θ
(

logn
n

)
[0, 1], define Y (µ, ν) = c(B(µ)−B(ν)), where c = log

(
(1−µ)ν
(1−ν)µ

)
. More

precisely, we have

Y (µ, ν) =


− log

(
(1−µ)ν
(1−ν)µ

)
w.p. (1− µ)ν,

0 w.p. (1− µ)(1− ν) + µν,

log
(

(1−µ)ν
(1−ν)µ

)
w.p. µ(1− ν).

The moment generating function of Y (µ, ν) at t = 1/2 is given by

MY (µ,ν)

(
1

2

)
= E[exp(Y/2)]
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= (1− µ)ν exp(−c/2) + µ(1− ν) exp(c/2) + (1− µ)(1− ν) + µν

= (1− µ)ν

√
(1− ν)µ

(1− µ)ν
+ (1− ν)µ

√
(1− µ)ν

(1− ν)µ
+ (1− µ)(1− ν) + µν

= 2
√

(1− µ)(1− ν)µν + (1− µ)(1− ν) + µν

=
(√

µν +
√

(1− µ)(1− ν)
)2

, (137)

which implies

− logMY (µ,ν)

(
1

2

)
= (1 + o(1))

(√
ν −√µ

)2
. (138)

Define a random variable Ŷ = Ŷ (µ, ν) with fŶ (y) =
exp( y2 )fY (y)

MY ( 1
2 )

. Then, for Ŷ (µ, ν), we have

E[Ŷ (µ, ν)] =
1

MY ( 1
2 )

[
−(1− µ)ν exp

(
− c

2

)
· c+ µ(1− ν) exp

( c
2

)
· c
]

=
1

MY ( 1
2 )

[
−(1− µ)ν

√
(1− ν)µ

(1− µ)ν
· c+ (1− ν)µ

√
(1− µ)ν

(1− ν)µ
· c

]

=
1

MY ( 1
2 )

[
−
√

(1− µ)(1− ν)µν · c+
√

(1− µ)(1− ν)µν · c
]

= 0, (139)

and

Var[Ŷ (µ, ν)] =

√
(1− µ)(1− ν)µν(√

µν +
√

(1− µ)(1− ν)
)2

(
log

(1− µ)ν

(1− ν)µ

)2

= O (
√
µν) , (140)

where µ, ν = Θ
(

logn
n

)
.

Now, we can rewrite the random variable of interest in the lemma as

B :=

n1∑
i=1

log

(
1− θ
θ

)
B

(p)
i

(
2B

(θ)
i −1

)
+

n1+n2∑
j=n1+1

log

(
(1− β)α

(1− α)β

)(
B

(β)
j −B

(α)
j

)

+

n1+n2+n3∑
k=n1+n2+1

log

(
(1− γ)α

(1− α)γ

)(
B

(γ)
k −B

(α)
k

)
+

n1+n2+n3+n4∑
`=n1+n2+n3+1

log

(
(1− γ)β

(1− β)γ

)(
B

(γ)
` −B

(β)
`

)
,

=

n1∑
i=1

Xi(p, θ) +

n1+n2∑
j=n1+1

Yj(β, α) +

n1+n2+n3∑
k=n1+n2+1

Yk(γ, α) +

n1+n2+n3+n4∑
`=n1+n2+n3+1

Y`(γ, β). (141)

Therefore, we can write

P [B ≥ 0]

= P

 n1∑
i=1

Xi(p, θ) +

n1+n2∑
j=n1+1

Yj(β, α) +

n1+n2+n3∑
k=n1+n2+1

Yk(γ, α) +

n1+n2+n3+n4∑
`=n1+n2+n3+1

Y`(γ, β) ≥ 0


≥ P

0 ≤
n1∑
i=1

Xi(p, θ) +

n1+n2∑
j=n1+1

Yj(β, α) +

n1+n2+n3∑
k=n1+n2+1

Yk(γ, α) +

n1+n2+n3+n4∑
`=n1+n2+n3+1

Y`(γ, β) < ξ


(a)
=
∑
R(ξ)

 n1∏
i=1

fX(p,θ)(xi)

n1+n2∏
j=n1+1

fY (β,α)(yj)

n1+n2+n3∏
k=n1+n2+1

fY (γ,α)(yk)

n1+n2+n3+n4∏
`=n1+n2+n3+1

fY (γ,β)(y`)


(b)

≥
(
MX(p,θ)

(
1
2

))n1
(
MY (β,α)

(
1
2

))n2
(
MY (γ,α)

(
1
2

))n3
(
MY (γ,β)

(
1
2

))n4

exp
(

1
2ξ
)
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×
∑
R(ξ)

 n1∏
i=1

exp
(

1
2xi
)
fX(p,θ)(xi)

MX(p,θ)

(
1
2

) n1+n2∏
j=n1+1

exp
(

1
2yj
)
fY (β,α)(yj)

MY (β,α)

(
1
2

)
·
n1+n2+n3∏
k=n1+n2+1

exp
(

1
2yk
)
fY (γ,α)(yk)

MY (γ,α)

(
1
2

) n1+n2+n3+n4∏
`=n1+n2+n3+1

exp
(

1
2y`
)
fY (γ,β)(y`)

MY (γ,β)

(
1
2

) ]

= exp

(
n1 logMX(p,θ)

(
1

2

)
+ n2 logMY (β,α)

(
1

2

)
+ n3 logMY (γ,α)

(
1

2

)
+ n4 logMY (γ,β)

(
1

2

)
− 1

2
ξ

)

×
∑
R(ξ)

 n1∏
i=1

fX̂(p,θ)(xi)

n1+n2∏
j=n1+1

fŶ (β,α)(yj)

n1+n2+n3∏
k=n1+n2+1

fŶ (γ,α)(yk)

n1+n2+n3+n4∏
`=n1+n2+n3+1

fŶ (γ,β)(y`)


(c)
= exp

(
−(1 + o(1))(n1Ir + n2Ig + n3Ic1 + n4Ic2)− 1

2
ξ

)

× P

0 ≤
n1∑
i=1

X̂i(p, θ) +

n1+n2∑
j=n1+1

Ŷj(β, α) +

n1+n2+n3∑
k=n1+n2+1

Ŷk(γ, α) +

n1+n2+n3+n4∑
`=n1+n2+n3+1

Ŷ`(γ, β) < ξ

 ,
(142)

where (a) follows from independence of Xi(·, ·)’s and Yi(·, ·)’s variables in (141) since their indices
are different, hence they are generated from independent Bernoulli random variables, and note that
the summation in (a) is over

R(ξ) =

{xi}n1

i=1 , {yj}
n1+n2+n3+n4

j=n1+1 : 0 ≤
n1∑
i=1

xi +

n1+n2+n3+n4∑
j=n1+1

yj < ξ

 .

Moreover, (b) holds since exp
(

1
2

(∑n1

i=1 xi +
∑n1+n2+n3+n4

j=n1+1 yj

))
< exp

(
1
2ξ
)
; and (c) holds

due to the independence of Ŷi(·, ·)’s and X̂i(·, ·)’s. Finally Ir, Ig , Ic1 and Ic2 in (142) are given by

Ir = p
(√

1− θ −
√
θ
)2

,

Ig =
(√

α−
√
β
)2

,

Ic1 =
(√
α−√γ

)2
,

Ic2 =
(√

β −√γ
)2

,

which follow from (134) and (138).

Note that (142) holds for any value of ξ. In particular, we can choose ξn satisfying

lim
n→∞

ξn
n1Ir + n2Ig + n3Ic1 + n4Ic2

= 0, (143)

lim
n→∞

n1p+ n2

√
αβ + n3

√
αγ + n4

√
βγ

ξ2
n

= 0. (144)

Therefore, (143) implies that the exponent in (142) can be rewritten as

−(1 + o(1)) (n1Ir + n2Ig + n3Ic1 + n4Ic2)− 1

2
ξn = −(1 + o(1)) (n1Ir + n2Ig + n3Ic1 + n4Ic2) .

(145)

Moreover, the probability in (142) can be bounded as

P

0 ≤
n1∑
i=1

X̂i(p, θ) +

n1+n2∑
j=n1+1

Ŷj(β, α) +

n1+n2+n3∑
k=n1+n2+1

Ŷk(γ, α) +

n1+n2+n3+n4∑
`=n1+n2+n3+1

Ŷ`(γ, β) < ξn
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(a)

≥ 1

2
− P

 n1∑
i=1

X̂i(p, θ) +

n1+n2∑
j=n1+1

Ŷj(β, α) +

n1+n2+n3∑
k=n1+n2+1

Ŷk(γ, α) +

n1+n2+n3+n4∑
`=n1+n2+n3+1

Ŷ`(γ, β) ≥ ξn


(b)

≥ 1

2
− n1Var[X̂(p, θ)] + n2Var[Ŷ (β, α)] + n3Var[Ŷ (γ, α)] + n4Var[Ŷ (γ, β)]

ξ2
n

(c)
=

1

2
−
n1O(p) + n2O(

√
αβ) + n3O(

√
αγ) + n4O(

√
βγ)

ξ2
n

(d)
=

1

2
− o(1) >

1

4
, (146)

where (a) is due to the symmetry of random variables X̂(·, ·) and Ŷ (·, ·), (b) follows from Cheby-
shev’s inequality, in (c) the variances are replaced by (136) and (140), and finally (d) is a consequence
of (144). Plugging (145) and (146) in (142), we get the desired bound in Lemma 5. �

B.2 Proof of Lemma 6

The proof hinges on the alteration method [23]. We present a constructive proof for the existence
of subgroups G̃A1 and G̃A2 . Let r = n

log3 n
. We start by sampling two random subsets G

A

i from GAi

of size |GAi | = 2r, for i = 1, 2. Then, we prune these sets to obtain the desired edge free subsets.
To this end, for any pair of nodes f, g ∈ G

A

1 ∪ G
A

2 , we remove both f and g from G
A

1 ∪ G
A

2 if
(f, g) ∈ E. We continue this process until the remaining set of nodes is edge-free. Let P be the set
of nodes we remove from G

A

1 ∪G
A

2 throughout the pruning process. The expected value of P can be
upper bounded by

E[|P|] ≤ 2E

 ∑
f,g∈GA1 ∪G

A
2

1 [(f, g) ∈ E]


= 2

∑
f,g∈GA1

E[1 [(f, g) ∈ E]] + 2
∑

f,g∈GA2

E[1 [(f, g) ∈ E]] + 2
∑
f∈GA1

∑
g∈GA2

E[1 [(f, g) ∈ E]]

= 2
∑

f,g∈GA1

α+ 2
∑

f,g∈GA2

α+ 2
∑
f∈GA1

∑
g∈GA2

β

= 2

(
2r

2

)
α+ 2

(
2r

2

)
α+ 2(2r)2β ≤ 16r2α

where the last inequality holds since β < α. Using Markov’s inequality for the non-negative random
variable |P|, we obtain

P [|P| ≥ r] ≤ E [N ]

r
≤ 16n

log3 n
α = Θ

(
n

log3 n
× log n

n

)
= o(1). (147)

Therefore, the number of remaining nodes (after pruning) satisfies

P
[
|GA1 ∪G

A

2 \ P| > 3r
]

= P [|P| < r] = 1− P [|P| ≥ r] = 1− o(1).

Hence, G
A

1 \ P and G
A

2 \ P together have at least 3r elements. This, together with the fact that
|GA1 | = |GA2 | = 2r, implies each of G

A

1 \ P and G
A

2 \ P have at least r elements. Therefore, we
can choose r from G

A

i \ P to form the desired set G̃Ai , for i = 1, 2. This completes the proof of
Lemma 6. �
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