
A Reduction to no-Memory BCO Proofs
A.1 Proof of Theorem 9
We first need the following lemma, which bounds the prediction shifts and magnitudes of Algorithm 2.

Lemma 14. Suppose Algorithm 2 is run with A()/�) as in Theorem 9, and let G1, . . . , G) be its
predictions. Then we have that for @ > 0:

(i)
∑)
C=�

∑�
8=2‖GC+8−� − GC+1−� ‖ ≤

∑ b) /� c
C=1 (δC + 2ϑC );

(ii)
∑)
C=�

∑�
8=1‖ḠC+8−� − ḠC+1−� ‖@ ≤ 1

2�
2 ∑ b) /� c

C=1 δ
@
C ;

(iii) E
[∑)

C=�

∑�
8=1‖GC+8−� − ḠC+8−� ‖2

]
≤ 3�2 ∑ b) /� c+1

C=1 ϑ2
C .

The proof is mostly technical, and relies on the fact that Algorithm 2 changes its prediction at most
once every � rounds. See proof in Appendix A.2. We are now ready to prove Theorem 9.
Proof of Theorem 9. We show that Algorithm 2 achieves the desired regret bound. Given Lemma 11,
the proof is concluded by upper bounding E

[∑)
C=� 5C (GC+1−� , . . . , GC ) − 5̃C (GC+1−� )

]
under each set

of assumptions. First, using the coordinate-wise Lipschitz property we get that
)∑
C=�

5C (GC+1−� , . . . , GC ) − 5̃C (GC+1−� ) ≤ !
)∑
C=�

�∑
8=2
‖GC+8−� − GC+1−� ‖ ≤

1
2
!�2

b) /� c∑
C=1
(δC + 2ϑC ),

where the last transition follows by Lemma 14. Taking expectation concludes the first part of the proof.
Now, notice that by its definition, ḠC is determined given any history up to (not including) the player’s
decision at time B ≥ C. Using total expectation we thus get that E[∇8 5C (ḠC )TGB] = E[∇8 5C (ḠC )TḠB],
and using this equality we get that for all 8 ≥ 1,

E
[
∇8 5C (ḠC+1−� )T (GC+8−� − ḠC+1−� )

]
= E

[
∇8 5C (ḠC+1−� )T (ḠC+8−� − ḠC+1−� )

]
≤ E[‖∇8 5C (ḠC+1−� )‖‖ḠC+8−� − ḠC+1−� ‖] (Cauchy-Schwarz)
≤ ! E[‖ḠC+8−� − ḠC+1−� ‖], ( 5C Lipschitz)

where the last transition used the Lipschitz assumption to bound the gradient. Finally, we get that

E

[
)∑
C=�

5C (GC+1−� , . . . , GC ) − 5̃C (GC+1−� )
]

≤ E

[
)∑
C=�

5C (GC+1−� , . . . , GC ) − 5̃C (ḠC+1−� )
]

( 5̃C convex)

≤ E

[
)∑
C=�

�∑
8=1
∇8 5C (ḠC+1−� )T (GC+8−� − ḠC+1−� ) +

β

2
‖GC+8−� − ḠC+1−� ‖2

]
( 5C smooth)

≤ E

[
)∑
C=�

�∑
8=1

!‖ḠC+8−� − ḠC+1−� ‖ + β‖ḠC+8−� − ḠC+1−� ‖2 + β‖GC+8−� − ḠC+8−� ‖2
]
,

where the last transition used the previous equation and the triangle inequality. Plugging in the
expressions provided in Lemma 14 concludes the proof. �

A.2 Proofs of Lemmas 10 and 14
Proof of Lemma 10. First, notice that by definition C8 − C8−1 ≥ �. Summing over 8 and recalling
C0 = 0 we get that C8 ≥ 8�. By definition of ( we then get that |( |� ≤ C |( | < ) , and changing sides
concludes the first part of the lemma.
To see the second part of the lemma, consider a Markov chain with states corresponding to �-tuples
of bits that captures the evolution of the sequence (1C−�+1, . . . , 1C ) as C increases. Notice that our
quantity of interest is the expected return time of the state B = (0, 0, . . . , 1). Since the chain is
irreducible it admits a stationary distribution π∗, and by a standard fact about Markov chains (e.g.,
Proposition 1.14 in [21]), the desired expected return time equals 1/π∗ (B). The latter probability
equals (1/�) (1 − 1/�)�−1 ≥ 1/(4�) ≥ 1/(3�), which gives the claim. �
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Proof of Lemma 14. For the first claim, noticing that the algorithm only changes predictions at times
C ∈ (, we have that

)∑
C=�

�∑
8=2
‖GC+8−� − GC+1−� ‖ ≤

�∑
8=2

8−1∑
9=1

)∑
C=�

‖GC+ 9+1−� − GC+ 9−� ‖ (triangle in.Eq)

≤ 1
2
�2

) −1∑
C=1
‖GC+1 − GC ‖

=
1
2
�2

∑
C ∈(
‖GC+1 − GC ‖

≤ 1
2
�2

∑
C ∈(
‖GC+1 − ḠC+1‖ + ‖ḠC+1 − ḠC ‖ + ‖ḠC − GC ‖ (triangle in.Eq)

≤ 1
2
�2

|( |∑
C=1

ϑC+1 + δC + ϑC

≤ 1
2
�2
b) /� c∑
C=1

δC + 2ϑC ,

where the last transition also used the decreasing property of ϑC . Next, we have that for any @ > 0
)∑
C=�

�∑
8=1
‖ḠC+8−� − ḠC+1−� ‖@ =

)∑
C=�

�∑
8=2
‖
8−1∑
9=1

ḠC+ 9+1−� − ḠC+ 9−� ‖@

=

�∑
8=2

8−1∑
9=1

)∑
C=�

‖ḠC+ 9+1−� − ḠC+ 9−� ‖@

≤ 1
2
�2

) −1∑
C=1
‖ḠC+1 − ḠC ‖@

≤ 1
2
�2

|( |∑
C=1

δ
@
C

≤ 1
2
�2
b) /� c∑
C=1

δ
@
C ,

where the second transition follows since predictions change at most once every � rounds and thus
there is at most one summand that is non-zero. This concludes the second part of the lemma. Next,
recall that C8 from Lemma 10 are the times Algorithm 2 updates the base BCO A, and subsequently
its prediction. Then we get that

E

[
)∑
C=�

�∑
8=1
‖GC+8−� − ḠC+8−� ‖2

]
≤ �E

[
)∑
C=1
‖GC − ḠC ‖2

]
≤ �E


|( |+1∑
B=1

ϑ2
B (CB − CB−1)


≤ �

b) /� c+1∑
B=1

ϑ2
BE[CB − CB−1]

≤ 3�2
b) /� c+1∑
C=1

ϑ2
C .

where the last two transitions used Lemma 10. �
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B Base BCO Algorithm
We give a general example of a BCO algorithm that may be employed in conjunction with our
reduction procedure given in Algorithm 2. For a positive semi-definite matrix % ∈ ℝ3×3 define
the projection in ‖·‖% distance Π%

X
(G) = arg minH∈X‖G − H‖% , where ‖G‖2% = GT%G. We analyze

Algorithm 3, a standard BCO procedure that uses a preconditioned gradient update, and a one-point
gradient estimate.

Algorithm 3 Base BCO
1: input: regularization matrices %C � 0, step size η
2: set: Ḡ1 ∈ X
3: for C = 1, . . . , ) do
4: Draw DC ∼ S3

5: Play GC = ḠC + %−1/2
C DC

6: Observe 5̂C and set 6̂C = 3 5̂C%1/2
C DC

7: Update ḠC+1 = Π
%C
X

(
ḠC − η%−1

C 6̂C
)

Since our setting of BCO with (no) memory � = 1 uses a non-standard feedback model, we provide a
full analysis of the bounds on the regret, and the prediction shifts and magnitudes. To that end, denote

� = max
G,H∈X

‖G − H‖, �% = max
G,H∈X

‖G − H‖% , �̂ = max
C ∈[) ]
| 5̂C |.

Lemma 15. Consider the BCO with no memory (� = 1) setting described in Section 4.2 against an
adversary that chooses 5C : X+ → ℝ that are α−strongly convex over X (α = 0 in the weakly convex
case). If Algorithm 3 is run with regularization matrices %C = %0 + 1

2αηC � where %0 � 0, then

δC = 3η�̂‖%−1/2
C ‖ ϑ2

C = ‖%−1
C ‖

satisfy the assumptions of A()) in Theorem 9. Moreover, for all C ≤ ) we have that

1. if 5B are !-Lipschitz then R1 (C) ≤
�2
%1
η
+ η32�̂2

2 C + 3εC�%C + 2!
∑C
B=1‖%

−1/2
B ‖;

2. if 5B are β-smooth then R1 (C) ≤
�2
%1
η
+ η32�̂2

2 C + 3εC�%C + β
∑C
B=1‖%−1

B ‖.

The proof of Lemma 15 relies on a few standard results. First, we require a standard regret bound
for the time-varying preconditioned update rule. This is stated in the next lemma, which is is a
specialization of bounds found in, e.g., [14], to the case of strongly convex quadratic regularizers.
Lemma 16. Let 6̂1, . . . , 6̂C ∈ ℝ3 , and %C � . . . � %1 � 0 be arbitrary. For step size η > 0 define the
update rule: ḠC+1 = Π

%C
X

(
ḠC − η%−1

C 6̂C
)
. Then we have that

C∑
B=1

6̂T
B (ḠB − G∗) ≤

1
η
‖Ḡ1 − G∗‖2%1

+ 1
η

C∑
B=2
‖ḠB − G∗‖2%B−%B−1

+ η
2

C∑
B=1
‖6̂B ‖2%−1

B
, ∀G∗ ∈ X.

Next, we need the notion of smoothing and the one point-gradient estimate, which were initially
proposed by [15] and later refined in [25, 17]. The following lemma due to [17] encapsulates the
relevant results.
Lemma 17 (Lemmas 6 and 7 in [17]). Let % ∈ ℝ3×3 be symmetric and non-singular, 1 ∼ B3 , and
D ∼ S3 . Define the smoothed version of 5 : X+ → ℝ with respect to % as

5̄ (G) = E[ 5 (G + %1)] .
Then we have that:

(i) ∇ 5̄ (G) = E[35 (G + %D)%−1D];
(ii) if 5 is α−strongly convex then so is 5̄ ;
(iii) if 5 is convex and β−smooth then 0 ≤ 5̄ (G) − 5 (G) ≤ β

2 ‖%
2‖, ∀G ∈ X+;

(iv) if 5 is convex and !-Lipschitz then 0 ≤ 5̄ (G) − 5 (G) ≤ !‖%‖, ∀G ∈ X+.
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Among other things, this lemma implies that a regret bound for a sequence 5̄C yields one for 5C . We
are now ready to prove Lemma 15.
Proof of Lemma 15. First notice that ḠC in Algorithm 3 is indeed the expectation of GC conditioned
on all past history up to (not including) the decision at time C (since DC is a zero mean independent
random variable). Using the projection’s shrinking property we get that

‖ḠC+1 − ḠC ‖ ≤ ‖%−1/2
C ‖‖ḠC+1 − ḠC ‖%C

≤ ‖%−1/2
C ‖‖η3 5̂C%−1/2

C DC ‖%C
= ‖%−1/2

C ‖η3 | 5̂C |
≤ 3η�̂‖%−1/2

C ‖ = δC .

Next, we have that ‖GC − ḠC ‖2 = ‖%−1/2
C DC ‖2 ≤ ‖%−1

C ‖ = ϑ2
C , thus concluding first part of the proof.

Moving on to the regret bound, let G ∈ X be fixed, and denote 6B = 35B (ḠB)%1/2
B DB, the desired

gradient estimate at time B. Recalling that ḠB is independent of the adversary’s random variable ξB,
we use total expectation to get that

E

[
C∑
B=1
(6B − 6̂B)T (ḠB − G)

]
= 3E

[
C∑
B=1
( 5B (ḠB) − 5̂B)DT

B%
1/2
B (ḠB − G)

]
= 3E

[
C∑
B=1
( 5B (ḠB) − EξB [ 5̂B])DT

B%
1/2
B (ḠB − G)

]
≤ 3εE

[
C∑
B=1
‖ḠB − G‖%B

]
≤ 3εC�%C ,

where the second to last transition used the Cauchy-Schwarz inequality, and the last transition used
the assumption that %B is increasing. Next, notice that ḠB , %B , 6̂B satisfy the conditions of Lemma 16,
and since ‖6̂B ‖2%−1

B
≤ 32�̂2, we get that

C∑
B=1

6̂T
B (ḠB − G) ≤

�2
%1

η
+ α

2

C∑
B=1
‖ḠB − G‖2 +

η32�̂2

2
C,

and taking expectation, summing the last two equations, and changing sides, we get that

E

[
C∑
B=1

5̄B (ḠB) −
C∑
B=1

5̄B (G)
]
≤ E

[
C∑
B=1

6T
B (ḠB − G) −

α

2

C∑
B=1
‖ḠB − G‖2

]
≤
�2
%1

η
+ η3

2�̂2

2
C + 3εC�%C ,

(5)
where the first transition also used Lemma 17 to show that 6B is an unbiased estimate of ∇ 5̄B (ḠB)
given ḠB, and that 5̄B are α strongly convex (with α = 0 in the weakly convex case). Now, let 5̄B be
smoothed with respect to %−1/2

B as defined in Lemma 17. If 5B are β smooth, we get that

E[ 5B (GB)] ≤ E
[
5B (ḠB) + ∇ 5B (ḠB)T%−1/2

B DB +
β

2
‖%−1

B ‖
]

= E[ 5B (ḠB)] +
β

2
‖%−1

B ‖

≤ E
[
5̄B (ḠB)

]
+ β

2
‖%−1

B ‖,

where the last transition used Lemma 17, which also gives us that − 5B (G) ≤ − 5̄B (G) + β

2 ‖%
−1
B ‖. We

thus conclude that

R1 (C) = max
G∈X

{
E

[
C∑
B=1

5B (GB) −
C∑
B=1

5B (G)
]}
≤ max
G∈X

{
E

[
C∑
B=1

5̄B (ḠB) −
C∑
B=1

5̄B (G)
]}
+ β

C∑
B=1
‖%−1

B ‖,

and plugging in Eq. (5) concludes the smooth case. Finally, if 5B are ! Lipschitz then using Lemma 17
we get that

E[ 5B (GB) − 5B (G)] ≤ E[ 5B (ḠB) − 5B (G)] + !‖%−1/2
B ‖ ≤ E

[
5̄B (ḠB) − 5̄B (G)

]
+ 2!‖%−1/2

B ‖,
and summing over B and plugging Eq. (5) concludes the non-smooth case. �
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C Main Result Proofs
C.1 Proof of Lemma 12
This lemma is a direct specification of Lemma 15 with the appropriate choice of parameters. For
" ∈ M+, denote ["]vec ∈ ℝ3G3D� the column stacking of ". Next, denote � ∈ ℝ3G3D×3G3D , the
identity matrix, and diag(A [1]C , . . . , A

[� ]
C ) ∈ ℝ�×� , the diagonal matrix with AC ∈ ℝ� on its diagonal.

Consider Algorithm 3 with X = M (column stacked), dimension 3M = 3G3D�, and

%C = [diag(A [1]C , . . . , A
[� ]
C ) ⊗ �]−2,

where ⊗ is the Kronecker product. Then, first, for " ∈M+ we can write the projection as

Π
%C
M
( ["]vec) = arg min

" ′∈M
‖ ["]vec − [" ′]vec‖2%C = arg min

" ′∈M

�∑
8=1
(A [8 ]C )−2‖" [8 ] − " ′ [8 ] ‖2� ,

and sinceM = M[1] × . . . ×M[� ] , each term in the sum may be minimized separately, and so we
get that

Π
%C
M
( ["]vec) = [ΠM[1] (" [1]), . . . ,ΠM[� ] (" [� ])]vec,

where ΠM[8 ] (") = arg min" ′∈M[8 ] ‖" − " ′‖. Second, we have that 6̂C = [6̂ [1]C , . . . , 6̂
[� ]
C ]vec and

thus the update rule may be rewritten as

[" C+1]vec = [" C ]vec − η%−1
C 6̂C = ["

[1]
C − η(A

[1]
C )26̂

[1]
C , . . . , "

[� ]
C − η(A [� ]C )26̂ [� ]C ]vec.

We conclude that the procedure in Lemma 12 is indeed described by Algorithm 3. We can now
conclude the lemma using Lemma 15. A simple calculation shows that

�2 = max
"1 ,"2∈M

‖"1 − "2‖2� ≤ 432
minκ

2
�κ

6/γ;

�2
%0

= max
"1 ,"2∈M

‖"1 − "2‖2%0
≤ �32

min.

Moreover, �2
%C

= �2
%0
+ 1

2αηC�
2, and ‖%−1

C ‖ ≤ 2
αηC

. Plugging this into Lemma 15 we get that for all
C ≤ )

R1 (C) ≤
1
η

(
�32

min +
2β 5
α 5
(1 + log))

)
+
32
M
�̂2

2
η)

+
232

minκ
2
�
κ6α 5

γ
+ 3Mε

©«
√
�3min) +

√
4α 5 η32

minκ
2
�
κ6)3

γ

ª®¬︸                                                                        ︷︷                                                                        ︸
'low

,

and for ε ∈ $̃ ()−1), and η ∈ $̃ ()−1/2), we indeed have that 'low ∈ $̃ ()−1/4). Finally, δC , ϑC translate
directly between lemmas, thus concluding the proof.
C.2 Low Order Terms in Theorem 8
We summarize the low order terms that were omitted in the last three equations of the proof of
Theorem 8 given in Section 5. The first of the three explicitly states the lower order term

'
(1)
low = 2�2

G,D (� + ��),
which is later omitted in the last step. The second equation results from invoking Lemma 12 with
�̂ = ��2

G,D and horizon )/2(� + 1), to bound the second term of Theorem 9. Here the terms related
to δC , δ2

C were omitted, and satisfy
b) /2(�+1) c+1∑

C=1
(! 5 δC + β 5 δ2

C ) ≤ 2! 5 3G3D��2
G,D

√
η�)

α 5
+

2β 5 32
G3

2
D�

2�2�4
G,Dη log)

α 5
= '

(2)
low.

The third equation results from plugging in the previous result as well as that of Lemma 12 with
horizon )/(2(� + 1)), and ε = ��2

G,D/) into Theorem 9. Lemma 12 yields a low order term, which
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is given at the end of the proof in Appendix C.1. Plugging in the horizon, ε, and �̂ this term is given
by

'
(3)
low =

232
minκ

2
�
κ6α 5

γ
+ 32

G3
2
D�

2��2
G,D

©«
√
�3min +

√
2α 5 η32

minκ
2
�
κ6)

γ(� + 1)
ª®¬,

and thus the final low order term is given by

'low = '
(1)
low + 2(� + 1)2' (2)low + 6(� + 1)' (3)low.

Since � is logarithmic in ) , and η ∈ $̃ ()−1/2), we get that 'low ∈ $̃ ()1/4), as desired.
C.3 Proof of (ii) in Lemma 7
Proof. Recall from Definition 5 that 2̂C ("0:� ) = 2C (HC ("0:� ), EC ("0:� )), and denote

IC ("0:� ) = [HC ("0:� )TEC ("0:� )T]T.
Since IC (·) is a linear mapping, its Jacobian is constant, and we denote it as �IC . Applying the chain
rule, we get that for all "0, . . . , "� ∈M+

‖∇22̂C ("0:� )‖ = ‖�T
IC
∇22C (HC ("0:� ), EC ("0:� ))�I ‖ ≤ β‖�IC ‖2,

and thus bounding ‖�IC ‖ will show that 2̂C is smooth. To that end, notice that an intermediate step of
Lemma 5.6 of [1] shows that for any "0, . . . , "� , "

′
0, . . . , "

′
� ∈M+, we have that

‖IC ("0:� ) − IC ("0, . . . , "
′
�−: , . . . , "� )‖ ≤ 5κ�κ3, (1 − γ):

�∑
8=0
‖" [8 ]

�−: − "
′ [8 ]
�−: ‖. (6)

Recalling that ‖·‖ ≤ ‖·‖� , and using the triangle and Cauchy-Schwarz inequalities we get that

‖IC ("0:� ) − IC (" ′0:� )‖ ≤ 5κ�κ3,

�∑
:=0
(1 − γ):

�∑
8=1
‖" [8 ]

�−: − "
′ [8 ]
�−: ‖�

≤ 5κ�κ3,
√
�

�∑
:=0
(1 − γ): ‖"�−: − " ′�−: ‖�

≤ 5κ�κ3,
√
�‖"0:� − " ′0:� ‖�

√√√ �∑
:=0
(1 − γ)2:

≤ 5κ�κ3,

√
�

γ
‖"0:� − " ′0:� ‖� .

Since M+ contains an open set of ℝ (3D×3G )×(�+1) , this Lipschitz property implies that ‖�I ‖ ≤
5κ�κ3,

√
�
γ
≤

√
β 5 /β, thus showing that 2̂C is β 5 smooth. Since �̂C results from taking expectation

of 2̂C with respect to the random system noise, it is also β 5 smooth.
Next, recall that 2̃C (") = 2̂C (", . . . , "), and thus defining ĨC = IC (", . . . , "), and repeating the
process above, it suffices to show that ĨC is

√
β 5 /β Lipschitz to conclude that 2̃C , �̃C are β 5 smooth.

Using Eq. (6) we get that for ", " ′ ∈M+

‖ ĨC (") − ĨC (" ′)‖ ≤ 5κ�κ3,

�∑
:=0
(1 − γ):

�∑
8=1
‖" [8 ] − " ′ [8 ] ‖�

≤ 5κ�κ3,
√
�‖" − " ′‖�

�∑
:=0
(1 − γ):

≤ 5κ�κ3,

γ

√
�‖" − " ′‖�

=

√
β 5 /β‖" − " ′‖� ,

thus establishing the Lipschitz property and concluding the proof. �
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D Extensions Proofs
We first need to extend the base BCO procedure to the weakly convex cases. Similarly to Lemma 12,
this is an immediate corollary of Lemma 15 with appropriate choice of parameters.
Lemma 18. Consider the setting of Section 4 with � = 1 and ε ∈ $̃ (1/)), against an adversary that
chooses 5C : M+ → ℝ that are convex. Let 3M, �, A

[8 ]
0 be as in Theorem 13, andR1 (C) be the regret

of a procedure that at time C:

(i) Draws*C ∼ S(3D×3G )×� ; and plays "C where " [8 ]C = "
[8 ]
C + A

[8 ]
C *

[8 ]
C (∀8 ∈ [�])

(ii) Observes 5̂C ; and sets 6̂ [8 ]C = (3M/A [8 ]C ) 5̂C*
[8 ]
C (∀8 ∈ [�]) (1-point gradient estimate)

(iii) Updates " [8 ]
C+1 = ΠM[8 ]

[
"
[8 ]
C − η(A

[8 ]
C )26̂

[8 ]
C

]
(∀8 ∈ [�]). (preconditioned update)

Suppose that | 5̂C | ≤ �̂ then for all C ≤ ):

1. if 5C are !-Lipschitz, η = 2
[
!2�2

36
M
�6)

]1/4
, and A [8 ]C =

[
(A [8 ]0 )

−2 + 4!
√
)

3M�̂�

]−1/2
then

R1 (C) ≤ 4
√
3M!��̂)3/4 + $̃ ()1/4), δC =

�
√
)
, ϑ2

C =
3M��̂

4!
√
)

;

2. if 5C are β 5 smooth, η =

[
2β 5 �2

34
M
�̂4)

]1/3
, and A [8 ]C =

[
(A [8 ]0 )

−2 + (
4β2
5
)

32
M
�̂2�2 )1/3

]−1/2
then

R1 (C) ≤ (4
√
β 5 3M�̂�))2/3 + $̃ ()1/3), δC =

�
√
)

ϑ2
C =

(
32
M
�̂2�2

4β2
5
)

)1/3

.

See proof in Appendix D.1.
Proof of Theorem 13. First, unlike the proof of Theorem 8, here we use 2̂C as given in Definition 5,
without any modification. As before we view Algorithm 1 in the context of the BCO with memory
setting presented in Section 4. The adversary’s noise ξC is now degenerate (FC are not stochastic), the
costs are given by 2̂C and by Lemma 6, the feedback satisfies

|2C (GC , DC ) − 2̂C ("C−1−2� :C ) | ≤
��2

G,D

)
,

and thus ε = ��2
G,D/) , and the feedback 2C (GC , DC ) is bounded by ��2

G,D . LetR�+1 ()) be the regret
of Algorithm 1 against an adversary with memory � + 1, and notice that our choice of A [8 ]C , and in
particular A [8 ]0 , ensures that "C ∈M+. Since the third part of Lemma 6 is, in fact, proven for 2̂C rather
than �̂C (the latter is an immediate corollary) and so we have that

RA ()) ≤ R�+1 ()) + 2�2
G,D (� + ��).

Since the second term is at most poly-log in) , it remains to boundR�+1 ()) for each set of assumptions
and parameter choices. Recall that Algorithm 1 fits the mold of our reduction procedure given in
Algorithm 2 with base procedure as in Lemma 18. Moving forward, our analysis is divided in two.
Consider the first set of parameter choices (with no smoothness assumptions). By Lemma 7, 2̂C are
coordinate-wise ! 5 Lipschitz, and thus 2̃C : " ↦→ 2̂C (", . . . , ") are (� + 1)! 5 Lipschitz. Invoking
Lemma 18 with �̂ = ��2

G,D , ! = (� + 1)! 5 and horizon )/(� + 1), the second term of Theorem 9
(with no smoothness assumption) satisfies that

1
2
! 5 (� + 1)2

b) /(�+1) c∑
C=1

δC + 2ϑC ≤
1
2
! 5 (� + 1)) (δC + 2ϑC )

≤ 1
2
! 5 (� + 1))©«�

√
� + 1
)
+

√
3M�̂�

! 5

(
� + 1
)

)1/4ª®¬
≤ 1

2

√
3M�̂�! 5 (� + 1)5/2)3/4 + $̃ ()1/2),
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and further using Lemma 18 to bound the first term of Theorem 9, and simplifying, we get that

R�+1 ()) ≤ 13
√
3M�̂�! 5 (� + 1)5/2)3/4 + $̃ ()1/2)

≤ 13
√

23G3D3min��
2
G,Dκ�κ

3γ−1/2! 5 (� + 1)7/2)3/4 + $̃ ()1/2),

where the last step only plugs in the values of 3M, �̂, �. This concludes the proof of the non-smooth
case. Now suppose that 2C are β smooth and Algorithm 1 is run with our second choice of parameters.
Notice that the proof of the smoothness in Lemma 7 (see Appendix C.3) actually shows that both
2̂C , 2̃C are β 5 smooth, and as before, we invoke Lemma 18 with our parameter choices to bound the
second term of Theorem 9 (with the smoothness assumption) by

1
2
(� + 1)2

b) /2(�+1) c+1∑
C=1

((� + 1)! 5 δC + β 5 δ2
C + 6β 5 ϑ2

C )

≤ (� + 1)) ((� + 1)! 5 δC + β 5 δ2
C + 6β 5 ϑ2

C )

≤ (� + 1))©«! 5 �
√
(� + 1)3

)
+ β 5 �2� + 1

)
+ 6β 5

(
32
M
�̂2�2 (� + 1)

4β2
5
)

)1/3ª®¬
≤ 4

(√
β 5 3M�̂� (� + 1)2)

)2/3
+ $̃ ()1/2),

and further using Lemma 18 to bound the first term of Theorem 9, and simplifying, we get that

R�+1 ()) ≤ 12
(√

β 5 3M�̂� (� + 1)2)
)2/3
+ $̃ ()1/2)

≤ 12
(
23G3D3min��

2
G,Dκ�κ

3
√
β 5 /γ(� + 1)3)

)2/3
+ $̃ ()1/2),

where the last step only plugs in the values of 3M, �̂, �. �

D.1 Proof of Lemma 18
Recall Appendix C.1, where we show that Lemma 12 is a direct corollary of Lemma 15. As the
procedure itself does not change here, the proof is concluded by plugging-in our assumptions and
parameter choices into Lemma 15. For the first case, 5C are ! Lipschitz, and our choice of parameters
gives that

�2
%C

= �2
%1

= �2
%0
+ 4!�

√
)

3M�̂
= �32

min +
4!�
√
)

3M�̂
,

‖%−1/2
B ‖ ≤ A [1]1 ≤ 1

2

√
�3M�̂

!
√
)
,

and plugging into Lemma 15 we get that

R1 (C) ≤ 4
√
3M!��̂)3/4 +

�32
min
η
+ 3Mε)�%1︸                    ︷︷                    ︸
'low

,

and by our assumptions we indeed get that 'low ∈ $̃ ()1/4) as desired. To conclude the non-smooth
case, we further apply Lemma 15 to get that

δC =
�
√
)

ϑ2
C =

3M��̂

4!
√
)
.

Next, for the second case, 5C are β 5 smooth and our choice of parameters gives that

�2
%C

= �2
%1

= �2
%0
+ �2

(
4β2

5
)

32
M
�̂2�2

)1/3

≤ �32
min +

(
4β2

5
�4)

32
M
�̂2

)1/3

,
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‖%−1
B ‖ ≤ (A

[1]
1 )

2 ≤
(
32
M
�̂2�2

4β2
5
)

)1/3

,

and plugging into Lemma 15 we get that

R1 (C) ≤ (4
√
β 5 3M�̂�))2/3 +

�32
min
η
+ 3Mε)�%1︸                    ︷︷                    ︸
'low

,

and by our assumptions we indeed get that 'low ∈ $̃ ()1/3) as desired. To conclude the smooth case,
and thus the proof, we further apply Lemma 15 to get that

δC =
�
√
)

ϑ2
C =

(
32
M
�̂2�2

4β2
5
)

)1/3

,

as desired.
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