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Abstract

We investigate finite stochastic partial monitoring, which is a general model for
sequential learning with limited feedback. While Thompson sampling is one of the
most promising algorithms on a variety of online decision-making problems, its
properties for stochastic partial monitoring have not been theoretically investigated,
and the existing algorithm relies on a heuristic approximation of the posterior
distribution. To mitigate these problems, we present a novel Thompson-sampling-
based algorithm, which enables us to exactly sample the target parameter from
the posterior distribution. Besides, we prove that the new algorithm achieves the
logarithmic problem-dependent expected pseudo-regret O(log T ) for a linearized
variant of the problemwith local observability. This result is the first regret bound of
Thompson sampling for partial monitoring, which also becomes the first logarithmic
regret bound of Thompson sampling for linear bandits.

1 Introduction

Partial monitoring (PM) is a general sequential decision-making problem with limited feedback (Rus-
tichini, 1999; Piccolboni and Schindelhauer, 2001). PM is attracting broad interest because it includes
a wide range of problems such as the multi-armed bandit problem (Lai and Robbins, 1985), a linear
optimization problem with full or bandit feedback (Zinkevich, 2003; Dani et al., 2008), dynamic
pricing (Kleinberg and Leighton, 2003), and label efficient prediction (Cesa-Bianchi et al., 2005).
A PM game can be seen as a sequential game that is played by two players: a learner and an opponent.
At every round, the learner chooses an action, while the opponent chooses an outcome. Then, the
learner suffers an unobserved loss and receives a feedback symbol, both of which are determined
from the selected action and outcome. The main characteristic of this game is that the learner cannot
directly observe the outcome and loss. The goal of the learner is to minimize his/her cumulative loss
over all rounds. The performance of the learner is evaluated by the regret, which is defined as the
difference between the cumulative losses of the learner and the optimal action (i.e., the action whose
expected loss is the smallest).
There are mainly two types of PM games, which are the stochastic and adversarial settings (Piccolboni
and Schindelhauer, 2001; Bartók et al., 2011). In the stochastic setting, the outcome at each round is
determined from the opponent’s strategy, which is a probability vector over the opponent’s possible
choices. On the other hand, in the adversarial setting, the outcomes are arbitrarily decided by the
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opponent. We refer to the PM game with finite actions and finite outcomes as a finite PM game. In
this paper, we focus on the stochastic finite game.
One of the first algorithms for PM was considered by Piccolboni and Schindelhauer (2001). They
proposed the FeedExp3 algorithm, the key idea of which is to use an unbiased estimator of the losses.
They showed that the FeedExp3 algorithm attains Õ(T 3/4) minimax regret for a certain class of PM
games, and showed that any algorithm suffers linear minimax regret Ω(T ) for the other class. Here T
is the time horizon and the notation Õ(·) hides polylogarithmic factors. The upper bound Õ(T 3/4)
is later improved by Cesa-Bianchi et al. (2006) to O(T 2/3), and they also provided a game with a
matching lower bound.
In the seminal paper by Bartók et al. (2011), they classified PM games into four classes based on their
minimax regrets. To be more specific, they classified games into trivial, easy, hard, and hopeless games,
where their minimax regrets are 0, Θ̃(

√
T ), Θ(T 2/3), and Θ(T ), respectively. Note that the easy game

is also called a locally observable game. After their work, several algorithms have been proposed for
the finite PM problem (Bartók et al., 2012; Vanchinathan et al., 2014; Komiyama et al., 2015). For
the problem-dependent regret analysis, Komiyama et al. (2015) proposed an algorithm that achieves
O(log T ) regret with the optimal constant factor. However, it requires to solve a time-consuming
optimization problem with infinitely many constraints at each round. In addition, this algorithm
relies on the forced exploration to achieve the optimality, which makes the empirical performance
near-optimal only after prohibitively many rounds, say, 105 or 106.
Thompson sampling (TS, Thompson, 1933) is one of the most promising algorithms on a variety of
online decision-making problems such as the multi-armed bandit (Lai and Robbins, 1985) and the
linear bandit (Agrawal and Goyal, 2013b), and the effectiveness of TS has been investigated both
empirically (Chapelle and Li, 2011) and theoretically (Kaufmann et al., 2012; Agrawal and Goyal,
2013a; Honda and Takemura, 2014). In the literature on PM, Vanchinathan et al. (2014) proposed a
TS-based algorithm called BPM-TS (Bayes-update for PM based on TS) for stochastic PM, which
empirically achieved state-of-the-art performance. Their algorithm uses Gaussian approximation to
handle the complicated posterior distribution of the opponent’s strategy. However, this approximation
is somewhat heuristic and can degrade the empirical performance due to the discrepancy from the
exact posterior distribution. Furthermore, no theoretical guarantee is provided for BPM-TS.
Our goals are to establish a new TS-based algorithm for stochastic PM, which allows us to sample
the opponent’s strategy parameter from the exact posterior distribution, and investigate whether the
TS-based algorithm can achive sub-linear regret in stochastic PM. Using the accept-reject sampling,
we propose a new TS-based algorithm for PM (TSPM), which is equipped with a numerical scheme
to obtain a posterior sample from the complicated posterior distribution. We derive a logarithmic
regret upper bound O(log T ) for the proposed algorithm on the locally observable game under a
linearized variant of the problem. This is the first regret bound for TS on the locally observable game.
Moreover, our setting includes the linear bandit problem and our result is also the first logarithmic
expected regret bound of TS for the linear bandit, whereas a high-probability bound was provided,
for example, in Agrawal and Goyal (2013b). Finally, we compare the performance of TSPM with
existing algorithms in numerical experiments, and show that TSPM outperforms existing algorithms.

2 Preliminaries

This paper studies finite stochastic PM games (Bartók et al., 2011). A PM game with N actions
and M outcomes is defined by a pair of a loss matrix L = (`i,j) ∈ RN×M and feedback matrix
H = (hi,j) ∈ [A]N×M , where A is the number of feedback symbols and [A] = {1, 2, . . . , A}.
A PM game can be seen as a sequential game that is played by two players: the learner and the
opponent. At each round t = 1, 2, . . . , T , the learner selects action i(t) ∈ [N ], and at the same
time the opponent selects an outcome based on the opponent’s strategy p∗ ∈ PM , where Pn =
{p ∈ Rn : pk ≥ 0,

∑n
k=1 pk = 1} is the (n− 1)-dimensional probability simplex. The outcome j(t)

of each round is an independent and identically distributed sample from p∗, and then, the learner
suffers loss `i(t),j(t) at time t. The learner cannot directly observe the value of this loss, but instead
observes the feedback symbol y(t) = hi(t),j(t) ∈ [A]. The setting explained above has been widely
studied in the literature of stochastic PM (Bartók et al., 2011; Komiyama et al., 2015), and we call
this the discrete setting. In Section 4, we also introduce a linear setting for theoretical analysis, which
is a slightly different setting from the discrete one.
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The learner aims to minimize the cumulative loss over T rounds. The expected loss of action i is
given by L>i p∗, where Li is the i-th column of L>. We say action i is optimal under strategy p∗ if
(Li − Lj)>p∗ ≤ 0 for any j 6= i. We assume that the optimal action is unique, and without loss of
generality that the optimal action is action 1. Let ∆i = (Li − L1)>p∗ ≥ 0 for i ∈ [N ] and Ni(t)
be the number of times action i is selected before the t-th round. When the time step is clear from
the context, we use ni instead of Ni(t). We adopt the pseudo-regret to measure the performance:
Reg(T ) =

∑T
t=1 ∆i(t) =

∑
i∈[N ] ∆iNi(T + 1). This is the relative performance of the algorithm

against the oracle, which knows the optimal action 1 before the game starts.
We introduce the following definitions to clarify the class of PM games, for which we develop an
algorithm and derive a regret upper bound. The following cell decomposition is the concept to
divide the simplex PM based on the loss matrix to identify the optimal action, which depends on the
opponent’s strategy p∗.
Definition 1 (Cell decomposition and Pareto-optimality (Bartók et al., 2011)). For every action
i ∈ [N ], cell Ci := {p ∈ PM : (Li − Lj)>p ≤ 0, ∀j 6= i} is the set of opponent’s strategies for
which action i is optimal. Action i is Pareto-optimal if there exists an opponent’s strategy p∗ under
which action i is optimal.

Each cell is a convex closed polytope. Next, we define neighbors between two Pareto-optimal actions,
which intuitively means that the two actions “touch” each other in their surfaces.
Definition 2 (Neighbors and neighborhood action (Bartók et al., 2011)). Two Pareto-optimal actions
i and j are neighbors if Ci ∩ Cj is an (M − 2)-dimensional polytope. For two neighboring actions
i, j ∈ [N ], the neighborhood action set is defined as N+

i,j = {k ∈ [N ] : Ci ∩ Cj ⊆ Ck}.

Note that the neighborhood action set N+
i,j includes actions i and j from its definition. Next, we

define the signal matrix, which encodes the information of the feedback matrix H so that we can
utilize the feedback information.
Definition 3 (Signal matrix (Komiyama et al., 2015)). The signal matrix Si ∈ {0, 1}A×M of action
i is defined as (Si)y,j = 1[hi,j = y], where 1[X] = 1 if the event X is true and 0 otherwise.

Note that if we define the signal matrix as above, Sip∗ ∈ RA is a probability vector over feedback
symbols of action i. The following local observability condition separates easy and hard games, this
condition intuitively means that the information obtained by taking actions in the neighborhood action
set N+

i,j is sufficient to distinguish the loss difference between actions i and j.
Definition 4 (Local observability (Bartók et al., 2011)). A partial monitoring game is said to be locally
observable if for all pairs i, j of neighboring actions, Li − Lj ∈ ⊕k∈N+

i,j
ImS>k , where ImV is the

image of the linear map V , and V ⊕W is the direct sum between the vector spaces V andW .

We also consider the concept of the strong local observability condition, which implies the above
local observability condition.
Definition 5 (Strong local observability). A partial monitoring game is said to be strongly locally
observable if for all pairs i, j ∈ [N ], Li − Lj ∈ ImS>i ⊕ ImS>j .

This condition was assumed in the theoretical analysis in Vanchinathan et al. (2014), and we also
assume this condition in theoretical analysis in Section 4. Note that the strong local observability
means that, for any j 6= k, there exists zj,k 6= 0 ∈ R2A such that Lj − Lk = (S>j , S

>
k ) zj,k.

Notation. Let ‖·‖ and ‖·‖p be the Euclidian norm and p-norm, and let ‖x‖A =
√
x>Ax be the

norm induced by the positive semidefinite matrix A � 0. Let DKL (p‖q) =
∑A
a=1 pa log(pa/qa)

be the Kullback-Leibler divergence of p from q. The vector ey ∈ RM is the y-th orthonormal
basis of RM , and 1n = [1, . . . , 1]> is the n-dimensional all-one vector. Let q(t)

i be the empirical
feedback distribution of action i at time t, i.e., q(t)

i = [ni1/ni, . . . , niA/ni]
> ∈ PA, where niy =∑t

s=1 1[i(s) = i, y(s) = y] and ni =
∑A
y=1 niy . The notation is summarized in Appendix A.

Methods for Sampling from Posterior Distribution. We briefly review the methods to draw a
sample from the posterior distribution. While TS is one of the most promising algorithms, the
posterior distribution can be in a quite complicated form, which makes obtaining a sample from it
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Algorithm 1: TSPM Algorithm
Input: prior parameter λ > 0

1 Set B0 ← λIM , b0 ← 0.
2 Take each action for n ≥ 1 times.
3 for t = 1, 2, . . . , T do
4 Sample p̃t ∼ π(p | {i(s), y(s)}ts=1) based on the accept-reject sampling (Algorithm 2).
5 Take action i(t) = arg maxi∈[N ] L

>
i p̃t and observe feedback y(t).

6 Update Bt ← Bt−1 + S>i(t)Si(t), bt ← bt−1 + S>i(t)ey(t).

Algorithm 2: Accept-Reject Sampling
Input: constant R ∈ [0, 1]

1 while true do
2 Sample p̃t ∼ gt(p) (Algorithm 3).
3 Sample ũ ∼ U([0, 1]).
4 if Rũ < Ft(p̃t)/Gt(p̃t) then
5 return p̃t.

Algorithm 3: Sampling from gt(p)

1 Compute B̃t, b̃t from Bt, bt.
2 repeat
3 Sample p(α) ∼ N(B̃−1

t b̃t, B̃
−1
t ).

4 until p(α) ∈ PM−1 ;
5 return p̃ = [p(α)>, 1−

∑M−1
i=1 (p(α))i]

>.

computationally hard. To overcome this issue, a variety of approximate posterior sampling methods
have been considered, such as Gibbs sampling, Langevin Monte Carlo, Laplace approximation, and
the bootstrap (Russo et al., 2018, Section 5). Recent work (Lu and Van Roy, 2017) proposed a flexible
approximation method, which can even efficiently be applied to quite complex models such as neural
networks. However, more recent work revealed that algorithms based on such an approximation
procedure can suffer a linear regret (Phan et al., 2019), even if the approximation error in terms of the
α-divergence is small enough.
Although BPM-TS is one of the best methods for stochastic PM, it approximates the posterior by a
Gaussian distribution in a heuristic way, which can degrade the empirical performance due to the
distributional discrepancy from the exact posterior distribution. Furthermore, no theoretical guarantee
is provided for BPM-TS. In this paper, we mitigate these problems by providing a new algorithm for
stochastic PM, which allows us to exactly draw samples from the posterior distribution. We also give
theoretical analysis for the proposed algorithm.

3 Thompson-sampling-based Algorithm for Partial Monitoring

In this section, we present a new algorithm for stochastic PM games, where we name the algorithm
TSPM (TS-based algorithm for PM). The algorithm is given in Algorithm 1, and we will explain the
subroutines in the following.

3.1 Accept-Reject Sampling

We adopt the accept-reject sampling (Casella et al., 2004) to exactly draw samples from the posterior
distribution. The accept-reject sampling is a technique to draw samples from a specific distribution f ,
and a key feature is to use a proposal distribution g, from which we can easily draw a sample and
whose ratio to f , that is f/g, is bounded by a constant value R. To obtain samples from f , (i) we
generate samplesX ∼ g; (ii) acceptX with probability f(X)/Rg(X). Note that f and g do not have
to be normalized when the acceptance probability is calculated.
Let π(p) be a prior distribution for p. Then an unnormalized density of the posterior distribution for
p can be expressed as

Ft(p) = π(p)

N∏
i=1

exp
{
−niDKL

(
q

(t)
i

∥∥∥Sip)} , (1)
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the detailed derivation of which is given in Appendix B. We use the proposal distribution with
unnormalized density

Gt(p) = π(p)

N∏
i=1

exp
{
−1

2
ni‖q(t)

i − Sip‖
2
}
. (2)

Based on these distributions, we use Algorithm 2 for exact sampling from the posterior distribution,
where U([0, 1]) is the uniform distribution over [0, 1] and gt(p) is the distribution corresponding to
the unnormalized density Gt(p) in (2). The following proposition shows that setting R = 1 realizes
the exact sampling.
Proposition 1. Let ft(p) be the distribution corresponding to the unnormalized density Ft(p) in (1).
Then, the output of Algorithm 2 with R = 1 follows ft(p).

This proposition can easily be proved by Pinsker’s inequality, which is detailed in Appendix B.
In practice, R ∈ [0, 1] is a parameter to balance the amount of over-exploration and the computational
efficiency. As R decreases from 1, the algorithm tends to accept a point p far from the mode. The
case R = 0 corresponds the TSPM algorithm where the proposal distribution is used without the
accept-reject sampling, which we call TSPM-Gaussian. As we will see in Section 4, TSPM-Gaussian
corresponds to exact sampling of the posterior distribution when the feedback follows a Gaussian
distribution rather than a multinomial distribution.
TSPM-Gaussian can be related to BPM-TS (Vanchinathan et al., 2014) in the sense that both of them
use samples from Gaussian distributions. Nevertheless, they use different Gaussians and TSPM-
Gaussian performs much better than BPM-TS as we will see in the experiments. Details on the relation
between TSPM-Gaussian and BPM-TS are described in Appendix D.
In general, we can realize efficient sampling with a small number of rejections if the proposal
distribution and the target distribution are close to each other. On the other hand, in our problem, the
densities in (1) and (2) for each fixed point p exponentially decay with the number of samples ni if the
empirical feedback distribution q(t)

i converges. This means that Ft(p) andGt(p) have an exponentially
large relative gap in most rounds. Nevertheless, the number of rejections does not increase with t as
we will see in the experiments, which suggests that the proposal distribution approximates the target
distribution well with high probability.

3.2 Sampling from Proposal Distribution

When we consider Gaussian densityN(0, λIM ) truncated over PM as a prior, the proposal distribution
also has the Gaussian density N(B−1

t bt, B
−1
t ) over PM , where

Bt = λIM +

N∑
i=1

niS
>
i Si = Bt−1 + S>i(t)Si(t) , bt =

N∑
i=1

niS
>
i q

(t)
i = bt−1 + S>i(t)ey(t) . (3)

Here note that the probability simplex PM is in an (M − 1)-dimensional space and a sample from
N(0, λIM ) is not contained in PM with probability one. In the literature, e.g., Altmann et al. (2014),
sampling methods for Gaussian distributions truncated on a simplex have been discussed. We use one
of these procedures summarized in Algorithm 3, where we first sampleM − 1 elements of p from
another Gaussian distribution and determine the remaining element by the constraint

∑M
i=1 pi = 1.

Proposition 2. Sampling from gt(p) is equivalent to Algorithm 3 with

B̃t = Ct − 2Dt + ft1M−11
>
M−1 , b̃t = ft1M−1 − dt + b

(α)
t − b(M)1M−1 ,

where Bt =

[
Ct dt
d>t ft

]
for Ct ∈ RM−1×M−1, dt ∈ RM−1, ft ∈ R, bt = [b

(α)
t

>
, b

(M)
t ]> ∈

RM−1 × R, and Dt = 1
2 (dt1

>
M−1 + 1M−1d

>
t ).

We give the proof of this proposition for self-containedness in Appendix C.

4 Theoretical Analysis
This section considers a regret upper bound of the TSPM algorithm.
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In the theoretical analysis, we consider a linear setting of PM. In the linear PM, the learner suffers
the expected loss L>i(t)p

∗ as in the discrete setting, and receives feedback vector y(t) = Sip
∗ + εt

for εt ∼ N(0, IM ) whereas the one-hot representation of y(t) is distributed by the probability vector
Sip
∗ in the discrete setting. Therefore, if εt can be regarded as a sub-Gaussian random variable

as in Kirschner et al. (2020) then the linear PM includes the discrete PM, though our theoretical
analysis requires εt to be Gaussian. The relation between discrete and linear settings can also be seen
from the observation that bandit problems with Bernoulli and Gaussian rewards can be expressed as
discrete and linear PM, respectively. The linear PM also includes the linear bandit problem, where
the feedback vector is expressed as L>i p∗ + εt.
In the linear PM, Gt(p) in (2) becomes the exact posterior distribution rather than a proposal distribu-
tion. The definition of the cell decomposition for this setting is largely the same as that of discrete
setting and detailed in Appendix F. Therefore, TS with exact posterior sampling in the linear PM
corresponds to TSPM-Gaussian. In the linear PM, the unknown parameter p∗ is in RM rather than in
PM , and therefore we consider the prior π(p) = N(0, λIM ) overRM , where the posterior distribution
becomes N(B−1

t bt, B
−1
t ).

There are a few works that analyze TS for the PM because of its difficulty. For example in Vanchinathan
et al. (2014), an analysis of the TS-based algorithm (BPM-TS) is not given despite the fact that its
performance is better than the algorithm based on a confidence ellipsoid (BPM-LEAST). Zimmert and
Lattimore (2019) considered the theoretical aspect of a variant of TS for the linear PM in view of the
Bayes regret, but this algorithm is based on the knowledge on the time horizon and different from the
family of TS used in practice. More specifically, their algorithm considers the posterior distribution
for regret (not pseudo-regret), and an action is chosen according to the posterior probability that each
arm minimizes the cumulative regret. Thus, the time horizon also needs to be known.
Types of Regret Bounds. We focus on the (a) problem-dependent (b) expected pseudo-regret. (a) In
the literature, a minimax (or problem-independent) regret bound has mainly been considered, for
example, to classify difficulties of the PM problem (Bartók et al., 2010; Bartók et al., 2011). On
the other hand, a problem-dependent regret bound often reflects the empirical performance more
clearly than the minimax regret (Bartók et al., 2012; Vanchinathan et al., 2014; Komiyama et al.,
2015). For this reason, we consider this problem-dependent regret bound. (b) In complicated settings
of bandit problems, a high-probability regret bound has mainly been considered (Abbasi-Yadkori
et al., 2011; Agrawal and Goyal, 2013b), which bounds the pseudo-regret with high probability 1− δ.
Though such a bound can be transformed to an expected regret bound, this type of analysis often
sacrifices the tightness since a linear regret might be suffered with small probability δ. This is why
the analysis in Vanchinathan et al. (2014) for BPM-LEAST finally yielded an Õ(

√
T ) expected regret

bound whereas their high-probability bound is O(log T ).

4.1 Regret Upper Bound

In the following theorem, we show that logarithmic problem-dependent expected regret is achievable
by the TSPM-Gaussian algorithm.
Theorem 3 (Regret upper bound). Consider any finite stochastic linear partial monitoring game.
Assume that the game is strongly locally observable and ∆i = (Li − L1)>p∗ > 0 for any i 6= 1.
Then, the regret of TSPM-Gaussian satisfies for sufficiently large T that

E [Reg(T )] = O

(
AN2M maxi∈[N ] ∆i

Λ2
log T

)
, (4)

where Λ := mini 6=1 Λi for Λi = ∆i/‖z1,i‖ with z1,i defined after Definition 5.
Remark. In the proof of Theorem 3, it is sufficient to assume that L1 − Li ∈ ImS>1 ⊕ ImS>i for
i ∈ [N ], which is weaker than the strong local observability, though it is still sometimes stronger than
the local observability condition.

The proof of Theorem 3 is given in Appendix F. This result is the first problem-dependent bound of
TS for PM, which also becomes the first logarithmic regret bound of TS for linear bandits.
The norm of zj,k in Λ intuitively indicates the difficulty of the problem. Whereas we can estimate
(Sjp, Skp) with noise through taking actions j and k, the actual interest is the gap of the losses
p>(Lj − Lk) = (Sjp, Skp)

>zj,k. Thus, if ‖zj,k‖ is large, the gap estimation becomes difficult since
the noise is enhanced through zj,k.
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Unfortunately, the derived bound in Theorem 3 has quadratic dependence on N , which seems to be
not tight. This quadratic dependence comes from the difficulty of the expected regret analysis. In
general, we evaluate the regret before and after the convergence of the statistics separately. Whereas
the latter one usually becomes dominant, the main difficulty comes from the analysis of the former
one, which might become large with low probability (Agrawal and Goyal, 2012; Kaufmann et al.,
2012; Agrawal and Goyal, 2013a).
In our analysis, we were not able to bound the former one within a non-dominant order, though it is still
logarithmic in T . In fact, our analysis shows that the regret after convergence is O(

∑
i6=1 ∆i

A
Λ2 log T )

as shown in Lemma 18 in Appendix F, which will become the regret with high probability. In
particular, if we consider the classic bandit problem as a PM game, we can confirm that the derived
bound after convergence becomes the best possible bound

O

(∑
i 6=1

log T

∆i

)
by considering Λi depending on each suboptimal arm i as the difficulty measure instead of Λ. Still,
deriving a regret bound for the term before convergence within an non-dominant order is an important
future work.

4.2 Technical Difficulties of the Analysis

The main difficulty of this regret analysis is that PM requires to consider the statistics of all actions
when the number of selections Ni(t) of some action i is evaluated. This is in stark contrast to the
analysis of the classic bandit problems, where it becomes sufficient to evaluate statistics of action
i and the best action 1. This makes the analysis remarkably complicated in TS, where we need to
separately consider the randomness caused by the feedback and TS.
To overcome this difficulty, we handle the effect of actions of no interest in two different novel ways
depending on each decomposed regret. The first one is to evaluate the worst-case effect of these
actions based on an argument (Lemma 10) related to the law of the iterated logarithm (LIL), which
is sometimes used in the best-arm identification literature to improve the performance (Jamieson
et al., 2014). The second one is to bound the action-selection probability of TS using an argument of
(super-)martingale (Theorem 16), which is of independent interest. Whereas such a technique is often
used for the construction of confidence bounds (Abbasi-Yadkori et al., 2011), we reveal that it is also
useful for evaluation of the regret of TS.
We only focused on the Gaussian noise εt ∼ N(0, IM ), rather than the more general sub-Gaussian
noise. This restriction to the Gaussian noise comes from the essential difficulty of the problem-
dependent analysis of TS, where lower bounds for some probabilities are needed whereas the sub-
Gaussian assumption is suited for obtaining upper bounds. To the best of our knowledge, the problem-
dependent regret analysis for TS on the sub-Gaussian case has never been investigated even for the
multi-armed bandit setting, which is quite simple compared to that of PM. In the literature of the
problem-dependent regret analysis, the noise distribution is restricted to distributions with explicitly
given forms, e.g., Bernoulli, Gaussian, or more generally a one-dimensional canonical exponential
family (Kaufmann et al., 2012; Agrawal and Goyal, 2013a; Korda et al., 2013). Their analysis relies
on the specific characteristic of the distribution to bound the problem-dependent regret.

5 Experiments

In this section, we numerically compare the performance of TSPM and TSPM-Gaussian against
existingmethods, which are RandomPM (the algorithmwhich selects action randomly), FeedExp3 (Pic-
colboni and Schindelhauer, 2001), and BPM-TS (Vanchinathan et al., 2014). Recently, Lattimore and
Szepesvári (2019) considered the sampling-based algorithm called Mario sampling for easy games.
Mario sampling coincides with TS (except for the difference between pseudo-regret and regret with
known time horizon) mentioned in the last section when any pair of actions is a neighbor. As shown
in Appendix G, this property is indeed satisfied for dp-easy games defined in the following. Therefore,
the performance is essentially the same between TSPM with R = 1 and Mario sampling. To compare
the performance, we consider a dynamic pricing problem, which is a typical example of PM games.
We conducted experiments on the discrete setting because the experiments for PM has been mainly
focused on the discrete setting.
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Figure 1: Regret-round plots of algorithms. The solid lines indicate the average over 100 independent trials.
The thin fillings are the standard error.

In the dynamic pricing game, the player corresponds to a seller, and the opponent corresponds to a
buyer. At each round, the seller sells an item for a specific price i(t), and the buyer comes with an
evaluation price j(t) for the item, where the selling price and the evaluation price correspond to the
action and outcome, respectively. The buyer buys the item if the selling price i(t) is smaller than or
equal to j(t) and not otherwise. The seller can only know if the buyer bought the item (denoted as
feedback 0) or did not buy the item (denoted as 1). The seller aims to minimize the cumulative “loss”,
and there are two types of definitions for the loss, where each induced game falls into the easy and
hard games. We call them dp-easy and dp-hard games, respectively.
In both cases, the seller incurs the constant loss c > 0 when the item is not bought due to the loss of
opportunity to sell the item. In contrast, when the item is not bought, the loss incurred to the seller is
different between these settings. The seller in the dp-easy game does not take the buyer’s evaluation
price into account. In other words, the seller gains the selling price i(t) as a reward (equivalently
incurs −i(t) as a loss). Therefore, the loss for the selling price i(t) and the evaluation j(t) is

`i(t),j(t) = −i(t)1[i(t) ≤ j(t)] + c1[i(t) > j(t)] .

This setting can be regarded as a generalized version of the online posted price mechanism, which
was addressed in, e.g., Blum et al. (2004) and Cesa-Bianchi et al. (2006), and an example of strongly
locally observable games.
On the other hand, the seller in dp-hard game does take the buyer’s evaluation price into account when
the item is bought. In other words, the seller incurs the difference between the opponent evaluation
and the selling price j(t)− i(t) as a loss because the seller could have made more profit if the seller
had sold at the price j(t). Therefore, the loss incurred at time t is

`i(t),j(t) = (j(t)− i(t))1[i(t) ≤ j(t)] + c1[i(t) > j(t)] .

This setting is also addressed in Cesa-Bianchi et al. (2006), and belongs to the class of hard games.
Note that our algorithm can also be applied to a hard game, though there is no theoretical guarantee.
Setup. In the both dp-easy and dp-hard games, we fixed N = M ∈ {3, 5, 7} and c = 2. We fixed
the time horizon T to 10000 and simulated 100 times. For FeedExp3 and BPM-TS, the setup of
hyperparameters follows their original papers. For TSPM, we set λ = 0.001, and R was selected
from {0.01, 1.0}. Here, recall that TSPM with R = 1 and R = 0 correspond to the exact sampling
and TSPM-Gaussian, respectively, and a smaller value of R gives the higher acceptance probability
in the accept-reject sampling. Therefore, using small R makes the algorithm time-efficient, although
it can worsen the performance since it over-explores the tail of the posterior distributions. To stabilize
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Figure 2: The number of rejected times by the accept-reject sampling. The solid lines indicate the average over
100 independent trials after taking moving average with window size 100.

sampling from the proposal distribution in Algorithm 3, we used an initialization that takes each action
n = 10A times. The detailed settings of the experiments with more results are given in Appendix H.
Results. Figure 1 is the empirical comparison of the proposed algorithms against the benchmark
methods. This result shows that, in all cases, the TSPMwith exact sampling gives the best performance.
TSPM-Gaussian also outperforms BPM-TS even though both of them use Gaussian distributions as
posteriors. Besides, the experimental results suggest that our algorithm performs reasonably well even
for a hard game. It can be observed that the proposed methods outperform BPM-TS more significantly
for a larger number of outcomes. Further discussion for this observation is given in Appendix D.
Figure 2 shows the number of rejections at each time step in the accept-reject sampling. We counted
the number of times that either Line 4 in Algorithm 2 or Line 4 in Algorithm 3 was not satisfied.
In the accept-reject sampling, it is desirable that the frequency of rejection does not increase as the
time-step t and does not increase rapidly with the number of outcomes. We can see that the former
one is indeed satisfied. For the latter property, the frequency of rejection becomes unfortunately large
when exact sampling (R = 1) is conducted. Still, we can substantially improve this frequency by
setting R to be a small value or zero, which still keeps regret tremendously better than that of BPM
with almost the same time-efficiency as BPM-TS.

6 Conclusion and Discussion

This paper investigated Thompson sampling (TS) for stochastic partial monitoring from the algorithmic
and theoretical viewpoints. We provided a new algorithm that enables exact sampling from the
posterior distribution, and numerically showed that the proposed algorithm outperforms existing
methods. Besides, we provided an upper bound for the problem-dependent logarithmic expected
pseudo-regret for the linearized version of the partial monitoring. To our knowledge, this bound is the
first logarithmic problem-dependent expected pseudo-regret bound of a TS-based algorithm for linear
bandit problems and strongly locally observable partial monitoring games.
There are several remaining questions. As mentioned in Section 4, Kirschner et al. (2020) considered
linear partial monitoring with the feedback structure y(t) = Si(t)p

∗+ εt, where (εt)
T
t=1 is a sequence

of independent sub-Gaussian noise vector in RM . This setting is the generalization of our linear
setting, where (εt)

T
t=1 are i.i.d. Gaussian vectors. Therefore, a natural question that arises is whether

we can extend our analysis on TSPM-Gaussian to the sub-Gaussian case, although we believe it would
be not straightforward as discussed in Section 4. It is also an important open problem to derive a regret
bound on TSPM using the exact posterior sampling for the discrete partial monitoring. Although we
conjecture that the algorithm also achieves logarithmic regret for the setting, there still remain some
difficulties in the analysis. In particular, we have to handle the KL divergence in ft(p) and consider
the restriction of the support of the opponent’s strategy to PM , which make the analysis much more
complicated. Besides, it is worth noting that the theoretical analysis of TS for hard games has never
been theoretically investigated. We believe that in general TS suffers linear regret in the minimax
sense due to its greediness. However, we conjecture that TS can achieve the sub-linear regret for
some specific instances of hard games in the sense of the problem-dependent regret, as empirically
observed in the experiments. Finally, it is an important open problem to derive the minimax regret
for anytime TS-based algorithms. This needs more detailed analysis on o(log T ) terms in the regret
bound, which were dropped in our main result.
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Broader Impact

Application. Partial monitoring (PM) includes various online decision-making problems such as
multi-armed bandits, linear bandits, dynamic pricing, and label efficient prediction. Not only can
PM handles them, the dueling bandits, combinatorial bandits, transductive bandits, and many other
problems can be seen as a partial monitoring game, as discussed in Kirschner et al. (2020). Therefore,
our analysis of Thompson sampling (TS) for PM games pushes the application of TS to a more
wide range of online decision-making problems forward. Moreover, PM has the potential that novel
online-decision making problems are newly discovered, where we have to handle the limited feedback
in an online fashion.
Practical Use. The obvious advantage of using TS is that the users can easily apply the algorithm
to their problems. They do not have to solve mathematical optimization problems, which are often
required to solve when using non-sampling-based algorithms (Bartók et al., 2012; Komiyama et al.,
2015). For the negative side, the theoretical analysis for the regret upper bound might make the users
become overconfident when the users use their algorithms. For example, they might use the TSPM
algorithm to the linear PM game with heavy-tailed noise, such as sub-exponential noise, without
noticing it. Nevertheless, this is not an TS-specific problem, but one that can be found in many
theoretical studies, and TS is still one of the most promising policies.
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A Notation
Table 1 summarizes the symbols used in this paper.

Table 1: List of symbols used in this paper.
Symbol Meaning
Pn (n− 1)-dimensional probability simplex
‖·‖ Euclidian norm for vector and operator norm for matrix
‖·‖p p-norm
‖·‖A norm induced by positive semidefinite matrix A
DKL (p‖q) KL divergence from q to p
Bn

r (p) n-dimensional Euclidian ball of radius r at point p ∈ RN

N,M ∈ N the number of actions and outcomes
Σ set of feedback symbols
A the number of feedback symbols
p∗ ∈ PM opponent’s strategy
T time horizon
L = (`i,j) ∈ RN×M loss matrix
H = (hi,j) ∈ ΣN×M feedback matrix
Si ∈ {0, 1}A×M (i = 1, . . . , N) signal matrix
i(t) action taken at time t
Ni(t) the number of times the action i is taken before time t ∈ [T ]
j(t) outcome taken by opponent at time t
y(t) feedback observed at time t
Ft(p) unnormalized posterior distribution in (1)
ft(p) probability density function corresponding to Ft(p)
Gt(p) unnormalized proposal distribution for Ft(p) in (2)
gt(p) probability density function corresponding to Gt(p)

q
(t)
i ∈ PM empirical feedback distribution of action i by time t
qi,n ∈ PM empirical feedback distribution of action i after the action is taken n times
Ci ⊂ PM cell of action i

B Posterior Distribution and Proposal Distribution in Section 3
In this appendix, we discuss representation of the posterior distribution and its relation with the
proposal distribution.
Proposition 4. Ft(p) in (1) is proportional to the posterior distribution of the opponent’s strategy,
and Ft(p) ≤ Gt(p) for all p ∈ PM .

Proof. The posterior distribution of the opponent’s strategy parameter π
(
p
∣∣∣ {i(s), y(s)}ts=1

)
is

rewritten as

π
(
p
∣∣∣ {i(s), y(s)}ts=1

)
∝ π

(
p, {i(s), y(s)}ts=1

)
∝ π(p)

t∏
s=1

P{y(s) | i(s), p}

= π(p)

N∏
i=1

A∏
y=1

(Si,yp)
niy

∝ π(p)

N∏
i=1

exp
{
−niDKL

(
q

(t)
i

∥∥∥Sip)} , (5)

where Si,y is the i-th row of the signal matrix Si, and note that q(t)
i is the empirical feed-

back distribution of action i at time t, that is, q(t)
i = [ni1/ni, . . . , niA/ni]

> ∈ PA for niy =∑t
s=1 1[i(s) = i, y(s) = y] and ni =

∑A
y=1 niy .
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Next, we show that Ft(p) ≤ Gt(p) holds for all p ∈ PM . Using the Pinsker’s inequality, the
unnormalized posterior distribution Ft(p) can be bounded from above as

Ft(p) = π(p)

N∏
i=1

exp
{
−niDKL

(
q

(t)
i

∥∥∥Sip)}
≤ π(p)

N∏
i=1

exp
{
−1

2
ni‖q(t)

i − Sip‖
2
1

}
(by Pinsker’s ineq.)

= π(p) exp
{
−1

2

N∑
i=1

ni‖q(t)
i − Sip‖

2
1

}
≤ π(p) exp

{
−1

2

N∑
i=1

ni‖q(t)
i − Sip‖

2
} (

by ‖q(t)
i − Sip‖1 ≥ ‖q

(t)
i − Sip‖

)
= Gt(p) . (6)

Remark. The unnormalized density Gt(p) is indeed Gaussian. Recalling that Bt and bt are defined
in (3) as

Bt =

N∑
i=1

niS
>
i Si =

t∑
s=1

S>i(s)Si(s) = Bt−1 + S>i(t)Si(t), bt =

N∑
i=1

niS
>
i q

(t)
i = bt−1 + S>i(t)ey(t) ,

(7)

we have
N∑
i=1

ni‖q(t)
i − Sip‖

2 =

N∑
i=1

ni(q
(t)
i − Sip)

>(q
(t)
i − Sip)

= p>
( N∑
i=1

niS
>
i Si

)
︸ ︷︷ ︸

Bt

p,−2
( N∑
i=1

niS
>
i q

(t)
i

)>
︸ ︷︷ ︸

bt

p+

N∑
i=1

ni‖q(t)
i ‖

2

︸ ︷︷ ︸
ct

= p>Btp− 2b>t p+ ct

= (p−B−1
t bt)

>Bt(p−B−1
t bt) + ct − b>t B−1

t bt . (8)

Therefore, we have

exp
{
−1

2

N∑
i=1

ni‖q(t)
i − Sip‖

2
}
∝ exp

{
−1

2
(p−B−1

t bt)
>Bt(p−B−1

t bt)
}
. (9)

C Proof of Proposition 2

We will see that the the procedure sampling p̃t from gt(p) and Algorithm 3 are equivalent. First, we
derive the Gaussian density of gt(p) projected onto {p ∈ RM :

∑M
i=1 pi = 1}.

For simplicity, we omit the subscript t and write, e.g.,B instead ofBt. We define p = [p(α)>, pM ]> ∈

RM−1×R. Let h = B−1b, and define h = [h(α)>, hM ]> ∈ RM−1×R. Let B =

[
C d
d> f

]
, where

C ∈ RM−1×M−1, d ∈ RM−1, and f ∈ R. Also, let b = [b(α)>, b(M)]> ∈ RM−1 × R.
Using the decomposition

(p−B−1b)>B(p−B−1b) = p>Bp︸ ︷︷ ︸
(a)

−2h>Bp︸ ︷︷ ︸
(b)

+h>Bh , (10)
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we rewrite each term by restricting the domain of p so that it satisfies the condition
∑M
i=1 pi = 1.

Now the first term (a) is rewritten as

(a) = p(α)>Cp(α) + 2p(α)>dpM + fp2
M

= p(α)>Cp(α) + 2 p(α)>d
(

1−
M−1∑
i=1

pi

)
︸ ︷︷ ︸

(a1)

+f
(

1−
M−1∑
i=1

pi

)2

︸ ︷︷ ︸
(a2)

. (11)

The term (a1) is rewritten as

(a1) = p(α)>d− p(α)>d

M−1∑
i=1

pi

= p(α)>d− p(α)>d1>M−1p
(α)

= p(α)>d− p(α)>Dp(α)

(
D =

1

2

(
d1>M−1 + 1M−1d

>)) , (12)

and the term (a2) is rewritten as

(a2) =
(

1−
M−1∑
i=1

pi

)2

= 1− 2

M−1∑
i=1

pi +
(M−1∑
i=1

pi

)2

= 1− 21>M−1p
(α) + p(α)>1M−11

>
M−1p

(α) . (13)

Therefore,

(a) = p(α)> (C − 2D + f1M−11
>
M−1)︸ ︷︷ ︸

B̃

p(α) − 2(f1M−1 − d)>p(α) + f . (14)

With regard to the term (b), we have

(b) = b>p

= b(α)>p(α)> + b(M)pM

= (b(α) − b(M)1M−1)>p(α) + b(M) . (15)

Therefore,

(p−B−1b)>B(p−B−1b)

= p(α)>B̃p(α) − 2(f1M−1 − d+ b(α) − b(M)1M−1︸ ︷︷ ︸
b̃

)>p(α) + f − 2b(M) + h>Bh

= (p(α) − B̃−1b̃)>B̃(p(α) − B̃−1b̃) + f − 2b(M) − b̃>B̃−1b̃+ b>B−1b
(
by h>Bh = b>B−1b

)
.

(16)

From the above argument, the density N(B̃−1b, B̃−1) is the Gaussian distribution of gt(p) on {p ∈
RM :

∑M
i=1 pi = 1}. Therefore, the p = [p(α)>, 1 −

∑M−1
i=1 (p(α))i]

> for p(α) ∼ N(B̃−1b, B̃−1)

is supported over {p ∈ RM :
∑M
i=1 pi = 1}.

If the sample p(α) from N(B̃−1b, B̃−1) is in PM−1, then we can obtain the last element p(M) by
p(M) = 1−

∑M−1
i=1 (p(α))i. Otherwise, the probability that p(α) is the firstM − 1 elements of the

sample from gt(p) is zero, and hence, [p(α)>, p(M)]> cannot be a sample from gt(p). Therefore,
sampling p̃t from gt(p) and Algorithm 3 are equivalent.
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D Relation between TSPM-Gaussian and BPM-TS

In this appendix, we discuss the relation between TSPM-Gaussian and BPM-TS (Vanchinathan et al.,
2014).
Underlying Feedback Structure. Here, we discuss the underlying feedback structure behind
TSPM-Gaussian and BPM-TS.
We first consider the underlying feedback structure behind BPM-TS. In the following, we see that the
feedback structure

y(t) = Si(t)p+ Si(t)ε , ε ∼ N(0, IM ) (17)

induces the posterior distribution in BPM-TS. Under this feedback structure, we have y(t) ∼
N(Si(t)p, Si(t)S

>
i(t)).

When we take the prior distribution π(p) as N(0, σ2
0IM ), the posterior distribution for the opponent’s

strategy parameter can be written as

π
(
p
∣∣∣ {i(s), y(s)}ts=1

)
∝ π(p)

t∏
s=1

π(y(s) | i(s), p)

= π(p)

t∏
s=1

Py∼N(Si(s)p,Si(s)S
>
i(s)

) {y = y(s)}

= exp
(
−p
>p

2σ2
0

) t∏
s=1

exp
(
−1

2
(y(s)− Si(s)p)>(Si(s)S

>
i(s))

−1(y(s)− Si(s)p)
)

= exp
{
−1

2

(
p>
( 1

σ2
0

IM +

T∑
s=1

S>i(s)(Si(s)S
>
i(s))

−1Si(s)

)
p
)

− 2
( t∑
s=1

y(s)>(Si(s)S
>
i(s))

−1Si(s)p
)

+ (a term independent of p)
}

∝ exp
{
−1

2
(p>BBPM

t p− 2bBPM
t

>
p)
}

∝ exp
{
−1

2
(p−BBPM

t

−1
bBPM
t )>BBPM

t (p−BBPM
t

−1
bBPM
t )

}
, (18)

where

BBPM
t =

1

σ2
0

IM +

t∑
s=1

S>i(s)(Si(s)S
>
i(s))

−1Si(s) = BBPM
t−1 + S>i(t)(Si(t)S

>
i(t))

−1Si(t) , (19)

bBPM
t =

t∑
s=1

S>i(s)(Si(s)S
>
i(s))

−1y(s) = bBPM
t−1 + S>i(t)(Si(t)S

>
i(t))

−1y(t) . (20)

Therefore, the posterior distribution π
(
p | {i(s), y(s)}ts=1

)
is

1√
(2π)M |BBPM

t
−1|

exp
{
−1

2
(p−BBPM

t

−1
bBPM
t )>BBPM

t (p−BBPM
t

−1
bBPM
t )

}
. (21)

and this distribution indeed corresponds to the posterior distribution in BPM-TS (Vanchinathan et al.,
2014) with BBPM

t = Σ−1
t .

Using the same argument, we can confirm that the feedback structure

yt = Sip+ ε , ε ∼ N(0, IM ) . (22)
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induces

ḡt(p) :=
1√

(2π)M |B−1
t |

exp
(
−1

2

∥∥p−B−1
t bt

∥∥2

Bt

)
, (23)

which corresponds to the posterior distribution for TSPM in linear partial monitoring.
Covariances in TSPM-Gaussian and BPM-TS. In the linear partial monitoring, TSPM assumes
noise with covariance IM , which is compatible with the fact that the discrete setting can be regarded
as linear PM with IM -sub-Gaussian noise. On the other hand, BPM-TS assumes covariance SiS>i ,
and in general IM � SiS

>
i holds. Therefore, BPM-TS assumes unnecessarily larger covariance,

which makes learning slow down.

E Preliminaries for Regret Analysis
In this appendix, we give some technical lemmas, which are used for the derivation of the regret
bound in Appendix F. Here, we write X � Y to denote X − Y � 0. For a, b ∈ R, let a ∧ b be a if
a ≤ b otherwise b, and a∨ b be b if a ≤ b otherwise a. We use h(a) := PX∼χ2

M
{X ≥ a} to evaluate

the behavior of the posterior samples, where χ2
M is the chi-squared distribution withM degree of

freedom.

E.1 Basic Lemmas

Fact 5 (Moment generating function of squared-Gaussian distribution). Let X be the random vari-
able following the standard normal distribution. Then, the moment generating function of X2 is
E
[
exp(ξX2)

]
= (1− 2ξ)−1/2 for ξ < 1/2.

Lemma 6 (Chernoff bound for chi-squared random variable). LetX be the random variable following
the chi-squared distribution with k degree of freedom. Then, for any a ≥ 0 and 0 ≤ ξ < 1/2,

P{X ≥ a} ≤ e−ξa(1− 2ξ)−
k
2 . (24)

Proof. By Markov’s inequality, the LHS can be bounded as

P{X ≥ a} = P

{
k∑
i=1

X2
i ≥ a

}
(X1, . . . , Xk

i.i.d.∼ N(0, 1))

= P

{
exp
(
ξ

k∑
i=1

X2
i

)
≥ exp(ξa)

}

≤ e−ξa
(
E
[
eξX

2
1

])k
(by Markov’s ineq.)

= e−ξa(1− 2ξ)−
k
2 (by Fact 5) , (25)

which completes the proof.

E.2 Property of Strong Local Observability

Recall that ∆i = (Li − L1)>p∗ > 0 for i ∈ [N ], which is the difference of the expected loss of
actions i and 1. For this define

ε :=

(
1

2
√
A

min
i 6=1

∆i

‖z1,i‖

)
∧
(

min
p∈Cc1

4

3
‖p− p∗‖

)
, (26)

which is used throughout the proof of this appendix and Appendix F. The following lemma provides
the key property of the strong local observability condition.
Lemma 7. For any partial monitoring game with strong local observability and p ∈ RM , any of the
conditions 1–3 in the following is not satisfied:

1. L>1 p > L>k p (Worse action k looks better under p.)

2. ‖S1p− S1p
∗‖ ≤ ε
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3. ‖Skp− Skp∗‖ ≤ ε .

Proof. We prove by contradiction. Assume that there exists p ∈ RM such that conditions 1–3 are
simultaneously satisfied.
Now, by the conditions 2 and 3, we have

|S1p− S1p
∗| � ε1A ,

|Skp− Skp∗| � ε1A .
(27)

Here, | · | is the element-wise absolute value, and�means that the inequality≤ holds for each element.
Therefore, ∣∣∣∣( S1

Sk

)
(p− p∗)

∣∣∣∣ � ε12A . (28)

On the other hand, by the strong local observability condition, for any k 6= 1, there exists z1,k 6= 0 ∈
R2A such that

(L1 − Lk)> = z>1,k

(
S1

Sk

)
. (29)

Now, we have

z>1,k

(
S1

Sk

)
(p− p∗)

≤ ‖z1,k‖
∥∥∥∥( S1

Sk

)
(p− p∗)

∥∥∥∥ (by Cauchy-Schwarz ineq.)

≤
√

2Aε‖z1,k‖ (by Eq. (28)) , (30)

and

z>1,k

(
S1

Sk

)
(p− p∗)

= (L1 − Lk)>(p− p∗) (by Eq. (29))
= (L1 − Lk)>p+ (Lk − L1)>p∗

≥ ∆k (by Condition 1 & def. of ∆k) . (31)

Therefore, from (30) and (31), we have

∆k ≤
√

2Aε‖z1,k‖ . (32)

This inequality does not hold for all k 6= 1 for the predefined value of ε, since we have

ε ≤ 1

2
√
A

min
k 6=1

∆k

‖z1,k‖
. (33)

Therefore, the proof is completed by contradiction.

Remark. The similar result holds when the optimal action 1 is replaced with action j 6= k such that
∆j,k := (Lj − Lk)>p∗ > 0 by taking ε satisfying

ε ≤ 1

2
√
A

min
j 6=k:∆j,k>0

∆j,k

‖zj,k‖
. (34)

From Lemma 7, we have the following corollary.
Corollary 8. For any p ∈ RM satisfying p ∈ Ci and ‖S1p− S1p

∗‖ ≤ ε, we have

‖Sip− Sip∗‖ > ε . (35)

Proof. Note that p ∈ Ci is equivalent to (L1 − Li)>p∗ > 0 for any i 6= 1. Therefore, the result
directly follows from Lemma 7.
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The next lemma is the property of Mahalanobis distance corresponding to ḡt(p).
Lemma 9. Define Ti := {p ∈ RM : ‖Sip−Sip∗‖ > ε}. Assume thatNi(t) ≥ ni, ‖Sip̂t−Sip∗‖ ≤
ε/4. Then, for any 0 ≤ ξ < 1/2

h

(
inf
p∈Ti
‖B1/2

t (p− p̂t)‖2
)
≤ exp

(
− 9

16
ξε2ni

)
(1− 2ξ)−M/2 . (36)

Proof. To bound the LHS of the above inequality, we bound ‖B1/2
t (p− p̂t)‖2 from below for p ∈ Ti.

Using the triangle inequality and the assumptions, we have

‖Si(p− p̂t)‖ ≥ ‖Sip− Sip∗‖ − ‖Sip̂t − Sip∗‖
> ε− ε/4 > 0 . (37)

Therefore, we have

‖B1/2
t (p− p̂t)‖2 ≥

∑
k∈[N ]

Nk(t)‖Sk(p− p̂t)‖2 (by def. of Bt)

≥ ni‖Si(p− p̂t)‖2 (Ni(t) ≥ ni)

>
9

16
ε2ni (by Eq. (37)) . (38)

By the Chernoff bound for a chi-squared random variable in Lemma 6, we now have

h(a) ≤ e−ξa(1− 2ξ)−M/2 , (39)

for any a ≥ 0 and 0 ≤ ξ < 1/2. Hence, using the fact that ‖B1/2
t (p− p̂t)‖2 follows the chi-squared

distribution withM degree of freedom, we have

h

(
inf
p∈Ti
‖B1/2

t (p− p̂t)‖2
)
≤ h

( 9

16
ε2ni

)
≤ exp

(
− 9

16
ξε2ni

)
(1− 2ξ)−M/2 , (40)

which completes the proof.

E.3 Statistics of Uninterested Actions

For any k 6= i and nk ∈ [T ], define

Znk := nk‖qk,nk − Skp∗‖2 , (41)

Z\i :=
∑
k 6=i

max
nk∈[T ]

Znk . (42)

In this section, we bound E
[
Z\i
]
from above. Note that Z\i is independent of the randomness of

Thompson sampling.
Lemma 10 (Upper bound for the expectation of Z\i).

E
[
Z\i
]
≤ 4N

(
log T +

A

2
log 2 + 1

)
. (43)

Proof. Recall that in linear partial monitoring, the feedback y(t) ∈ RA for action k is given as

yt = Skp
∗ + ε , ε ∼ N(0, IA) (44)

at round t ∈ [T ], Therefore, y(t)− Skp∗ ∼ N(0, IA). Since qk,nk = 1
nk

∑
s∈[T ]:i(s)=k y(s) for any

nk ∈ [T ], we have

qk,nk − Skp∗ =
1

nk

∑
s∈[T ]:i(s)=k

(y(s)− Skp∗) ∼ N(0, IA/nk) . (45)
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Therefore,
√
nk(qk,nk − Skp∗) ∼ N(0, IA) , (46)

and thus
nk‖qk,nk − Skp∗‖2 = ‖

√
nk(qk,nk − Skp∗)‖2 ∼ χ2

A . (47)
Therefore, for any 0 ≤ ξ < 1/2,

E
[

max
nk∈[T ]

Znk

]
=

∫ ∞
0

P
{

max
nk∈[T ]

Znk ≥ x
}

dx

≤
∫ ∞

0

[1 ∧ T · P{Z1 ≥ x}] dx (by the union bound)

≤
∫ ∞

0

[
1 ∧ T · e−ξx(1− 2ξ)−

A
2

]
dx

(
by Z1 ∼ χ2

(A) and Lemma 6
)

=

∫ x∗

0

dx+

∫ ∞
x∗

T · e−ξx(1− 2ξ)−
A
2 dx

≤ x∗ + T ·
∫ ∞
x∗

e−ξx(1− 2ξ)−
A
2 dx

= x∗ + T (1− 2ξ)−
A
2

[
−1

ξ
e−ξx

]∞
x∗

=
1

ξ

{
log T − A

2
log(1− 2ξ) + 1

}
, (48)

where x∗ := 1
ξ

{
log T − A

2 log(1− 2ξ)
}
. Therefore, taking ξ = 1/4, we have

E
[
Z\i
]

= E

∑
k 6=i

max
nk∈[T ]

Znk


≤
∑
k 6=i

E
[

max
nk∈[T ]

Znk

]
≤ (N − 1)

1

ξ

{
log T − A

2
log(1− 2ξ) + 1

}
≤ 4N

(
log T +

A

2
log 2 + 1

)
, (49)

which completes the proof.

E.4 Mahalanobis Distance Process

Discussions in this section are essentially very similar to Abbasi-Yadkori et al. (2011, Lemma 11),
but their results are not directly applicable and we give the full derivation for self-containedness. To
maximize the applicability here we only assume sub-Gaussian noise rather than a Gaussian one.
Let εt be zero-mean 1-sub-Gaussian random variable, which satisfies

E
[
eλ
>εt
]
≤ e−

‖λ‖2
2 (50)

for any λ ∈ RM .
Lemma 11. For any vector v ∈ RM and positive definite matrix V ∈ RM×M such that V � I ,

Eεt
[
e
‖εt+v‖2V−1

2

]
≤

√
|V |√
|V − I|

e
1
2 v
>(V−I)−1v . (51)

Proof. For any x ∈ RM

Eλ∼N(0,V −1)

[
eλ
>x
]

= e
‖x‖2

V−1
2 . (52)
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Therefore, by letting x = εt + v we see that

e
‖εt+v‖2V−1

2 = Eλ∼N(0,V −1)

[
eλ
>(εt+v)

]
. (53)

As a result, by the definition of sub-Gaussian random variables, we have

Eεt
[
e
‖εt+v‖2V−1

2

]
= Eλ∼N(0,V −1)

[
Eεt
[
eλ
>(εt+v)

]]
= Eλ∼N(0,V −1)

[
eλ
>vEεt

[
eλ
>εt
]]

≤ Eλ∼N(0,V −1)

[
eλ
>ve‖λ‖

2/2
]

=
1

(2π)d/2
√
|V −1|

∫
eλ
>ve‖λ‖

2/2e−‖λ‖
2
V /2dλ

=
1

(2π)d/2
√
|V −1|

∫
e−

1
2 (λ>(V−I)λ−2v>λ)dλ

=

√
|V − I|

(2π)d/2
√
|V −1||V − I|

∫
e−

1
2 ((λ−(V−I)−1v)>(V−I)(λ−(V−I)−1v)−v>(V−I)−1v)dλ

=

√
|V |√
|V − I|

e
1
2 v
>(V−I)−1v . (54)

Lemma 12.

E
[
exp

(
1

2

(
‖p̂t − p∗‖2Bt − ‖p̂t−1 − p∗‖2Bt−1

)) ∣∣∣∣ p̂t−1, Bt−1, Si(t−1)

]
≤

√
|Bt|
|Bt−1|

. (55)

Proof. Let Zt := −λp∗ +
∑t
s=1 S

>
i(s)εs, and we have

• Bt = λI +
∑t
s=1 S

>
i(s)Si(s),

• bt =
∑t
s=1 S

>
i(s)y(s) = Btp

∗ + Zt,

• p̂t = B−1
t bt = p∗ +B−1

t Zt.

In the following we omit the conditioning on (p̂t−1, Bt−1, Si(t−1)) for notational simplicity.

Let us define Ct := Si(t)Bt−1S
>
i(t) and dt := Si(t)B

−1
t−1Zt−1 = Si(t)(p̂t − p∗). Then, using the

Sherman-Morrison-Woodbury formula we have
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‖p̂t − p∗‖2Bt − ‖p̂t−1 − p∗‖2Bt−1

= Z>t B
−1
t Zt − Z>t−1B

−1
t−1Zt−1

= (Z>t−1 + ε>t Si(t))(B
−1
t−1 −B

−1
t−1S

>
i(t)(I + Si(t)B

−1
t−1S

>
i(t))

−1Si(t)B
−1
t−1)(Zt−1 + S>i(t)εt)− Z

>
t−1B

−1
t−1Zt−1

= (Z>t−1 + ε>t Si(t))B
−1
t−1(Zt−1 + S>i(t)εt)− Z

>
t−1B

−1
t Zt−1

− (Z>t−1 + ε>t Si(t))B
−1
t−1S

>
i(t)(I + Si(t)B

−1
t−1S

>
i(t))

−1Si(t)B
−1
t−1(Zt−1 + S>i(t)εt)

= ε>t Si(t)B
−1
t−1S

>
i(t)εt + 2Z>t−1B

−1
t−1S

>
i(t)εt

− (Z>t−1 + ε>t Si(t))B
−1
t−1S

>
i(t)(I + Si(t)B

−1
t−1S

>
i(t))

−1Si(t)B
−1
t−1(Zt−1 + S>i(t)εt)

= ε>t Ctεt + 2d>t εt − (d>t + ε>t Ct)(I + Ct)
−1(dt + Ctεt)

= ε>t Ct(I − (I + Ct)
−1Ct)εt + 2d>t (I − (I + Ct)

−1Ct)εt − d>t (I + Ct)
−1dt

= ε>t Ct(I + Ct)
−1εt + 2d>t (I + Ct)

−1εt − d>t (I + Ct)
−1dt

=
∥∥εt + C−1

t dt
∥∥2

Ct(I+Ct)−1 − d>t (I + Ct)
−1C−1

t dt − d>t (I + Ct)
−1dt

=
∥∥εt + C−1

t dt
∥∥2

Ct(I+Ct)−1 − d>t (I + Ct)
−1(I + C−1

t )dt . (56)

Therefore, Lemma 11 with V :=
(
Ct(I + Ct)

−1
)−1

= (I + Ct)C
−1
t , v := C−1

t dt yields

E
[
exp

(
1

2

(
‖p̂t − p∗‖2Bt − ‖p̂t−1 − p∗‖2Bt−1

))]

≤

√
|(I + Ct)C

−1
t |√

|(I + Ct)C
−1
t − I|

e
1
2d
>
t C
−1
t ((I+Ct)C

−1
t −I)

−1C−1
t dte−

1
2d
>
t (I+Ct)

−1(I+C−1
t )dt

≤

√
|(I + Ct)C

−1
t |√

|C−1
t |

e
1
2d
>
t C
−1
t (C−1

t )−1C−1
t dte−

1
2d
>
t (I+Ct)

−1(I+C−1
t )dt

=
√
|(I + Ct)|

=

√
|Bt|
|Bt−1|

, (57)

where see, e.g., Abbasi-Yadkori et al. (2011, Lemma 11) for the last equality.

E.5 Norms under Perturbations

In the following two lemmas, we give some analysis of norms under perturbations.
Lemma 13. Let A be a positive definite matrix. Let a ∈ Rd and ε > 0 be such that ε < ‖a‖ /3. Then

min
x:‖x‖≤2ε

max
x′:‖x′‖≤ε

{
(a+ x+ x′)>A(a+ x+ x′)

}
= min
x′′:‖x′′‖≤ε

{
(a+ x′′)>A(a+ x′′)

}
. (58)

Proof. By considering the Lagrangian multiplier we see that any stationary point of the function
(a+ x′′)>A(a+ x′′) over {(x, x′) : ‖x‖ ≤ 2ε, ‖x′‖ ≤ ε} satisfies

A(a+ x+ x′)− λ1x = 0 ,

A(a+ x+ x′)− λ2x
′ = 0 ,

x>x = 4ε2 ,

x′>x′ = ε2 , (59)
and therefore λ1x = λ2x

′. Considering the last two conditions of (59) we have λ2 = ±2λ1, implying
that

x′ = −(3A− 2λ1I)Aa (60)
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or

x′ = (A− 2λ1I)Aa (61)

for λ1 satisfying x′>x′ = ε2.
Note that it holds for any positive definite matrix B that

d2

dλ2
a(B + λI)−2a = a(B + λI)−4a =

∥∥(B + λI)−2a
∥∥2

, (62)

which is positive almost everywhere, meaning that a(B + λI)−2a is strictly convex with respect to
λ ∈ R. Therefore, there exists at most two λ′1’s satisfying (60) and x′>x′ = ε2, and there exists at
most two λ′1’s satisfying (61) and x′>x′ = ε2. In summary, there at most four stationary points of
(a+ x′′)>A(a+ x′′) over {(x, x′) : ‖x‖ ≤ 2ε, ‖x′‖ ≤ ε}.
On the other hand, two optimization problems

min
x:‖x‖≤2ε

min
x′:‖x′‖≤ε

{
(a+ x+ x′)>A(a+ x+ x′)

}
= min
x′′:‖x′′‖≤3ε

{
(a+ x′′)>A(a+ x′′)

}
(63)

and

max
x:‖x‖≤2ε

max
x′:‖x′‖≤ε

{
(a+ x+ x′)>A(a+ x+ x′)

}
= max
x′′:‖x′′‖≤3ε

{
(a+ x′′)>A(a+ x′′)

}
(64)

can be easily solved by an elementary calculation and the optimal values are equal to those corre-
sponding to (60).
Therefore, the optimal solutions of the two minimax problems

max
x:‖x‖≤2ε

min
x′:‖x′‖≤ε

{
(a+ x+ x′)>A(a+ x+ x′)

}
(65)

and

min
x:‖x‖≤2ε

max
x′:‖x′‖≤ε

{
(a+ x+ x′)>A(a+ x+ x′)

}
(66)

correspond to two points corresponding to (61).
We can see again from an elementary calculation that the optimal solutions for two optimization
problems

min
x′′:‖x′′‖≤ε

{
(a+ x′′)>A(a+ x′′)

}
max

x′′:‖x′′‖≤ε

{
(a+ x′′)>A(a+ x′′)

}
(67)

have the same necessary and sufficient conditions as (61) and we complete the proof by noticing that
(65) is less than (66).

Lemma 14. Let A � nS>1 S1 be a positive-definite matrix with minimum eigenvalue at least λ > 0.
Then, for any p̂ ∈ Rd and ε > 0 satisfying ε < ‖p̂− p∗‖ /3,

‖p̂− p∗‖2A − inf
p:‖p−p∗‖≤2ε

sup
p′:‖p′−p‖≤ε

‖p′ − p̂‖2A ≥ ε
√
nλ ‖S1(p̂− p∗)‖ . (68)

Proof. Let a = p̂− p∗. By Lemma 13, we have

inf
p:‖p−p∗‖≤2ε

sup
p′:‖p′−p‖≤ε

‖p′ − p̂‖2A

= inf
x:‖x‖≤2ε

sup
x′:‖x′‖≤ε

‖a+ x+ x′‖2A

= inf
x:‖x‖≤ε

‖a+ x‖2A . (69)
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Now define Sε′,A = {x : ‖x‖A ≤ ε′}. Then, we see that Sε√λ,A ⊂ {x : ‖x‖ ≤ ε}. Therefore, an
elementary calculation using the Lagrange multiplier technique shows

inf
x:‖x‖≤ε

‖p′ − p̂‖2A ≤ inf
x∈Sε√λ,A

‖p− p̂‖2A

=
(
‖a‖A − ε

√
λ
)2

. (70)

As a result, we see that

‖p∗ − p̂‖2A − inf
p:‖p−p∗‖≤2ε

sup
p′:‖p′−p‖≤ε

‖p′ − p̂‖2A ≥ ‖a‖
2
A −

(
‖a‖A − ε

√
λ
)2

= ε
√
λ
(
‖a‖A + ‖a‖A − ε

√
λ
)

≥ ε
√
λ
(
‖a‖A + ‖a‖

√
λ− ε

√
λ
)

= ε
√
λ
(
‖a‖A +

√
λ(‖a‖ − ε)

)
≥ ε
√
λ ‖a‖A

≥ ε
√
nλ ‖S1a‖ . (71)

For the subsets of Rn, X and Y, let X + Y := {x+ y : x ∈ X, y ∈ Y} be the Minkowski sum, and
let Bnr (p) be the n-dimensional Euclidian ball of radius r at point p ∈ Rn (the superscript n can be
omitted when it is clear from context). We also let ε′ be

ε′ :=
ε(

16 maxi∈[N ]‖Si‖
)
∨
(

1√
A

maxi∈[N ]
‖Li−L1‖
‖z1,i‖

) , (72)

which is also used throughout the proof of this appendix and Appendix F as ε in (26).
Theorem 15. Let ε′′ ∈ (0, ε) be a constant for ε defined in (26). Let p̂ ∈ Ck +Bdε′(0) be satisfying
‖Sk(p̂− p∗)‖ ≤ ε′′. Then, there exists δ > 0 satisfying for any n ≥ 0 and A � nS>1 S1 + λI that

‖p∗ − p̂‖2A − inf
p:‖p−p∗‖≤2ε

sup
p′:‖p′−p‖≤ε

‖p′ − p̂‖2A ≥ εδ
√
λn . (73)

Proof. Recall that ε′′ < ε ≤ minp∈Cc1 ‖p− p
∗‖ /3. It is enough from Lemma 14 to prove that

δ := min
p̂∈{p∈Ck+Bd

ε′ (0):‖Sk(p−p∗)‖≤ε′′}
‖S1(p̂− p∗)‖ (74)

is positive.
We prove by contradiction and the proof is basically same as that of Lemma 7 but more general
in the sense that the condition on p̂ is not p̂ ∈ Ck but p̂ ∈ Ck + Bdε′(0). Assume that δ = 0, that
is, there exists p̂ ∈ Ck + Bdε′(0) satisfying ‖Sk(p− p∗)‖ ≤ ε′′} and ‖S1(p̂ − p∗)‖ = 0. Note that
‖S1(p̂− p∗)‖ = 0 implies ‖S1(p̂− p∗)‖ ≤ ε′′. Therefore, we now have following conditions on p̂:

• p̂ ∈ Ck +Bdε′(0)

• ‖S1(p̂− p∗)‖ ≤ ε′′

• ‖Sk(p̂− p∗)‖ ≤ ε′′ .

Following the same argument as the proof of Lemma 7, we have

z>1,k

(
S1

Sk

)
(p̂− p∗) ≤

√
2Aε′′‖z1,k‖ . (75)
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On the other hand, since p̂ ∈ Ck +Bdε′(0) we can take p̄ ∈ Ck such that ‖p̂− p̄‖ ≤ ε′. Hence,

z>1,k

(
S1

Sk

)
(p̂− p∗) = (L1 − Lk)>(p̂− p∗)

= −(Lk − L1)>(p̂− p̄) + (L1 − Lk)>p̄+ (Lk − L1)>p∗

≥ −(Lk − L1)>(p̂− p∗) + ∆k . (by p̄ ∈ Ck and def. of ∆k) (76)
From (75) and (76), we have

∆k − (Lk − L1)>(p̂− p∗) ≤
√

2Aε′′‖z1,k‖ . (77)
Now, the left hand side of (77) is bounded from below as

∆k − (Lk − L1)>(p̂− p̄) ≥ ∆k − ‖Lk − L1‖‖p̂− p̄‖
≥ ∆k − ‖Lk − L1‖ε′

= ∆k − ‖Lk − L1‖
ε

1√
A

maxi
‖L1−Li‖
‖z1,i‖

= ∆k − ‖Lk − L1‖
1

2
√
A

mini
∆i

‖z1,i‖
1√
A

maxi
‖L1−Li‖
‖z1,i‖

≥ ∆k −∆k/2 . (78)
On the other hand, using the definition of ε′′, the right hand side of (77) is bounded from above as

√
2Aε′′‖z1,k‖ < ∆k/2 . (79)

Therefore, the proof is completed by contradiction.

E.6 Exit Time Analysis

We next consider the exit time. Let At be an event deterministic given Ft, and Bt be a random event
such that if Bt occurred then At′ never occurs for t′ = t+ 1, t+ 2, . . . . Let Pt, t = 1, 2, . . . , T , be a
stochastic process satisfying Pt ≤ P{Bt|Ft} a.s. and P−1

t is a supermartingale with respect to the
filtration induced by Ft.
Theorem 16. Let τ be the stopping time defined as

τ =

{
min{t ∈ [T ] : At} if At occurs for some t ∈ [T ].
T + 1 otherwise.

(80)

Then we almost surely have

E

[
T∑
t=1

1[At]

∣∣∣∣∣ Fτ
]
≤
{
P−1
τ τ ≤ T,

0 τ = T + 1.
(81)

We prove this theorem based on the following lemma.
Lemma 17. Let (Qi)

∞
i=1 ⊂ [0, 1] be an arbitrary stochastic process such that (Q−1

i )∞i=1 is a super-
martingale with respect to a filtration (Gi)

∞
i=1. Then, for any G0 ⊂ G1,

E

 T∑
i=1

i∏
j=1

(1−Qj)

∣∣∣∣∣∣ G0

 ≤ E
[
Q−1

1 |G0

]
− 1 a.s. (82)

Proof. Let

Nk((Qi,Gi)
∞
i=1, G0) = E

 k∑
i=1

i∏
j=1

(1−Qj)

∣∣∣∣∣∣ G0


Nk((Qi,Gi)

∞
i=1, G0) = E

 ∞∑
i=1

i∏
j=1

(1−Qj)

∣∣∣∣∣∣ G0

 where Qj = Qk for j > k. (83)
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We show Nk((Qi,Gi)
∞
i=1, G0) ≤ E[Q−1

1 |G0] − 1 a.s. for any (Qi, Gi)
∞
i=1, G0 ⊂ G1 and k ∈ N by

induction. First, for k = 1 the statement holds since

N1((Qi,Gi)
∞
i=1, G0) = E

 ∞∑
i=1

i∏
j=1

(1−Q1)

∣∣∣∣∣∣ G0


= E

[
Q−1

1 − 1
∣∣ G0

]
= E

[
Q−1

1

∣∣ G0

]
− 1 (84)

Next, assume that the statement holds for all (Qi, Gi)
k
i=1, G0 ⊂ G1 and k ≤ k0. Then, we almost

surely have

Nk0+1((Qi,Gi)
∞
i=1, G0) = E

(1−Q1)E

1 +

∞∑
i=2

i∏
j=2

(1−Qj)

∣∣∣∣∣∣ G1

 ∣∣∣∣∣∣ G0


= E

[
(1−Q1)(1 +Nk0((Qi,Gi)

∞
i=2, G1))

∣∣ G0

]
≤ E

[
(1−Q1)E[Q−1

2

∣∣ G1]
∣∣ G0

]
(assumption of the induction)

≤ E
[
Q−1

1

∣∣ G0

]
− 1

(
Q−1
i is a supermartingale.

)
(85)

We obtain the lemma from

E

 k∑
i=1

i∏
j=1

(1−Qj)

∣∣∣∣∣∣ G0

 = Nk((Qi,Gi)
∞
i=1, G0) ≤ Nk((Qi,Gi)

∞
i=1, G0) a.s. (86)

Proof of Theorem 16. The statement is obvious for the case τ = T + 1 and we consider the other
case in the following.
Let τi be the time of the i-th occurrence of At. More formally, we define τi as the stopping time
τ1 = τ and

τi+1 =

{
min

{
t ∈ [T ] :

∑T
t′=1 1[At′ ] = i+ 1

} ∑T
t′=1 1[At′ ] ≥ i+ 1,

τi + 1 otherwise.
(87)

Then (P ′i ) = (Pτi) is a stochastic process measurable by the filtration induced by (F′i) = (Fτi). By
Lemma 17 we obtain

E

[
T∑
t=1

1[At]

∣∣∣∣∣ Fτ
]

= E

[
T∑
n=1

1

[
T∑
t=1

1[At] ≥ n

∣∣∣∣∣ Fτ
]]

≤ 1 + E

[
T∑
n=2

1

[
T∑
t=1

1[At] ≥ n

∣∣∣∣∣ Fτ
]]

≤ 1 + E

 T∑
i=1

i∏
j=1

(1− P ′j)

∣∣∣∣∣∣ F′1


≤ 1 + E
[
(P ′1)−1|F′1

]
− 1

= P−1
τ . (88)

F Regret Analysis of TSPM Algorithm
In this appendix, we give the proof of Theorem 3. Note that the cells are defined for the decomposition
of RM , not PM . In other words, the cell Ci is here defined as Ci =

{
p ∈ RM : action i is optimal

}
.
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For the linear setting, the empirical feedback distribution q(t)
i and qi,n are defined as

q
(t)
i :=

1

Ni(t)

∑
s∈[t−1]:i(s)=i

y(s) , (89)

qi,n := the value of q(t)
i after taking action i for n times. (90)

Recall that p̂t = B−1
t bt, which is the mode of ḡt(p).

F.1 Regret Decomposition

Here, we break the regret into several terms. For any i ∈ [N ], we define events

Ai(t) :=
{
‖Sip̂t − Sip∗‖ ≤

ε

4

}
, (91)

Ãi(t) := {‖Sip̃t − Sip∗‖ ≤ ε} . (92)

We first decompose the regret as

Reg(T ) =

T∑
t=1

∆i(t)

≤
T∑
t=1

(
∆i(t)1

[
Ã1(t)

]
+ max
j∈[N ]

∆j1

[
Ãc1(t)

])
=
∑
i 6=1

T∑
t=1

∆i1

[
i(t) = i, Ã1(t)

]
+ max
j∈[N ]

∆j

T∑
t=1

1

[
Ãc1(t)

]

≤
∑
i 6=1

∆i

T∑
t=1

(
1

[
i(t) = i, Ã1(t), Ai(t)

]
︸ ︷︷ ︸

(A)

+1[i(t) = i, Aci (t)]︸ ︷︷ ︸
(B)

)
+ max
j∈[N ]

∆j

T∑
t=1

1

[
Ãc1(t)

]
.

(93)

To decompose the last term, we define the following notation. We define for any i ∈ [N ]

Pi(t) := P{p̃t ∈ Ci | Ft} . (94)
We also define

Ci,t := Ci ∩Bε′(p̂t) , (95)
where ε′ is defined in (72), and

īt := arg max
i∈[N ]

P{p̃t ∈ Ci,t | Ft} . (96)

We define p̄t as an arbitrary point in Cīt,t. Then, we define

Āi(t) :=
{
‖Sip̄t − Sip∗‖ ≤

ε

8

}
. (97)

Using these notations, the last term in (93) can be decomposed as

1

[
Ãc1(t)

]
≤

N∑
k=1

1

[
p̄t ∈ Ck, Ã

c
1(t)

]
=

N∑
k=1

1

[
p̄t ∈ Ck, Ā

c
k(t), Ãc1(t)

]
+

N∑
k=1

1

[
p̄t ∈ Ck, Āk(t), Ãc1(t)

]
≤

N∑
k=1

1
[
p̄t ∈ Ck, Ā

c
k(t)

]
︸ ︷︷ ︸

(C)

+1

[
p̄t ∈ C1, Ā1(t), Ãc1(t)

]
︸ ︷︷ ︸

(D)

+

N∑
k=2

1
[
p̄t ∈ Ck, Āk(t)

]
︸ ︷︷ ︸

(E)

.

(98)
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We will bound the expectation of each term in the following and complete the proof of Theorem 3 as

E [Reg(T )] =
∑
i 6=1

∆i

(
O

(
1

ε2
log T

)
+ O

(
N

ε2
log T

))

+ max
j∈[N ]

∆j

(
N∑
k=1

O

(
NM

ε2
log T

)
+ O(1) +

N∑
k=2

O(1)

)

= O

(
max

{
N
∑
i∈[N ] ∆i

ε2
,
N2M maxi∈[N ] ∆i

ε2

}
log T

)

= O

(
AN2M maxi∈[N ] ∆i

Λ2
log T

)
, (99)

where the last transformation follows from the definition of ε in (26).

F.2 Analysis for Case (A)

Lemma 18. For any i 6= 1,

E

[
T∑
t=1

1

[
i(t) = i, Ã1(t), Ai(t)

]]
≤ 64

9ε2
log T + 2M/2 . (100)

To prove Lemma 18, we prove the following lemma using Corollary 8 and Lemma 9.

Lemma 19. For any 0 ≤ ξ < 1/2,

P{p̃t ∈ Vi | Ai(t), Ni(t) > ni} ≤ exp
(
− 9

16
ξε2ni

)
(1− 2ξ)−M/2 , (101)

where Vi := {p ∈ Ci : ‖S1p− S1p
∗‖ ≤ ε}.

Proof. Since p̃t ∼ N(p̂t, B
−1
t ) for p̂t = B−1

t bt, the squared Mahalanobis distance ‖B1/2
t (p̃t− p̂t)‖2

follows the chi-squared distribution withM degree of freedom. Therefore, we have

P{p̃t ∈ Vi | Ai(t), Ni(t) > ni} ≤ h
(

inf
p∈Vi
‖B1/2

t (p− p̂t)‖2
)
, (102)

where h(a) = PX∼χ2
M
{X ≥ a}. To use Lemma 9, we check the condition of Lemma 9 is indeed

satisfied. First, it is obvious that the assumptions Ni(t) ≥ ni and ‖Sip̂t − Sip∗‖ < ε/4 are satisfied.
Besides, p ∈ Vi implies p ∈ Ti = {p ∈ RM : ‖Sip− Sip∗‖ ≥ ε} from Corollary 8. Thus, applying
Lemma 9 concludes the proof.

Proof of Lemma 18. For any ni > 0,

T∑
t=1

1

[
i(t) = i, Ã1(t), Ai(t)

]
=

T∑
t=1

1

[
i(t) = i, Ã1(t), Ai(t), Ni(t) ≤ ni

]
+

T∑
t=1

1

[
i(t) = i, Ã1(t), Ai(t), Ni(t) > ni

]
≤ ni +

T∑
t=1

1

[
i(t) = i, Ã1(t), Ai(t), Ni(t) > ni

]
. (103)
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The second term is bounded from above as

E

[
T∑
t=1

1

[
i(t) = i, Ã1(t), Ai(t), Ni(t) > ni

]]

=

T∑
t=1

P
{
i(t) = i, Ã1(t), Ai(t), Ni(t) > ni

}
≤

T∑
t=1

P
{
i(t) = i, Ã1(t)

∣∣∣ Ai(t), Ni(t) > ni

}
=

T∑
t=1

P
{
i(t) = i, Ã1(t), p̃t ∈ Ci

∣∣∣ Ai(t), Ni(t) > ni

}
(i(t) = i implies p̃t ∈ Ci)

≤
T∑
t=1

P{p̃t ∈ Vi | Ai(t), Ni(t) > ni} . (104)

To obtain an upper bound for P{p̃t ∈ Vi | Ai(t), Ni(t) > ni}, we use Lemma 19. By taking ni =
16
9

1
ξε2 log T with ξ = 1/4, we have

E

[
T∑
t=1

1

[
i(t) = i, Ã1(t), Ai(t)

]]
≤ ni +

T∑
t=1

P{p̃t ∈ Vi | Ai(t), Ni(t) > ni}

≤ ni +

T∑
t=1

exp
(
− 9

16
ξε2ni

)
(1− 2ξ)−M/2 (by Lemma 19)

=
16

9

1

ξε2
log T + (1− 2ξ)−M/2

=
64

9ε2
log T + 2M/2 , (105)

which completes the proof.

F.3 Analysis for Case (B)

Lemma 20. For any i 6= 1,

E

[
T∑
t=1

1[i(t) = i, Aci (t)]

]
≤

256N
(
log T + A

2 log 2 + 1
)

ε2
+

16A2

ε2
(106)

The regret in this case can intuitively be bounded because as the round proceeds the event i(t) = i
makes Sip̂t close to Sip∗, which implies that the expected number of times the event Aci (t) occurs is
not large.

Before going to the analysis of Lemma 20, we prove useful inequalities between ‖q(t)
i − Sip

∗‖,
‖q(t)
i − Sip̂t‖, and ‖Sip̂t − Sip∗‖.

Lemma 21. Assume Ni(t) > 0. Then,

‖q(t)
i − Sip̂t‖

2 ≤
Z\i

Ni(t)
+ ‖q(t)

i − Sip
∗‖2 . (107)

Proof. Recall that p̂t is the maximizer of ḡt(p), and we have

p̂t = arg max
p∈RM

ḡt(p) = arg max
p∈RM

N∏
i=1

exp
{
−1

2
Ni(t)‖q(t)

i − Sip‖
2
}

= arg min
p∈RM

N∑
i=1

Ni(t)‖q(t)
i − Sip‖

2 .

(108)
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Using this and the definition of Z\i, we have

Ni(t)‖q(t)
i − Sip̂t‖

2 ≤
∑
k∈[N ]

Nk(t)‖q(t)
k − Skp̂t‖

2

≤
∑
k∈[N ]

Nk(t)‖q(t)
k − Skp

∗‖2

≤ Z\i +Ni(t)‖q(t)
i − Sip

∗‖2 . (109)

Dividing by Ni(t) on the both sides completes the proof.

Lemma 22. Assume that Aci (t) and Ni(t) > 0 hold. Then,

‖q(t)
i − Sip

∗‖ > 1

2

(
ε

4
−

√
Z\i

Ni(t)

)
. (110)

Proof. By the triangle inequality,

‖q(t)
i − Sip

∗‖ ≥ ‖Sip̂t − Sip∗‖ − ‖q(t)
i − Sip̂t‖

>
ε

4
−

√
Z\i

Ni(t)
+ ‖q(t)

i − Sip∗‖2 (by Aci (t) and Lemma 21)

≥ ε

4
−

√
Z\i

Ni(t)
− ‖q(t)

i − Sip
∗‖

(
by
√
x+ y ≤

√
x+
√
y for x, y ≥ 0

)
,

(111)

which is equivalent to (110).

Proof of Lemma 20. We first bound the expectation conditioned on Z\i, and then take the expectation
for Z\i. Now,

E

[
T∑
t=1

1[i(t) = i, Aci (t)]

∣∣∣∣∣ Z\i
]

= E

[
T∑
t=1

1

[
i(t) = i, Aci (t), Ni(t) ≤

64Z\i

ε2

] ∣∣∣∣∣ Z\i
]

+ E

[
T∑
t=1

1

[
i(t) = i, Aci (t), Ni(t) >

64Z\i

ε2

] ∣∣∣∣∣ Z\i
]

≤
64Z\i

ε2
+ E

[
T∑
t=1

1

[
i(t) = i, Aci (t), Ni(t) >

64Z\i

ε2

] ∣∣∣∣∣ Z\i
]

(i(t) = i for all t ∈ [T ]) .

(112)

The first term becomes 256N
(
log T + A

2 log 2 + 1
)
/ε2 by taking expectation over Z\i using

Lemma 10. Then, we bound the second term. From Lemma 22, Aci (t) and Ni(t) >
64Z\i
ε2 im-

29



ply ‖q(t)
i − Sip∗‖ > ε/16. Therefore,

E

[
T∑
t=1

1

[
i(t) = i, Aci (t), Ni(t) >

64Z\i

ε2

] ∣∣∣∣∣ Z\i
]

≤ E

[
T∑
t=1

1

[
i(t) = i, ‖q(t)

i − Sip
∗‖ > ε

16

]]

≤ E

 T∑
t=1

1

i(t) = i,
⋃
y∈[A]

|(q(t)
i )y − (Si)yp

∗| > ε

16
√
A


≤ E

[
A∑
y=1

T∑
t=1

1

[
i(t) = i, |(q(t)

i )y − (Si)yp
∗| > ε

16
√
A

]]

≤ E

[
A∑
y=1

T∑
ni=1

T∑
t=1

1

[
i(t) = i, Ni(t) = ni, |(q(t)

i )y − (Si)yp
∗| > ε

16
√
A

]]

= E

[
A∑
y=1

T∑
ni=1

1

[
T⋃
t=1

{
i(t) = i, Ni(t) = ni, |(q(t)

i )y − (Si)yp
∗| > ε

16
√
A

}]]
(The event {i(t) = i, Ni(t) = ni} occurs at most once for fixed ni.)

≤
A∑
y=1

T∑
ni=1

P
{
|(qi,ni)y − (Si)yp

∗| > ε

4
√
A

}

≤
A∑
y=1

T∑
ni=1

2 exp

(
−2ni

(
ε

4
√
A

)2)
(by Hoeffding’s ineq.)

≤ 2A

∞∑
ni=1

exp
(
−niε

2

8A

)
= 2A

1

exp
(
ε2

8A

)
− 1

≤ 2A
1
ε2

8A

(by ex ≥ 1 + x)

=
16A2

ε2
. (113)

By summing up the above argument, the proof is completed.

F.4 Analysis for Case (C)

Before going to the analysis of cases (C), (D), and (E), we recall some notations. Recall that
Pi(t) = P{p̃t ∈ Ci | Ft} , (114)

Ci,t = Ci ∩ Bε′(p̂t), īt = arg maxi∈[N ] P{p̃t ∈ Ci,t|Ft}, and p̄t is an arbitrary point in Cīt,t. Also
recall that

Āi(t) =
{
‖Sip̄t − Sip∗‖ ≤

ε

8

}
. (115)

Lemma 23. For any i ∈ [N ],

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t)
]]
≤ N

p0

(
25M log T

ε2
+ eλ‖p

∗‖2/2
(

1

λT
+

L

Mλ

)M/2
1

1− e−ε2/25

)
.

(116)

Before proving the above lemma, we give two lemmas.
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Lemma 24.
P
{
p̃t ∈ Cīt

∣∣ Ft} ≥ P
{
p̃t ∈ Cīt,t

∣∣ Ft} ≥ p0/N , (117)

where p0 := 1− h((λε′)2).

Proof. First, we prove

P

p̃t ∈ ⋃
i∈[N ]

Ci,t

∣∣∣∣∣∣ Ft
 ≥ 1− h((λε′)2) . (118)

This follows from

P

p̃t 6∈ ⋃
i∈[N ]

Ci,t

∣∣∣∣∣∣ Ft
 = P{p̃t ∈ Bε′(p̂t) | Ft}

≤ h
(

inf
p∈{p:‖p−p̂t‖>ε′}

‖B1/2
t (p− p̂t)‖2

)
≤ h

(
λ‖p− p̂t‖2

)
≤ h((λε′)2) . (119)

Using the definition of īt completes the proof.

Lemma 25. For any i ∈ [N ], the event Āci (t) implies ‖Sip̂t − Sip∗‖ ≥ ε/16.

Proof. Using the triangle inequality, we have
‖Sip̂t − Sip∗‖ ≥ ‖Sip̄t − Sip∗‖ − ‖Sip̄t − Sip̂t‖

≥ ε/8− ‖Si‖‖p̄t − p̂t‖

≥ ε/8− ‖Si‖
ε

16 maxi‖Si‖
≥ ε/8− ε/16 = ε/16 . (120)

Proof of Lemma 23. For any n0, which is specified later, we have

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t)
]]

= E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t), Ni(t) < n0

]]
+ E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t), Ni(t) ≥ n0

]]
(121)

The first term can be bounded by (p0/N)−1 ·n0 from Lemma 24. The rigorous proof can be obtained
by the almost same argument as the following analysis of the second term using Theorem 16.

Then, we will bound the second term. Specifically, we will prove that for n0 = M log T
(ε/16)2 ,

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t), Ni(t) ≥ n0

]]
= O(1) . (122)

First we have

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t), Ni(t) ≥ n0

]]

≤
∞∑

m=n0

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t), Ni(t) = m

]]
. (123)
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Let

τ = min
{
t : p̄t ∈ Ci, Ā

c
i (t), Ni(t) = m

}
∧ (T + 1) (124)

be the first time such that p̄t ∈ Ci, Ā
c
i (t) and Ni(t) = m occur. Letting At :={

p̄t ∈ Ci, Ā
c
i (t), Ni(t) = m

}
, Bt := {i(t) = i} and Pt := p0/N in Theorem 16, we have

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t), Ni(t) = m

]]
≤ N

p0
P{τ ≤ T} . (125)

Here τ ≤ T implies that

‖p̂τ − p∗‖Bτ = (p̂τ − p∗)>
λI +

∑
j∈[N ]

Nj(τ)S>j Sj

 (p̂τ − p∗)

≥ m(p̂τ − p∗)>
(
S>i Si

)
(p̂τ − p∗)

= m ‖Si(p̂τ − p∗)‖2 ≥ m(ε/16)2 , (126)

where the last inequality follows from Lemma 25. Therefore we have

E
[
exp(‖p̂τ − p∗‖2Bτ /2)

]
≥ E

[
1[τ ≤ T ] exp(‖p̂τ − p∗‖2Bτ /2)

]
≥ exp(m(ε/16)2/2)P{τ ≤ T} . (127)

Note that |Bτ | ≤ |BT | ≤ (1 + TL/M)M for L = maxi
√

trace(S>i Si) = maxi ‖Si‖F by Lemma
10 of Abbasi-Yadkori et al. (2011), where ‖·‖F is the Frobenius norm. Therefore we have

E [exp(‖p̂τ − p∗‖Bτ /2)] ≤ E

[√
|Bτ | ·

exp(‖p̂τ − p∗‖2Bτ /2)√
|Bτ |

]

≤ (1 + TL/M)M/2 E

[
exp(‖p̂τ − p∗‖2Bτ /2)√

|Bτ |

]

≤ (1 + TL/M)M/2 E

[
exp(‖p̂0 − p∗‖2B0

/2)√
|B0|

]
(128)

=

(
1 +

TL

Mλ

)M/2

eλ‖p
∗‖2/2 , (129)

where (128) holds since exp(‖p̂t−p∗‖2Bt/2)√
|Bt|

is a supermartingale from Lemma 12. Combin-
ing (125), (127), and (129), we obtain
∞∑

m=n0

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t), Ni(t) = m

]]
≤ N

p0

(
1

λ
+
TL

Mλ

)M/2

eλ‖p
∗‖2/2

∞∑
m=n0

e−m(ε/16)2/2

≤ N

p0

(
1

λ
+
TL

Mλ

)M/2

eλ‖p
∗‖2/2 e−n0ε

2/2

1− e−(ε/16)2/2
.

(130)

By choosing n0 = M log T
(ε/16)2 we obtain the lemma.

F.5 Analysis for Case (D)

Lemma 26. For any i ∈ [N ],

E

[
T∑
t=1

1

[
p̄t ∈ Ci, Āi(t), Ã

c
i (t)
]]
≤ 48

9

M + 2

ε2
N

p0
. (131)

Remark. To prove the regret upper bound, it is enough to prove Lemma 26 only for i = 1. However,
for the sake of generality, we prove the lemma for any i ∈ [N ].
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Before proving Lemma 26, we give two following lemmas.

Lemma 27. For any i ∈ [N ], the event Āi(t) implies Ai(t).

Proof. Using the triangle inequality, we have

‖Sip∗ − Sip̂t‖ ≤ ‖Sip∗ − Sip̄t‖+ ‖Sip̄t − Sip̂t‖

≤ ε/8 + ‖Si‖ ·
ε

16 maxi‖Si‖
< ε/4 , (132)

which completes the proof.

Now, Lemma 26 can be intuitively proven because from Lemma 27, Āi(t) implies Ai(t), and the
events Ai(t) and Ãci (t) does not simultaneously occur many times.
Let t = σ1, . . . , σm be the time of the first m times that the event {p̄t ∈ Ci, Ai(t), Ni(t) = ni}
occurred (not {p̄t ∈ Ci, Āi(t), Ni(t) = ni}). In other words, we define

• σ1 : the first time that p̄t ∈ Ci, Ai(t) and Ni(t) = ni occurred

• σ2 : the second time that p̄t ∈ Ci, Ai(t) and Ni(t) = ni occurred

• . . . .

Now we prove the following lemma using Lemma 9.

Lemma 28. For any 0 ≤ ξ < 1/2,

P
{
Ãci (t)

∣∣∣ Ai(t), σk = t
}
≤ exp

(
− 9

16
ξε2ni

)
(1− 2ξ)−M/2 . (133)

Proof. Recall that Ti =
{
p ∈ RM : ‖Sip− Sip∗‖ > ε

}
. We follow a similar argument as the analysis

for Lemma 19. Since p̃t ∼ N(B−1
t bt, B

−1
t ), the squared Mahalanobis distance ‖B1/2

t (p − p̂t)‖2
follows the chi-squared distribution withM degree of freedom. Hence, for h(a) = PX∼χ2

M
{X ≥ a},

we have

P
{
Ãci (t)

∣∣∣ Ai,ni , σk = t
}
≤ h

(
inf
p∈Ti
‖B1/2

t (p− p̂t)‖2
)
. (134)

Then, Eq. (133) directly follows from Lemma 9.

Proof of Lemma 26. From Lemma 27, the event Āi(t) implies Ai(t). Hence, it is enough to derive
the upper bound for

E

[
T∑
t=1

1

[
p̄t ∈ Ci, Ai(t), Ã

c
i (t)
]]

(135)

instead of the bound for

E

[
T∑
t=1

1

[
p̄t ∈ Ci, Āi(t), Ã

c
i (t)
]]
. (136)
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Using Lemma 28, we can bound the term for case (D) from above as

E

[
T∑
t=1

1

[
p̄t ∈ Ci, Ai(t), Ã

c
i (t)
]]

= E

[
T∑

ni=1

T∑
t=1

1

[
Ai(t), Ã

c
i (t), Ni(t) = ni

]]

=

T∑
ni=1

T∑
t=1

P
{
Ai(t), Ã

c
i (t), Ni(t) = ni

}

=

T∑
ni=1

T∑
t=1

T∑
k=1

P
{
Ai(t), Ã

c
i (t), σk = t

}
(the event {σk = t} is exclusive for fixed ni)

=

T∑
ni=1

T∑
t=1

T∑
k=1

P{Ai(t), σk = t}P
{
Ãci (t)

∣∣∣ Ai(t), σk = t
}

≤
T∑

ni=1

T∑
t=1

T∑
k=1

P{Ai(t), σk = t}Ce−niι (by Lemma 28)

=

T∑
ni=1

Ce−niι
T∑
t=1

T∑
k=1

P{Ai(t), σk = t}

≤
T∑

ni=1

Ce−niι
T∑
t=1

T∑
k=1

P{σk = t}

≤
T∑

ni=1

Ce−niι
T∑
k=1

P{σk exists}

≤
T∑

ni=1

Ce−niι
T∑
k=1

(
1− p0

N

)k−1

(by p̃σs 6∈ Ci for s = 1, . . . , k − 1)

≤ 3C
1

eι − 1

N

p0

≤ 48

9

M + 2

ε2
N

p0
, (137)

where ι = 9ξε2

16 , C = (1 − 2ξ)−
M
2 , and in the last inequality we select the optimal ξ and use

1 + x ≤ ex.

F.6 Analysis for Case (E)

Lemma 29. For any i 6= 1,

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Āi(t)

]]
≤ 25M/2+7Γ(M/2 + 1)eλ

2‖p∗‖2/2

δ2εM+2λM/2+1
, (138)

where ε is defined in (26) and satisfies ε ≤ minp∈Cc1 ‖p− p
∗‖ /3, and

δ := min
p̂:(L1−Li)>p̂≥0, ‖Si(p̂−p∗)‖≤ε/8

‖S1(p̂− p∗)‖ . (139)

We prove Lemma 29 using Lemma 12 and Theorem 16.
Remark. The upper bound in (138) goes to infinite when we set λ = 0, that is, a flat prior is used.
However, this is not the essential effect of the prior but just comes from the minimum eigenvalue of
B1. In fact, we can see from the proof that a similar bound can be obtained for λ = 0 if we run some
deterministic initialization until Bt becomes positive definite.
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Proof. We evaluate each term in the summation using Theorem 16 with
At = {p̄t ∈ Ci, ‖Si(p̄t − p∗)‖ ≤ ε/8, N1(t) = n} ,
Bt = {p̃t ∈ C1} . (140)

for n ∈ [T ]. Recall that

ḡt(p) =
1√

(2π)M |B−1
t |

exp

(
−1

2
‖p− p̂t‖2Bt

)
(141)

is the probability density function of p̂t given Ft = {Bt, bt}. Using τ defined in (80), it holds for any
τ ∈ [T ] that

P{Bτ |Fτ} = P{p̃τ ∈ C1 | Fτ}

=

∫
p∈C1

ḡτ (p)dp

≥
∫
p:‖p−p∗‖≤3ε

ḡτ (p)dp

≥ sup
p:‖p−p∗‖≤2ε

∫
p′:‖p′−p‖≤ε

ḡτ (p′)dp′ (142)

≥ sup
p:‖p−p∗‖≤2ε

inf
p′:‖p′−p‖≤ε

ḡτ (p′)Vol({p′′ : ‖p′′ − p‖ ≤ ε})

=
(
√
πε)M

Γ(M/2 + 1)
sup

p:‖p−p∗‖≤2ε

inf
p′:‖p′−p‖≤ε

ḡτ (p′)

=
(ε/
√

2)M
√
|Bτ |

Γ(M/2 + 1)
exp

{
−1

2

(
inf

p:‖p−p∗‖≤2ε
sup

p′:‖p′−p‖≤ε
‖p′ − p̂τ‖

2
Bτ

)}

≥
(ε/
√

2)M
√
|Bτ |

Γ(M/2 + 1)
exp

{
−
‖p̂τ − p∗‖2Bτ − εδ

√
λn

2

}
, (143)

where (142) follows since {p : ‖p− p∗‖ ≤ 3ε} ⊃ {p′ : ‖p′ − p0‖ ≤ ε} for any p0 such that
‖p0 − p∗‖ ≤ 2ε, and the last inequality follows from Theorem 15. To apply Theorem 15, we used
Lemma 27.
Now we define a stochastic process corresponds to (143) as

Pt =
(ε/
√

2)M
√
|Bt|

Γ(M/2 + 1)
exp

{
−
‖p̂t − p∗‖2Bt − εδ

√
λn

2

}
. (144)

Then, by Lemma 12,

E[P−1
t+1|Ft] ≤

Γ(M/2 + 1)

(ε/
√

2)M
e−εδ

√
λn/2E

[
1√
|Bt+1|

E

[
exp

(
‖p̂t − p∗‖2Bt+1

2

) ∣∣∣∣∣ Ft, Si(t)
] ∣∣∣∣∣ Ft

]

≤ Γ(M/2 + 1)

(ε/
√

2)M
e−εδ

√
λn/2E

[
1√
|Bt|

exp

(
‖p̂t − p∗‖2Bt

2

) ∣∣∣∣∣ Ft
]

= P−1
t , (145)

which means that P−1
t is a supermartingale. Therefore we can apply Theorem 16 and obtain

E

[
T∑
t=1

1[p̂t ∈ Ci, ‖Si(p̄t − p∗)‖ ≤ ε/8, N1(t) = n]

]
≤ E

[
1[τ ≤ T ]P−1

τ

]
≤ E

[
P−1
τ

]
≤ E

[
P−1

1

]
=

Γ(M/2 + 1)eλ
2‖p∗‖2/2

(ε
√
λ/2)M

e−εδ
√
λn/2 .

(146)
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Finally we have

E

[
T∑
t=1

1[p̄t ∈ Ci, ‖Si(p̄t − p∗)‖ ≤ ε/8]

]

=

T∑
n=1

E

[
T∑
t=1

1[p̄t ∈ Ci, ‖Si(p̄t − p∗)‖ ≤ ε/8, N1(t) = n]

]

≤ Γ(M/2 + 1)eλ
2‖p∗‖2/2

(ε
√
λ/2)M

∞∑
n=1

e−εδ
√
λn/2

≤ Γ(M/2 + 1)eλ
2‖p∗‖2/2

(ε
√
λ/2)M

∫ ∞
0

e−εδ
√
λx/2dx

=
Γ(M/2 + 1)eλ

2‖p∗‖2/2

(ε
√
λ/2)M

2

(εδ
√
λ/2)2

Γ(2)

=
2M/2+3Γ(M/2 + 1)eλ

2‖p∗‖2/2

δ2εM+2λM/2+1
, (147)

which completes the proof.

G Property of Dynamic Pricing Games
In this appendix, we will see a property of dp-easy games.
Proposition 30. Consider any dp-easy games with c > −1. Then, any two actions in the game are
neighbors.
Remark. In section 5, we considered dp-easy games with c > 0, but this can be relaxed to c > −1 to
prove Proposition 30.

Proof. Take any two different actions j, k ∈ [N ] such that j < k. From the definition of the loss
matrix in dp-easy games, we have ej ∈ Cj and ek ∈ Ck.
First, we will find α ∈ [0, 1] such that

αej + (1− α)ek ∈ Cj ∩ Ck . (148)

From the definition of the loss matrix, the i-th element of L(αej + (1− α)ek) ∈ PM is
−i (1 ≤ i ≤ j)
αc+ (1− α) · (−i) (j + 1 ≤ i ≤ k)

c (k < i ≤ N)

. (149)

It is easy to see that the indices which give the minimum value in (149) is j or k. Thus, to achieve the
condition (148), the following should be satisfied,

−j = αc+ (1− α) · (−k) , (150)

which is equivalent to

α =
k − j
c+ k

(=: α∗) . (151)

Note that we have 0 ≤ α ≤ 1 for any c > −1.
Next, we introduce the following definitions.

p(j,k) := α∗ej + (1− α∗)ek ∈ Cj ∩ Ck , (152)

Ball(j,k)
ε :=

{
p ∈ PM : ‖p− p(j,k)‖ ≤ ε

}
, (153)

L(x) := L(p(j,k) + x) ∈ RN . (154)
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To prove the proposition, it is enough to prove the following: there exists ε > 0, Ball(j,k)
ε ⊂ Cj ∪ Ck.

To prove this, it is enough to prove that, there exists ε > 0,

min
x∈RM :‖x‖≤ε

min
i∈[N ]\{j,k}

(
(L(x))i − (L(x))j

)
∨
(

(L(x))i − (L(x))k

)
> 0 . (155)

We will prove (155) in the following. Take any i ∈ [N ]\{j, k} and

ε := min
i:1≤i<j

1

2

j − i
‖Lj − Li‖

∧ min
i:j<i<k

1

2

(1− α∗)(k − i)
‖Li − Lk‖

∧ min
i:k<i≤N

1

2

c+ j

‖Lj − Li‖
. (156)

Note that the ε used here is different from the one used in the proof of the regret upper bounds.
Case (A):When 1 ≤ i < j, using Cauchy–Schwarz inequality, we have(

(L(x))i − (L(x))j

)
∨
(

(L(x))i − (L(x))k

)
≥ (L(x))i − (L(x))j

= (−i+ L>i x)− (−j + L>j x)

= (j − i)− (Lj − Li)>x
≥ (j − i)− ‖Lj − Lk‖‖x‖
≥ (j − i)− ε‖Lj − Li‖

≥ 1

2
(j − i)

> 0 . (157)

The arguments for cases (B) and (C) follow in the similar manner as case (A).
Case (B):When j < i < k, we have(

(L(x))i − (L(x))j

)
∨
(

(L(x))i − (L(x))k

)
≥ (L(x))i − (L(x))k

=
{
α∗c+ (1− α∗) · (−i) + L>i x

}
−
{
α∗c+ (1− α∗) · (−k) + L>k x

}
= (1− α∗)(k − i)− (Li − Lk)>x

≥ (1− α∗)(k − i)− ε(Li − Lk)>

≥ 1

2
(1− α∗)(k − i)

> 0 . (158)

Case (C): When k < i ≤ N , we have(
(L(x))i − (L(x))j

)
∨
(

(L(x))i − (L(x))k

)
≥ (L(x))i − (L(x))j

= (c+ L>i x)− (−j + L>j x)

≥ c+ j − ‖Lj − Li‖‖x‖
≥ c+ j − ε‖Lj − Li‖

≥ 1

2
(c+ j)

> 0 . (159)
Summing up the argument for cases (A) to (C), the proof is completed.

H Details and Additional Results of Experiments
Here we give the specific values of the opponent’s strategy used in Section 5 and show the extended
experimental results for performance comparison. Table 2 summarizes the values of opponent’s
strategy used in this appendix and Section 5. Figure 3 shows the empirical comparison of the proposed
algorithms against the benchmark methods, and Figure 4 shows the number of the rejected times. We
can see the same tendency as Section 5, that is, TSPM performs the best and the number of rejections
does not increase with the time step t.
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Table 2: The values of the opponent’s strategy.
# of outcomesM opponent’s strategy p∗

2 [0.7, 0.3]
3 [0.5, 0.3, 0.2]
4 [0.3, 0.3, 0.3, 0.1]
5 [0.2, 0.3, 0.3, 0.1, 0.1]
6 [0.2, 0.2, 0.3, 0.1, 0.1, 0.1]
7 [0.2, 0.2, 0.3, 0.1, 0.1, 0.05, 0.05]
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Figure 3: Regret-round plots of the algorithms. The solid lines indicate the average over 100 independent trials.
The thin fillings are the standard error.
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Figure 4: The number of rejected times by the accept-reject sampling. The solid lines indicate the average over
100 independent trials after taking moving average with window size 100.
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