
A Appendix Organization

This appendix is organized as follows: in Section B, C and D we provide the missing proofs of Theorems 3, 4
and 5. In Section E we provide detailed version of Theorems 6 and 7 containing all constants. In Section F we
provide a version of Theorem 2 with all constants for completeness.

B Proof of Theorem 3

In this section we provide the missing proof of Theorem 3, restated below:

Lemma 3. Let W be a real vector space and ‖ · ‖1, . . . , ‖ · ‖T are an increasing sequence of norms on W such
that 1

2
‖ · ‖t is σ-strongly-convex with respect to ‖ · ‖t. Suppose we run FTRL with regularizers given by (6), and

with gt satisfying ‖gt‖t−1,? ≤ 1 for all t. Then ‖wt‖t−1 ≤ 1 for all t, and for all ẘ with ‖ẘ‖T−1 ≤ 1, the
regret of FTRL is bounded by

RT (ẘ) ≤ 1√
σ


‖ẘ‖2T−1

√√√√1 +

T−1∑

t=1

‖gt‖2t−1,? +

√√√√
T∑

t=1

‖gt‖2t−1,?


 .

Proof. To begin, observe that since ψt(w) = ∞ for ‖w‖t > 1, the definition of the FTRL update implies
‖wt+1‖t ≤ 1. So now it remains only to show the regret bound.

By the σ-strong-convexity of 1
2
‖ · ‖2t , we have that ψt is

√
2σ + 2σ

∑t
i=1 ‖gi‖2i−1,?-strongly convex with

respect to ‖ · ‖t. Further, since ‖ · ‖t is increasing with t, ψt is increasing as well. Therefore direct application
of Theorem 1 yields:

RT (ẘ) ≤ ψT−1(ẘ) +

T∑

t=1

‖gt‖2t−1,?

2
√
σ + σ

∑t−1
i=1 ‖gi‖2i−1,?

Now we recall the following consequence of concavity of the square root function (see Auer et al. [2002], Duchi
et al. [2010] for proofs): for any sequence non-negative numbers x1, . . . , xT we have

T∑

t=1

xt√∑t
i=1 xt

≤ 2

√√√√
T∑

t=1

xt

Using this observation, and the fact that ‖gt‖t−1,? ≤ 1, we have

T∑

t=1

‖gt‖2t−1,?

2
√
σ + σ

∑t−1
i=1 ‖gi‖2i−1,?

≤
T∑

t=1

‖gt‖2t−1,?

2
√

2σ
√∑t

i=1 ‖gi‖2i−1,?

≤

√√√√ 1

σ

T∑

t=1

‖gt‖2t−1,?

And now the final bound follows by inserting the definition of ψT−1.

C Proof of Theorem 4

In this section we provide the missing proof of Theorem 4, restated below:

Lemma 4. Under the assumptions of Lemma 3, for any ẘ ∈W (recall we assume W is an entire vector space
in Lemma 3), the regret of Algorithm 1 is bounded by:

RT (ẘ) ≤ O


ε+

2‖ẘ‖T−1

min(1,
√
σ)

max



√√√√1 +

T∑

t=1

‖gt‖2t−1,? log

(
1 +

∑T
t=1 ‖gt‖2t−1,?‖ẘ‖T−1

ε

)
,

log

(
1 +

∑T
t=1 ‖gt‖2t−1,?‖ẘ‖T−1

ε

))]
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Proof. First, by Lemma 3, we have ‖xt‖t−1 ≤ 1, so that 〈gt, xt〉 ≤ ‖gt‖t−1,?‖xt‖t−1 ≤ ‖gt‖t−1,? ≤ 1.
Next, we use an argument from Cutkosky and Orabona [2018]:

T∑

t=1

〈gt, wt − ẘ〉 =

T∑

t=1

〈gt, ytxt − ẘ〉

=

T∑

t=1

〈gt, xt〉(yt − ‖ẘ‖T−1) + ‖ẘ‖T−1

T∑

t=1

〈gt, xt − ẘ/‖ẘ‖T−1〉

= R1D
T (‖ẘ‖T−1) +RFTRLT (ẘ/‖ẘ‖T−1)

where RFTRLT is the regret of FTRL. Since
∥∥∥ ẘ
‖ẘ‖T−1

∥∥∥
T−1

= 1, Lemma 3 tells us:

RFTRLT (ẘ/‖ẘ‖T−1) ≤ 2√
σ

√√√√1 +

T−1∑

t=1

‖gt‖2t−1,?

Now it remains to use the regret bound on A. Observe that |st| ≤ ‖gt‖t−1,? ≤ 1, so we can apply the regret
bound of Theorem 2. Specifically, if we pull the constants from Theorem 11, we obtain:

RT (ẘ) ≤ ε+ 2‖ẘ‖T−1 max



√√√√
(

3 + 3

T∑

t=1

‖gt‖2t−1,?

)
log

(
e+
‖ẘ‖T−1(6 + 11

∑T
t=1 ‖gt‖2t−1,?)

ε

)
,

2 log

(
e+
‖ẘ‖T−1(6 + 11

∑T
t=1 ‖gt‖2t,−1?)

ε

)]

+
2‖ẘ‖T−1√

σ

√√√√1 +

T−1∑

t=1

‖gt‖2t−1,?

D Proof of Theorem 5

In this section, we provide the missing proof of Theorem 5, restated below:

Theorem 5. Each output wt of Algorithm 2 lies in W , and the regret for any ẘ ∈W is at most:

RT (ẘ) ≤ O


ε+

‖ẘ‖T−1

min(1,
√
σ)

max



√√√√1 +

T∑

t=1

‖gt‖2t−1,? log

(
1 +

∑T
t=1 ‖gt‖2t−1,?‖ẘ‖T−1

ε

)
,

log

(
1 +

∑T
t=1 ‖gt‖2t−1,?‖ẘ‖T−1

ε

))]

Proof. The proof is nearly identical to that Cutkosky and Orabona [2018] Theorem 3 - we simply observe that
none of the steps in their proof required a fixed norm, and reproduce the argument for completeness. From
Cutkosky and Orabona [2018] Proposition 1, we have that St is convex and Lipschitz with respect to ‖ · ‖t−1 for
all t. Therefore we have `t is also convex and ‖gt‖t−1,?-Lipschitz with respect to ‖ · ‖t−1. Therefore we have
‖ĝt‖t−1,? ≤ ‖gt‖t−1,?.

T∑

t=1

〈gt, wt − ẘ〉 =

T∑

t=1

〈gt, vt〉+ 〈gt, wt − vt〉 − 〈gt, ẘ〉

≤
T∑

t=1

〈gt, vt〉+ ‖gt‖t−1,?‖wt − vt‖t−1 − 〈gt, ẘ〉

= 2

T∑

t=1

`t(vt)− `t(ẘ)

≤ 2

T∑

t=1

〈ĝt, vt − ẘ〉
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Now since ‖ĝt‖t−1,? ≤ ‖gt‖t−1,? ≤ 1, we have that
∑T
t=1〈ĝt, vt−ẘ〉 is simply the regret of the unconstrained

Algorithm 1 and so the Theorem follows. Specifically, if we again substitute in the result of Theorem 11 to get
all constants, we obtain:

RT (ẘ) ≤ ε+ 2‖ẘ‖T−1 max



√√√√
(

3 + 3

T∑

t=1

‖gt‖2t−1,?

)
log

(
e+
‖ẘ‖T−1(6 + 11

∑T
t=1 ‖gt‖2t−1,?)

ε

)
,

2 log

(
e+
‖ẘ‖T−1(6 + 11

∑T
t=1 ‖gt‖2t,−1?)

ε

)]

+
2‖ẘ‖T−1√

σ

√√√√1 +

T−1∑

t=1

‖gt‖2t−1,?

E Detailed Full-Matrix Bounds with Constants

In this section, we show a more detailed proof of Theorems 6 and 7 that includes all constant factors and
logarithmic terms fetched from Theorem 11.

First, we prove the following result that was used in the proof of Theorem 6:
Lemma 8. Suppose ‖ · ‖1 and ‖ · ‖2 are such that 1

2
‖x‖2i is σi-strongly convex with respect to ‖ · ‖i for

i ∈ {1, 2}. Then the ‖x‖ =
√
‖x‖21 + ‖x‖22 is a seminorm and is min(σ1, σ2)-strongly convex with respect to

‖ · ‖.

Proof. First, we show that ‖ · ‖ is a seminorm. It is clear that ‖0‖ = 0 and c‖x‖ = ‖cx‖. To check triangle
inequality, we have

‖x+ y‖ =
√
‖x+ y‖21 + ‖x+ y‖22

≤
√

(‖x‖1 + ‖y‖1)2 + (‖x‖2 + ‖y‖2)2

= ‖(‖x‖1, ‖x‖2) + (‖y‖1, ‖y‖2)‖2
≤ ‖(‖x‖1, ‖x‖2)‖2 + ‖(‖y‖1, ‖y‖2)‖2
= ‖x‖+ ‖y‖

Now we show the strong-convexity. Recall that a function f is σ-strongly convex if and only if for all p ∈ [0, 1]
and all x, y,

f (px+ (1− p)y) ≤ pf(x) + (1− p)f(y)− σp(1− p)
2

‖x− y‖2

Let σ = min(σ1, σ2). Then we have
1

2
‖px+ (1− p)y‖21 ≤

p

2
‖x‖21 +

1− p
2
‖y‖21 +

σp(1− p)
2

‖x− y‖21
1

2
‖px+ (1− p)y‖22 ≤

p

2
‖x‖22 +

1− p
2
‖y‖22 +

σp(1− p)
2

‖x− y‖22
Adding these two inequalities proves the stated strong-convexity.

Theorem 9. Suppose gt satisfies ‖gt‖ ≤ 1 for all t where ‖ · ‖ is a norm such that 1
2
‖ · ‖2 is σ-strongly convex

with respect to ‖ · ‖. Let Gt =
∑t
i=1 gig

>
i and let r be the rank of GT . Suppose we run Algorithm 2 with

‖x‖2t = ‖x‖2 + x>(I +Gt)x, where I is the identity matrix. Then we obtain regret:

RT (ẘ) ≤ ε+ 2‖ẘ‖T max

[√
(3 + 3r log(T + 1)) log

(
e+
‖ẘ‖T (7 + 4r log(T + 1))

ε

)
,

2 log

(
e+
‖ẘ‖T (7 + 4r log(T + 1))

ε

)]
+

2√
min(σ, 1)

‖ẘ‖T
√

1 + r log(T + 1)

Proof. We saw in the proof of Theorem 6 that ‖ẘ‖T−1 ≤ ‖w‖T =
√

2‖w‖22 +
∑T
t=1〈gt, ẘ〉2. We also saw:

T∑

t=1

‖gt‖2t−1,? ≤ rank(GT ) log(T + 1)
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So then with all constants, the regret is

RT (ẘ) ≤ ε+ 2‖ẘ‖T−1 max



√√√√
(

3 + 3

T∑

t=1

‖gt‖2t−1,?

)
log

(
e+
‖ẘ‖T−1(7 + 4

∑T
t=1 ‖gt‖2t−1,?)

ε

)
,

2 log

(
e+
‖ẘ‖T (7 + 4

∑T
t=1 ‖gt‖2t−1,?)

ε

)]

+
2√

min(σ, 1)

√√√√1 +

T−1∑

t=1

‖gt‖2t−1,?

≤ ε+ 2‖ẘ‖T max

[√
(3 + 3r log(T + 1)) log

(
e+
‖ẘ‖T (7 + 4r log(T + 1))

ε

)
,

2 log

(
e+
‖ẘ‖T (7 + 4r log(T + 1))

ε

)]

+
2√

min(σ, 1)
‖ẘ‖T

√
1 + r log(T + 1)

Next, we carry out a similar computation for the AdaGrad-style full-matrix algorithm:
Theorem 10. Suppose W ⊂ Rd and gt satisfies ‖gt‖2 ≤ 1 for all t. Let Gt =

∑t
i=1 gig

>
i . Define ‖ · ‖t be

‖x‖2t = x>(I +Gt)
1/2x. Then the regret of Algorithm 2 using these norms is bounded by:

RT (ẘ) ≤ ε̃+ 2‖ẘ‖T max



√√√√(3 + 6tr(G1/2

T )
)

log

(
e+
‖ẘ‖T (7 + 8tr(G1/2

T ))

ε

)
,

2 log

(
e+
‖ẘ‖T (7 + 8tr(G1/2

T ))

ε

)]
+ 2‖ẘ‖T

√
1 + 2tr(G1/2

T )

where the Õ notation hides a logarithmic dependency on tr
(
G

1/2
T

)√
‖ẘ‖22 + ẘ>G1/2

T ẘ.

This Theorem recovers the desired bound (3) up to log factors. Moreover, it is possible to interpret the operation
of the algorithm as in some rough sense “learning the optimal learning rate” required for the original AdaGrad
algorithm to achieve this bound.

Proof. In the proof of Theorem 7, we saw ‖ẘ‖T−1 ≤ ‖ẘ‖T =

√
‖ẘ‖22 + ẘ>G1/2

T ẘ. Further,
T∑

t=1

‖gt‖2t−1,? ≤ 2tr(G1/2
T )

So then with all constants, the regret is

RT (ẘ) ≤ ε+ 2‖ẘ‖T−1 max



√√√√
(

3 + 3

T∑

t=1

‖gt‖2t−1,?

)
log

(
e+
‖ẘ‖T−1(7 + 4

∑T
t=1 ‖gt‖2t−1,?)

ε

)
,

2 log

(
e+
‖ẘ‖T (7 + 4

∑T
t=1 ‖gt‖2t−1,?)

ε

)]

+
2√
σ

√√√√1 +

T−1∑

t=1

‖gt‖2t−1,?

≤ ε+ 2‖ẘ‖T max



√√√√(3 + 6tr(G1/2

T )
)

log

(
e+
‖ẘ‖T (7 + 8tr(G1/2

T ))

ε

)
,

2 log

(
e+
‖ẘ‖T (7 + 8tr(G1/2

T ))

ε

)]
+ 2‖ẘ‖T

√
1 + 2tr(G1/2

T )
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F Full Version of Theorem 2 with Constants

In this section, we provide a more detailed version of Theorem 2 including all logarithmic and constant factors.
The proof is essentially a (slightly looser) version of analysis in Cutkosky and Sarlos [2019], but we provide it
below for completeness.
Theorem 11. There exists a one-dimensional online linear optimization algorithm such that if |gt| ≤ 1 for all t,
the regret is bounded by

T∑

t=1

gt(wt − ẘ) ≤ ε+ 2|ẘ|max



√√√√
(

3 + 3

T∑

t=1

g2
t

)
log

(
e+
|ẘ|(7 + 4

∑T
t=1 g

2
t )

ε

)
,

2 log

(
e+
|ẘ|(7 + 4

∑T
t=1 g

2
t )

ε

)]

And moreover each wt is computed in O(1) time.

Proof. Define the wealth of an algorithm as:

Wealtht = ε−
t∑

τ=1

gτwτ

We set

wt+1 = vt+1Wealtht
where vt ∈ [−1/2, 1/2]. This implies:

WealthT = ε

T∏

t=1

(1− gtvt)

Define

WealthT (̊v) = ε

T∏

t=1

(1− gtv̊)

Now, to choose vt, consider the functions:

`t(v) = − log(1− gtv)

Observe that `t(v) is convex. Let zt = gt
1−gtvt = `′t(vt). Notice that |zt| ≤ 2|gt| ≤ 2 since vt ∈ [−1/2, 1/2].

Then we have

log (WealthT (̊v))− log (WealthT ) =

T∑

t=1

`t(vt)− `t(̊v) ≤
T∑

t=1

zt(vt − v̊)

Now we choose vt ∈ [−1/2, 1/2] using FTRL on the losses zt with regularizers

ψt(v) =
Z

2
(5 +

t∑

τ=1

z2
τ )v2

Notice that ψt is Z(4 +
∑t
τ=1 z

2
τ )-strongly convex with respect to | · |. Therefore by Theorem 1:

T∑

t=1

zt(vt − v̊) ≤ ψT (̊v) +
1

2

T∑

t=1

z2
t

Z(5 +
∑t−1
τ=1 z

2
τ )

≤ Z

2

(
5 +

T∑

t=1

z2
t

)
v̊2 +

1

2Z

T∑

t=1

z2
t

1 +
∑t
τ=1 z

2
τ

≤ Z

2

(
5 +

T∑

t=1

z2
t

)
v̊2 +

1

2Z
log

(
1 +

T∑

t=1

z2
t

)

Therefore, for all v̊ ∈ [−1, 2/, 1/2],

log (WealthT ) ≥ log (WealthT (̊v))− Z

2

(
5 +

T∑

t=1

z2
t

)
v̊2 +

1

2Z
log

(
1 +

T∑

t=1

z2
t

)

≥ log (WealthT (̊v))− Z

2

(
5 + 4

T∑

t=1

g2
t

)
v̊2 +

1

2Z
log

(
1 + 4

T∑

t=1

g2
t

)
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Next, use the tangent bound log(1− x) ≥ −x− x2 to obtain:

log (WealthT (̊v)) ≥ log(ε)−
T∑

t=1

gtv̊ −
T∑

t=1

g2
t v̊

2

So overall we have:

log (WealthT ) ≥ log(ε)−
T∑

t=1

gtv̊ − Z

2

(
5 +

T∑

t=1

(
2

Z
+ 4

)
g2
t

)
v̊2 − 1

2Z
log

(
1 + 4

T∑

t=1

g2
t

)

WealthT ≥ ε exp

(
−

T∑

t=1

gtv̊ − Z

2

(
5 +

T∑

t=1

(
2

Z
+ 4)g2

t

)
v̊2 − 1

2Z
log

(
1 + 4

T∑

t=1

g2
t

))

Now we relate this to regret:

T∑

t=1

gt(wt − ẘ) = ε− ẘ
T∑

t=1

gt −WealthT

≤ ε− ẘ
T∑

t=1

gt − ε exp

(
−

T∑

t=1

gtv̊ − Z

2

(
5 +

T∑

t=1

(
2

Z
+ 4

)
g2
t

)
v̊2 − 1

2Z
log

(
1 + 4

T∑

t=1

g2
t

))

≤ ε+ sup
G

[
Gẘ − ε exp

(
Gv̊ − Z

2

(
5 +

T∑

t=1

(
2

Z
+ 4

)
g2
t

)
v̊2 − 1

2Z
log

(
1 + 4

T∑

t=1

g2
t

))]

≤ ε+
|ẘ|
v̊

(
log

( |ẘ|
ε̊v

)
+
Z

2

(
5 +

T∑

t=1

(
2

Z
+ 4

)
g2
t

)
v̊2 +

1

2Z
log

(
1 + 4

T∑

t=1

g2
t

)
− 1

)

≤ ε+
|ẘ|
v̊

log

(
|ẘ|(1 + 4

∑T
t=1 g

2
t )1/2Z

ε̊v

)
+
Z

2

(
5 +

T∑

t=1

(
2

Z
+ 4

)
g2
t

)
v̊

where we have used Cutkosky and Sarlos [2019] Lemma 3 in to calculate the supremum over G. Now set Z = 1,
apply Cutkosky and Sarlos [2019] Lemma 4, and over-approximate several constants to obtain:

T∑

t=1

gt(wt − ẘ) ≤ ε+ 2|ẘ|max



√√√√
(

3 + 3

T∑

t=1

g2
t

)
log

(
e+
|ẘ|(7 + 4

∑T
t=1 g

2
t )

ε

)
,

2 log

(
e+
|ẘ|(7 + 4

∑T
t=1 g

2
t )

ε

)]
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