
COT-GAN: Generating Sequential Data
via Causal Optimal Transport:

Supplementary material

A Specifics on regularized Causal Optimal Transport

A.1 Limits of regularized Causal Optimal Transport

In this section we prove the limits stated in Remark 3.2.

Lemma A.1. Let µ and ν be discrete measures, say on path spaces XT and YT , with |X| = m and
|Y| = n. Then

Kc,ε(µ, ν) −−−→
ε→0

Kc(µ, ν).

Proof. We mimic the proof of Theorem 4.5 in [2], and note that the entropy of any π ∈ Π(µ, ν) is
uniformly bounded:

0 ≤ H(π) ≤ C := mTnT e−1. (A.1)

This yields

inf
π∈ΠK(µ,ν)

Eπ[c]− εC + εH(πKc,ε(µ, ν)) ≤ inf
π∈ΠK(µ,ν)

{Eπ[c]− εH(π)}+ εH(πKc,ε(µ, ν))

≤ inf
π∈ΠK(µ,ν)

Eπ[c] + εH(πKc,ε(µ, ν)).
(A.2)

Now, note that infπ∈ΠK(µ,ν) {Eπ[c]− εH(π)} = Kc,ε(µ, ν)− εH(πKc,ε(µ, ν)), and that, for ε→ 0,
the LHS and RHS in (A.2) both tend to Kc(µ, ν).

Lemma A.2. Let µ and ν be discrete measures. Then

Kc,ε(µ, ν) −−−→
ε→∞

Eµ⊗ν [c(x, y)].

Proof. Being µ and ν discrete, Eπ[c] is uniformly bounded for π ∈ ΠK(µ, ν). Therefore, for ε
big enough, the optimizer in PKc,ε(µ, ν) is π̂ := argmaxπ∈ΠK(µ,ν)H(π) = µ⊗ ν, the independent
coupling, for which H(µ⊗ ν) = H(µ) +H(ν); see [14] and [22]. Therefore, for ε big enough, we
have Kc,ε(µ, ν) = Eµ⊗ν [c(x, y)].

A.2 Reformulation of the COT problem

Proof. The causal constraint (3.2) can be expressed using the following characteristic function:

sup
l∈L(µ)

Eπ[l(x, y)] =

{
0 if π is causal;
+∞ otherwise.

(A.3)

This allows to rewrite (3.3) as

PKc,ε(µ, ν) = inf
π∈Π(µ,ν)

{
Eπ [c(x, y)]− εH(π) + sup

l∈L(µ)

Eπ[l(x, y)]

}
= inf
π∈Π(µ,ν)

sup
l∈L(µ)

{Eπ [c(x, y) + l(x, y)]− εH(π)}

= sup
l∈L(µ)

inf
π∈Π(µ,ν)

{Eπ [c(x, y) + l(x, y)]− εH(π)}

= sup
l∈L(µ)

Pc+l,ε(µ, ν),

where the third equality holds by the min-max theorem, thanks to convexity of L(µ), and convexity
and compactness of Π(µ, ν).

13

A.3 Sinkhorn divergence at the level of mini-batches

Empirical observation of the bias in Example 3.4. In the experiment mentioned in Example 3.4,
we consider a set of distributions ν’s as sinusoids with random phase, frequency and amplitude. We
let µ be one element in this set whose amplitude is uniformly distributed between minimum 0.3
and maximum 0.8. On the other hand, for each ν, the amplitude is uniformly distributed between
the same minimum 0.3 and a maximum that lies in {0.4, 0.5, . . . , 1.2}. Thus, the only parameter of
the distribution being varied is the maximum amplitude. We may equivalently take the maximum
amplitude as a single θ that parameterizes νθ, so that µ = ν0.8. Figure 1 illustrates that the sample
Sinkhorn divergence (3.7) (or regularized distance (2.4)) does not recover the optimizer 0.8, while
the proposed mixed Sinkhorn divergence (3.8) does.

Comparison of various implementations. Motivated by Bellemare et al. [10], Salimans et al.
[37] address the problem of bias in the mini-batch gradients of Wasserstein distance by proposing a
mini-batch Sinkhorn divergence that is closely related to (3.8). We denote the implementation of a
mini-batch Sinkhorn divergence in Salimans et al. [37] as

Ŵ6
c,ε :=Wc,ε(x̂, ŷθ) +Wc,ε(x̂, ŷ′θ) +Wc,ε(x̂′, ŷθ) +Wc,ε(x̂′, ŷ′θ)

− 2Wc,ε(x̂, x̂′)− 2Wc,ε(ŷθ, ŷ
′
θ).

In addition to (3.7) and (3.8), we further consider other possible variations of the Sinkhorn divergence
at the level of mini-batches, including

Ŵ3
c,ε := 2Wc,ε(x̂, ŷθ)−Wc,ε(x̂, x̂′)−Wc,ε(ŷθ, ŷ

′
θ)

and

Ŵ8
c,ε :=Wc,ε(x̂, ŷθ) +Wc,ε(x̂, ŷ′θ) +Wc,ε(x̂′, ŷθ) +Wc,ε(x̂′, ŷ′θ)

−Wc,ε(x̂, x̂′)−Wc,ε(ŷθ, ŷ
′
θ)−Wc,ε(x̂, x̂)−Wc,ε(ŷθ, ŷθ).

The superscripts in Ŵ3
c,ε, Ŵ6

c,ε and Ŵ8
c,ε indicate the number of terms used in the mini-batch

implementation of the Sinkhorn divergence. In the same spirit, our choice of mixed Sinkhorn
divergence Ŵmix

c,ε corresponds to Ŵ4
c,ε.

We compare the performance of all the variations in the low-dimensional applications of multivariate
AR-1 and 1-D noisy oscillation (see Appendix B for experiment details) in Figure 6 and Figure 7, and
in the high-dimensional applications of Sprite animations and the Weizmann Action dataset in Table 2.
The superscripts on COT-GAN correspond to the Sinkhorn divergence used in the experiments. We
replace the COT-GAN objective (3.8) with (3.7) in the experiment of COT-GAN2, with Ŵ3

c,ε in
COT-GAN3, with Ŵ6

c,ε in COT-GAN6, and with Ŵ8
c,ε in COT-GAN8, respectively.

100 101
t

0.0

0.5

1.0
0.00

100 101
0.0

0.5

1.0
8.37

100 101
0.0

0.5

1.0
77.02

100 101
0.0

0.5

1.0
10.11

100 101
0.0

0.5

1.0
7.56

100 101
0.0

0.5

1.0
74.83

1 10
dimensions

1

10di
m

en
sio

ns

0.00

1 10

1

10

1.34

1 10

1

10

26.37

1 10

1

10

2.89

1 10

1

10

1.35

1 10

1

10

26.60

0.0 0.5 1.0

real COT-GAN COT-GAN2 COT-GAN3 COT-GAN6 COT-GAN8

Figure 6: Results on learning the multivariate AR-1 process.

In the low-dimensional experiments, COT-GAN outperforms COT-GAN6 on the 1-D noisy oscillation,
but underperforms it on the multivariate AR-1 experiment. Both COT-GAN and COT-GAN6 obtain

14

real COT-GAN COT-GAN2 COT-GAN3 COT-GAN6 COT-GAN8

time steps

x
di

m
s

0 1.0x value
0

0.05
>

pr
ob

1 20peakt + 1

1

20

pe
ak

t

Figure 7: 1-D noisy oscillation. Top two rows show two samples from the data distribution and
generators trained by different methods. Third row shows marginal distribution of pixels values (y-
axis clipped at 0.07 for clarity). Bottom row shows joint distribution of the position of the oscillation
at adjacent time steps.

significantly better results than all other variations of the mini-batch Sinkhorn divergence. Given
the low-dimensional results, we only compare COT-GAN and COT-GAN6 in the high-dimensional
experiments. As shown in Table 2, COT-GAN performs the best in all evaluation metrics except for
KVD for Sprites animation. Both COT-GAN and COT-GAN6 perform better than MoCoGAN in
these two tasks. However, because COT-GAN6requires more mini-batches in the computation, it is
about 1.5 times slower than COT-GAN.

Table 2: Evaluations for video datasets. Lower value indicates better sample quality.

Sprites FVD FID KVD KID
MoCoGAN 1 108.2 280.25 146.8 0.34
COT-GAN6 620.1 109.1 64.5 0.091
COT-GAN 458.0 84.6 66.1 0.081
Human actions
MoCoGAN 1 034.3 151.3 89.0 0.26
COT-GAN6 630.8 109.2 46.79 0.19
COT-GAN 462.8 58.9 43.7 0.13

The MMD limiting case. In the limit ε → ∞, Genevay et al. [21] showed that Wc,ε(µ, ν) →
MMD−c(µ, ν) under the kernel defined by −c(x, y). Here we want to point out an interesting fact
about the limiting behavior of the mixed Sinkhorn divergence.
Remark A.3. Given distributions of mini-batches x̂ and ŷ formed by samples from µ and ν, respec-
tively, in the limit ε→∞, the Sinkhorn divergence Ŵc,ε(x̂, ŷ) converges to a biased estimator of
MMD−c(µ, ν); given additional x̂′ and ŷ′ from µ and ν, respectively, the mixed Sinkhorn divergence
Ŵmix
c,ε (x̂, x̂′, ŷ, ŷ′) converges to an unbiased estimator of MMD−c(µ, ν).

Proof. The first part of the statement relies on the fact that MMD−c(x̂, ŷ) is a biased estimator of
MMD−c(µ, ν). Indeed, we have

Ŵc,ε(x̂, ŷ)
ε→∞−→ MMD−c(x̂, ŷ) = − 1

m2

m∑
i=1

m∑
j=1

[c(xi, xj) + c(yi, yj)− 2c(xi, yj)].

15

Now note that

1

m2

m∑
i=1

m∑
j=1

E[c(xi, xj)] =
1

m2

 m∑
i=1

Eµ[c(xi, xi)] +
∑
i6=j

Eµ⊗µ[c(xi, xj)]


=
m− 1

m
Eµ⊗µ[c(x, x′)],

where we have used the fact that c(xi, xi) = 0. A similar result holds for the sum over c(yi, yj). On
the other hand, 1

m2

∑
ij E[c(xi, yj)] = Eµ⊗ν [c(x, y)]. Therefore

EMMD−c(x̂, ŷ) = −m− 1

m
[Eµ⊗µ[c(x, x′)] + Eν⊗ν [c(y, y′)]] + 2Eµ⊗ν [c(x, y)]

6= MMD−c(µ, ν),

which completes the proof of the first part of the statement.

For the second part, note thatWc,ε(µ, ν)→ Eµ⊗µ[c(x, x′)] as ε→∞ [21, Theorem 1], thus

Ŵmix
c,ε (x̂, x̂′, ŷ, ŷ′)→ Ex̂⊗ŷ[c(x, y)] + Ex̂′⊗ŷ′ [c(x′, y′)]− Ex̂⊗x̂′ [c(x, x′)]− Eŷ⊗ŷ′ [c(y, y′)]

=
1

m2

m∑
i=1

m∑
j=1

[c(xi, yi) + c(x′i, y′i)− c(xi, x′i)− c(yi, y′i)].

The RHS is an unbiased estimator of MMD, since its expectation is

Eµ⊗ν [c(x, y)] + Eµ⊗ν [c(x′, y′)]− Eµ⊗µ[c(x, x′)]− Eν⊗ν [c(y, y′)] = MMD−c(µ, ν).

The mixed divergence may still be a biased estimate of the true Sinkhorn divergence. However, in the
experiment of Example 3.4 we note that the minimum is reached for the parameter θ close to the real
one (Figure 1, bottom).

B Experimental details

B.1 Low dimensional time series

Here we describe details of the experiments in Section 5.1.

Autoregressive process. The generative process to obtain data xt for the autoregressive process is

xt = Axt−1 + ζt, ζt
i.i.d∼ N (0,Σ), Σ = 0.5I + 0.5,

where A is diagonal with ten values evenly spaced between 0.1 and 0.9. We initialize x0 from a
10-dimensional standard normal, and ignore the data in the first 10 time steps so that the data sequence
begins with a more or less stationary distribution. We use λ = 0.1 and ε = 10.0 for this experiment.

Noisy oscillation. This dataset comprises paths simulated from a noisy, nonlinear dynamical
system. Each path is represented as a sequence of d-dimensional arrays, T time steps long, and can be
displayed as a d× T -pixel image for visualization. At each discrete time step t ∈ {1, . . . , T}, data at
time t, given by xt ∈ [0, 1]d, is determined by the position of a “particle” following noisy, nonlinear
dynamics. When shown as an image, each sample path appears visually as a “bump” travelling
rightward, moving up and down in a zig-zag pattern as shown in Figure 8 (top left).

More precisely, the state of the particle at time t is described by its position and velocity st =
(st,1, st,2) ∈ R2, and evolves according to

st = f(st−1) + ζt, ζt = N (0, 0.1I),

f(st−1) = ctAst−1; ct =
1

‖st−1‖2 exp(−4(‖st−1‖2 − 0.3) + 1)
,

16

real COT-GAN min mix
c, min c, TimeGAN WaveGAN SinkhornGAN

time steps
x

di
m

s

0 1x value
0

0.05
>

pr
ob

1 20peakt + 1

1

20

pe
ak

t

Figure 8: 1-D noisy oscillation. Same distributions as in 7 are shown.

where A ∈ R2×2 is a rotation matrix, and s0 is uniformly distributed on the unit circle.

We take T = 48 and d = 20 so that xt is a vector of evaluations of a Gaussian function at 20 evenly
spaced locations, and the peak of the Gaussian function follows the position of the particle st,1 for
each t:

xt,i = exp

[
− (loc(i)− st,1)2

2× 0.32

]
,

where loc : {1, . . . , d} → R maps pixel indices to a grid of evenly spaced points in the space of
particle position. Thus, xt, the observation at time t, contains information about st,1 but not st,2. A
similar data generating process was used in [43], inspired by Johnson et al. [26].

We compare the marginal distribution of the pixel values xt,i and joint distribution of the bump
location (argmaxi xt,i) between adjacent time steps. See Figure 8.

Electroencephalography. We obtain EEG dataset from [45] and take the recordings of all the 43
subjects in the control group under the matching condition (S2). For each subject, we choose 75%
of the trials as training data and the remaining for evaluation, giving 2 841 training sequences and
969 test sequences in total. All data are subtracted by channel-wise mean, divided by three times the
channel-wise standard deviation, and then passed through a tanh nonlinearity. For COT-GAN, we
train three variants corresponding to λ being one of {1.0, 0.1, 0.01}, and ε = 100.0 for all OT-based
methods. Data and samples are shown in Figure 9.

Model and training parameters. The dimensionality of the latent state is 10 at each time step, and
there is also a 10-dimensional time-invariant latent state. The generator common to COT-GAN, direct
minimization and SinkhornGAN comprise a 1-layer (synthetic) or 2-layer (EEG) LSTM networks,
whose output at each time step is passed through two layers of fully connected ReLU networks. We
used Adam for updating θ and ϕ, with learning rate 0.001. Batch size is 32 for all methods except for
direct minimization of the mixed and original Sinkhorn divergence which is trained with batch size
64. These hyperparameters do not substantially affect the results.

The same discriminator architecture is used for both h and M in COT-GAN and the discriminator
of the SinkhornGAN. This network has two layers of 1-D causal CNN with stride 1, filter length 5.
Each layer has 32 (synthetic data) or 64 neurons (EEG) at each time step. The activation is ReLU
except at the output which is linear for autoregressive process, sigmoid for noisy oscillation, and
tanh for EEG.

For COT-GAN, λ = 10.0 and ε = 10 for synthetic datasets, and λ ∈ {0.01, 0.1, 1.0} and ε = 100.0
for EEG. The choice of ε is made based on how fast it converges to a particular threshold of the
transport plan, and each iteration takes around 1 second on a 2.6GHz Xeon CPU.

17

Figure 9: Data and samples obtained by different methods for EEG data, the number after COT-GAN
indicates the value of λ.

B.2 Videos datasets

B.2.1 Sprite animations

Data pre-processing. The sprite sheets can be created and downloaded from 2. The data can be
generated with various feature options for clothing, hairstyle and skin color, etc. Combining all
feature options gives us 6352 characters in total. Each character performs spellcast, walk, slash,
shoot and hurt movements from different directions, making up to a total number of 21 actions. As
the number of frames T ranges from 6 to 13, we pad all actions to have the same length T = 13
by repeating previous movements in shorter sequences. We then crop the characters from sheets
to be in the center of each frame, which gives a dimension of 64 × 64 × 4 for each frame. We
decide to drop the 4th color channel (alpha channel) to be consistent with the input setting of baseline
models. Finally, the resulting dataset has 6352 data points consisting of sequences with 13 frames of
dimensions 64× 64× 3.

2Original dataset is available at gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator/
and github.com/jrconway3/Universal-LPC-spritesheet. To facilitate the use of large dataset in
TensorFlow, we pre-shuffled all data used and wrote into tfrecord files. Links for download can be found on the
Github repository.

18

https://gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator
https://github.com/jrconway3/Universal-LPC-spritesheet

Table 3: Generator architecture.

Generator Configuration
Input z ∼ N (0, I)

0 LSTM(state size = 128), BN
1 LSTM(state size = 256), BN
2 Dense(8*8*512), BN, LeakyReLU
3 reshape to 4D array of shape (m, 8, 8, 512) as input for DCONV
4 DCONV(N512, K5, S1, P=SAME), BN, LeakyReLU
5 DCONV(N256, K5, S2, P=SAME), BN, LeakyReLU
6 DCONV(N128, K5, S2, P=SAME), BN, LeakyReLU
7 DCONV(N3, K5, S2, P=SAME)

Table 4: Discriminator architecture.

Discriminator Configuration
Input 64x64x3

0 CONV(N128, K5, S2, P=SAME), BN, LeakyReLU
1 CONV(N256, K5, S2, P=SAME), BN, LeakyReLU
2 CONV(N512, K5, S2, P=SAME), BN, LeakyReLU
3 reshape to 3D array of shape (m, T, -1) as input for LSTM
4 LSTM(state size = 512), BN
5 LSTM(state size = 128)

B.2.2 The Weizmann Action database

Data pre-processing. The videos in this dataset consists of clips that have lengths from 2 to 7
seconds. Each second of the original videos contains 25 frames, each of which has dimension
144x180x3. To avoid the absence of objects at the beginning of the videos and to ensure an entire
evolution of motions in each sequence, we skip the first 5 frames, then skip every 2 frames and collect
16 frames in a whole sequence as a result. Due to limited access to hardware, we also downscale each
frame to 64×64×3. The training set used contains 89 data points with dimensions 16×64×64×3.

GAN architectures. We detail the GAN architectures used in the experiment of the Weizmann
Action database in Table 3 and Table 4. A latent variable z of shape 5× 5 per time step is sampled
from a multivariate standard normal distribution and is then passed to a 2-layer LSTM to generate
time-dependent features, followed by 4-layer deconvolutional neural network (DCONV) to map
the features to frames. In order to connect two different types of networks, we map the features
using a feedforward (dense) layer and reshape them to the desired shape for DCNN. In Table 3
and 4, the DCONV layers have N filter size, K kernel size, S strides and P padding option. We
adopted batch-normalisation layers and the LeakyReLU activation function. We have two networks
to parameterize the process h and M as discriminator share the same structure, shown in Table 4.

We use a fixed length T = 16 of LSTM. The state size in the last LSTM layer corresponds to the
dimensions of ht and Mt, i.e., j in (3.9). We also applied exponential decay to learning rate by
ηt = η0r

s/c where η0 is the initial learning rate, r is decay rate, s is the current number of training
steps and c is the decaying frequency. In our experiments, we set the initial learning rate to be 0.001,
decay rate 0.98, and decaying frequency 500. The batch size m and time steps T used are both 16.
We have λ = 0.01, ε = 6.0 and the Sinkhorn L = 100 in this experiment. We train COT-GAN on a
single NVIDIA Tesla P100 GPU for 3 or 4 days. Each iteration takes roughly 1.5 seconds.

C Sprites and human action results without cherry-picking

In this section we show random samples of Sprites and human actions generated by COT-GAN,
mixed Sinkhorn minimization, and MoCoGAN without cherry-picking. The background was static
for both experiments. In the Sprites experiments (see Figure 10), the samples from mixed Sinkhorn
minimization and COT-GAN are both of good quality, whereas those from MoCoGAN only capture
a rough pattern in the frames and fail to show a smooth evolution of motions.

19

Figure 10: Random samples with no cherry picking from models trained on animated Sprites. Top row:
real sequences on the left and mixed Sinkhorn minimization on the right; bottom row: MoCoGAN on
the left and COT-GAN on the right.

In Figure 11, we show a comparison of real and generated samples for human action sequences.
Noticeable artifacts of COT-GAN and mixed Sinkhorn minimization results include blurriness and
even disappearance of the person in a sequence, which normally happens when the clothing of the
person has a similar color as the background. MoCoGAN also suffers from this issue and, visually,
there appears to be some degree of mode collapse. We used generators of similar capacity across all
models and trained COT-GAN, mixed Sinkhorn minimization and MoCoGAN for 65000 iterations.

20

Figure 11: Random samples with no cherry picking from models trained on human actions. Top row:
real sequences on the left and mixed Sinkhorn minimization on the right; bottom row: MoCoGAN on
the left and COT-GAN on the right.

21

	Specifics on regularized Causal Optimal Transport
	Limits of regularized Causal Optimal Transport
	Reformulation of the COT problem
	Sinkhorn divergence at the level of mini-batches

	Experimental details
	Low dimensional time series
	Videos datasets
	Sprite animations
	The Weizmann Action database

	Sprites and human action results without cherry-picking

