
Generalized Boosting

Arun Sai Suggala, Bingbin Liu, Pradeep Ravikumar
Carnegie Mellon University

Pittsburgh, PA 15213
{asuggala,bingbinl,pradeepr}@cs.cmu.edu

Abstract

Boosting is a widely used learning technique in machine learning for solving
classification problems. In boosting, one predicts the label of an example using an
ensemble of weak classifiers. While boosting has shown tremendous success on
many classification problems involving tabular data, it performs poorly on complex
classification tasks involving low-level features such as image classification tasks.
This drawback stems from the fact that boosting builds an additive model of weak
classifiers, each of which has very little predictive power. Often, the resulting
additive models are not powerful enough to approximate the complex decision
boundaries of real-world classification problems. In this work, we present a general
framework for boosting where, similar to traditional boosting, we aim to boost the
performance of a weak learner and transform it into a strong learner. However,
unlike traditional boosting, our framework allows for more complex forms of
aggregation of weak learners. In this work, we specifically focus on one form of
aggregation - function composition. We show that many popular greedy algorithms
for learning deep neural networks (DNNs) can be derived from our framework
using function compositions for aggregation. Moreover, we identify the drawbacks
of these greedy algorithms and propose new algorithms that fix these issues. Using
thorough empirical evaluation, we show that our learning algorithms have superior
performance over traditional additive boosting algorithms, as well as existing
greedy learning techniques for DNNs. An important feature of our algorithms is
that they come with strong theoretical guarantees.

1 Introduction

Boosting is a widely used learning technique in machine learning for solving classification problems.
Boosting aims to improve the performance of a weak learner by combining multiple weak classifiers
to produce a strong classifier with good predictive performance. Since the seminal works of Freund
[13], Schapire [32], a number of practical algorithms such as AdaBoost [16], gradient boosting [26],
XGBoost [9], have been proposed for boosting. Over the years, boosting based methods such as
XGBoost in particular, have shown tremendous success in many real-world classification problems,
as well as competitive settings such as Kaggle competitions. However, this success is mostly
limited to classification tasks involving structured or tabular data with hand-engineered features.
On classification problems involving low-level features and complex decision boundaries, boosting
tends to perform poorly [3, 30] (also see Section 5). One example where this is evident is the image
classification task, where the decision boundaries are often complex and the features are low-level
pixel intensities. This drawback stems from the fact that boosting builds an additive model of weak
classifiers, each of which has very little predictive power. Since such additive models with any
reasonable number of weak classifiers are usually not powerful enough to approximate complex
decision boundaries, the models’ output by boosting tend to have poor performance.

In this work, we aim to overcome this drawback of traditional boosting by considering a generalization
of boosting which allows for more complex forms of aggregation than linear combinations of
weak classifiers. To achieve this goal, we work in the feature representation space and boost the

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

performance of weak feature transformers. Working in the representation space allows for more
flexible combinations of weak feature transformers. This is unlike traditional boosting which works
in the label space and builds an additive model on the predictions of the weak classifiers. The
starting point for our approach is the greedy view of boosting, originally studied by Friedman et al.
[18], Mason et al. [26]. Letting pRSpfq be the risk of a classifier f on training samples S, boosting
techniques aim to approximate the minimizer of pRS in terms of linear combinations of elements
from a set of weak classifiers F . Many popular boosting algorithms including AdaBoost, XGBoost,
rely on greedy techniques to find such an approximation. In our generalized framework for boosting,
we take this greedy view, but differ in how we aggregate the weak learners. We approximate the
minimizer of pRS using models of the form fT “ WφT , where φT “

řT
t“0 gt, and tgtuTt“0 are

feature transformations learned in each iteration of the greedy algorithm, and W is the linear classifier
on top of the feature transformation. Unlike additive boosting, where each gt comes from a fixed
weak feature transformer class G, in our framework each gt comes from a class Gt which evolves over
time t and is allowed to depend on the past iterates tφiut´1

i“0. Some potential choices for Gt that could
be of interest are tg ˝ φt´1 for g P Gu, tg ˝ prφ0, . . . , φt´1sq for g P Gu, where g ˝ φpxq “ gpφpxqq
denotes function composition of g and φ, and G is a weak feature transformer class. Note that the
former choice of Gt is connected to layer-by-layer training of models with ResNet architecture [21].

As one particular instantiation of our framework, we consider weak feature transformers that are
neural networks and use function compositions to combine them; that is, we use Gt’s constructed
using function compositions. We show that for certain choices of Gt, our framework recovers the
layer-by-layer training techniques developed in deep learning [6, 22]. Greedy layer-by-layer training
techniques have seen a revival in recent years [5, 8, 22, 25, 29]. One reason for this revival is
that greedy techniques consume less memory than end-to-end training of deep networks, as they
do not perform end-to-end back-propagation. Consequently, they can accommodate much larger
models in limited memory. As a primary contribution of the paper, we identify several drawbacks of
existing layer-by-layer training techniques, and show that the choice of Gt used by these algorithms
can lead to a drop in performance. We propose alternative choices for Gt which fix these issues
and empirically demonstrate that the resulting algorithms have superior performance over existing
layer-by-layer training techniques, and in some cases achieve performance close to that of end-to-end
trained DNNs. Moreover, we show that the proposed algorithms perform much better than traditional
additive boosting algorithms, on a variety of classification tasks.

As the second contribution of the paper, we provide excess risk bounds for models learned using our
generalized boosting framework. Our results depend on a certain weak learning condition on feature
transformer classes tGtuTt“1, which is a natural generalization of the weak learning condition that
is typically imposed in traditional boosting. The resulting risk bounds are modular and depend on
the generalization bounds of tGtuTt“1. An advantage of such modular bounds is that one can rely on
the best-known generalization bounds for weak transformation classes tGtuTt“1 and obtain tight risk
bounds for boosting. As an immediate consequence of this result, we obtain excess risk bounds for
existing greedy layer-by-layer training techniques.

Related Work. Several works have proposed generalizations of traditional boosting [10, 11, 20, 22].
Cortes et al. [10] propose a boosting algorithm where the hypothesis set of weak classifiers is chosen
adaptively. However, the resulting models are still additive models of weak classifiers and usually
perform poorly on hard classification problems. Several recent works have attempted to learn neural
networks greedily based on boosting theory. Cortes et al. [11] propose a boosting-style algorithm to
learn both the structure and weights of neural networks in an adaptive way. However, the algorithms
developed are restricted to feed forward neural networks and are mostly theoretical in nature. The
experimental evidence in the paper is a proof-of-concept and only considers small scale binary
classification tasks. Huang et al. [22], Nitanda and Suzuki [29] use ideas from classical boosting to
learn neural networks in a layer-by-layer fashion. As we show later, these algorithms are specific
instances of our generalized framework, and have certain drawbacks arising from the choice of Gt
they use.

2 Preliminaries

In this section, we set up the notation and review the necessary background on additive boosting. A
consolidated list of notation can be found in Appendix A.
Notation. Let pX,Y q P X ˆ Y denote a feature-label pair following a probability distribution P .
Let PX , PY denote the marginal distributions of X and Y . In this work, we consider the multi-class

2

classification problem where Y “ t0, . . .K ´ 1u, and assume X Ď Rd. Let S “ tpxi, yiquni“1 be n
i.i.d samples drawn from P . Let Pn be the empirical distribution of S and PXn , P

Y
n be the marginal

distributions of txiuni“1, tyiuni“1.

In classification, our goal is to find a predictor that can well predict the label of any feature from just the
samples S. Let f : X Ñ RK denote a score-based classifier which assignsX to class argmaxi fipXq.
The expected classification risk of f is defined as EX,Y r`0´1pfpXq, Y qs, where `0´1pfpXq, Y q “ 0
if argmaxi fipXq “ Y , and 1 otherwise. Since optimizing 0{1 risk is computationally intractable,
we consider convex surrogates of `0´1pfpXq, Y q, which we denote by `pfpXq, Y q; typical choices
for ` include the logistic loss and the exponential loss. The population risk of f is then defined
as Rpfq “ EX,Y r`pfpXq, Y qs . Since directly optimizing the population risk is impossible, we
approximate it with the empirical risk pRSpfq “

1
n

řn
i“1 `pfpxiq, yiq and try to find its minimizer.

We consider classifiers of the form fpXq “WφpXq, where φ : X Ñ RD is the feature transformer
and W P RKˆD is the linear classifier on top. A popular choice for φ is a neural network. We denote
the population and empirical risks of such an f as RpW,φq, pRSpW,φq. We usually work in the space
of feature transforms. Let L2pP q denote the space of square integrable functions w.r.t P , and define
the inner product between φ1, φ2 P L2pP q as xφ1, φ2yP “ EX„P rxφ1pXq, φ2pXqys. We denote
with ∇φRpW,φq the functional gradient of RpW,φq w.r.t φ in the L2pP

Xq space, which is defined
as ∇φRpW,φqpxq “ EY |x

“

WT∇`pWφpxq, Y q
‰

, where ∇`pWφpxq, yq denotes the gradient of `
w.r.t its first argument, evaluated at Wφpxq. Similarly, we let ∇φ pRSpW,φq denote the functional
gradient of pRSpW,φq in the L2pP

X
n q space

∇φ pRSpW,φqpxq “
"

WT∇`pWφpxiq, yiq, if x “ xi,

0 otherwise
.

Additive Boosting. In this work, we refer to traditional boosting as additive boosting, as it constructs
additive models of weak classifiers. Let F be a hypothesis class of weak classifiers, a typical example
being decision trees of bounded depth. Additive boosting aims to find an element in the linear span
of F which minimizes the empirical risk pRSpfq. As previously mentioned, there exists a duality
between boosting and greedy algorithms [18, 19, 26]. Many popular boosting algorithms use a greedy
forward stagewise approach to find a minimizer of pRSpfq, and solve the following in each iteration:

ηt, ft “ argminηPR,fPF pRS

´

ÿt´1

i“1
ηifi ` ηf

¯

,

where η is the learning rate. Various algorithms differ in how they solve this optimization problem.
In gradient boosting, one uses a linear approximation of pRS around

řt´1
i“1 ηifi [26]. In this work,

we take this greedy view of boosting to design the generalized boosting framework.
Additive Representation Boosting. In this work, we perform boosting in the representation space,
contrasting with traditional boosting which works in the output space. Let G be a hypothesis class
of weak feature transformers, whose examples include the set of one layer neural networks of
bounded width and a set of vector-valued polynomials of bounded degree. More generally, G can be
any set of non-linear transformations. In additive representation boosting, we aim to find a strong
feature transform φ in the linear span of G, and a linear predictor W PW Ď RKˆD that minimizes
pRSpW,φq. To this end, we consider greedy algorithms that solve the following problem each iteration:

Wt, gt “ argminWPW,gPG
pRS pW,φt´1 ` ηtgq , (1)

where φt “ φ0 `
řt
i“1 ηigi with φ0 being the initial feature transformation, and tηiu8i“1 is a

predefined learning rate schedule.

3 Generalized Boosting

The starting point for our generalized boosting framework is the additive representation boosting
described in Section 2. Typically, linear combinations of weak feature transformations are not
powerful enough to model complex decision boundaries. Consequently, the minimizer of pRSpW,φq
over the linear span of G tends to have a high risk. A simple workaround for this issue would be
to perform additive boosting with a complex hypothesis class G. For example, if the weak feature
transformers are one layer neural networks, then one could increase the complexity of G by using
deeper networks. However, such an alternative has several drawbacks both from an optimization

3

and generalization perspective and defeats the purpose of boosting, which aims to convert weak
learners into strong learners. From an optimization perspective, moving to complex G makes each
greedy step harder to optimize. For example, compared to deep neural networks, shallow networks
are easier to optimize, require fewer resources, and are easier to analyze or interpret [5]. From a
generalization perspective, since the generalization bounds of boosting depend on the complexity of
G, larger hypothesis classes can lead to overfitting and poor performance on unseen data.

In this work, we are interested in other approaches for increasing the complexity of models produced
by boosting, while ensuring the boosting/greedy steps are easy to implement. One way to achieve
this is by considering more complex combinations of weak feature transformers than the linear
combinations considered in additive representation boosting. Formally, let Gt denote the hypothesis
class of feature transformations used in the tth iteration of boosting. In additive boosting, Gt “ G for
all t. In our generalized boosting framework, we increase the complexity of Gt by letting it depend
on the past iterates tφiut´1

i“0. Here are some potential choices for Gt, other than the ones stated in the
introduction: tg ˝p

řt´1
i“0 αiφiq, for g P G, αi P Ru, tg ˝φt´1 ˝φt´2 ¨ ¨ ¨˝φ0, for g P Gu. Depending

on the problem domain, one could consider several other ways of constructing Gt using the past
iterates. Note that even with these complex choices of Gt, the greedy steps are easy to implement and
only need a weak learner which can identify an element in G that best fits the data. As a result, this
remains in the spirit of boosting and at the same time ensures the models learned are complex enough
for real world problems.

We now present our algorithm for generalized boosting (see Algorithm 1). Similar to additive
representation boosting, our algorithm proceeds in a greedy fashion. In the tth iteration of the
algorithm, we aim to solve the following optimization problem:

Wt, gt “ argmin
WPW,gPGt

pRS pW,φt´1 ` ηtgq . (2)

We provide two approaches for solving this problem. One is the exact greedy approach, which
directly solves the optimization problem (Algorithm 2). For problems where direct optimization of
Equation (2) is difficult1, we provide an approximate technique which performs functional gradient
descent on the objective. In this approach, which we call gradient greedy approach, we approximate
the objective with the linear approximation of pRS around φt´1 (Algorithm 3):

pRS pW,φt´1 ` ηtgq « pRS pW,φt´1q ` ηt

A

∇φ pRSpW,φt´1q, g
E

PX
n

.

To optimize the linear approximation, we first fix W to Wt´1 and find a minimizing gt P Gt.
Intuitively, this step can be seen as finding a g which best aligns with the negative functional gradient
of empirical risk at the current iterate. For appropriate choice of learning rate η, moving along
gt results in reduction of pRS . Next, we fix gt and find a linear predictor W which minimizes the
empirical risk pRSpW,φtq. This alternating optimization of g and W makes the algorithm easy to
implement in practice. Moreover, this algorithm is more stable than joint optimization of g and W .
We note that such gradient greedy approaches have been developed for traditional boosting [26].

3.1 Compositional Boosting

As one particular instantiation of our framework, we consider Gt’s constructed by composing elements
from a weak feature transformer class G with the past iterates tφiut´1

i“0 and study the resulting boosting
algorithms. We refer to such boosting algorithms as compositional boosting algorithms since the
strong feature transformer is constructed from weak feature transformer via function composition.
When Gt “ tg ˝ φt´1 for g P Gu, the models in our framework have the ResNet architecture and can
be defined recurrently as φt “ φt´1` ηtgt ˝ φt´1. Moreover, Algorithm 1 with this choice of Gt and
Algorithm 2 as update routine give us the greedy layer-wise supervised training technique proposed
by Bengio et al. [6] and recently revisited by Belilovsky et al. [5]. In another recent work, Huang
et al. [22] propose a boosting-based algorithm for learning ResNets (see Algorithm 4 in Appendix).
We now show that their approach is equivalent to the greedy technique of Bengio et al. [6], and thus
can be seen as an instance of our general framework. We note that such a connection is not known
previously.
Proposition 3.1. Suppose the classification loss ` is the exponential loss. Then the greedy technique
of Huang et al. [22] for learning ResNets is equivalent to the greedy layer-wise supervised training
technique of Bengio et al. [6].

1Such scenarios can potentially arise if the feature transformations are non-differentiable functions.

4

In another recent work, Nitanda and Suzuki [29] propose a gradient boosting technique to greedily
learn a ResNet. This algorithm is closely related to the gradient greedy approach described in
Algorithm 3, with Gt “ tg ˝ φt´1 for g P Gu.

Algorithm 1 Generalized Boosting
1: Input: Training data S “ tpxi, yiquni“1, iterations T , initial linear predictor W0, initial feature transformer
φ0, learning rates tηiuTi“1, Update-routine: UPDATE

2: tÐ 1
3: while t ď T do
4: Construct feature transformer class Gt based on past iterates tpWi, φiqu

t´1
i“0

5: Wt, φt, gt Ð UPDATE pS,Wt´1, φt´1, ηt,Gtq
6: tÐ t` 1
7: end while
8: Return: WT , φT

Algorithm 2 Exact Greedy Update
1: Input: Training data S, previous iterate
pW,φq, learning rate η, feature trans-
former class G

2:

W`, g` Ð argmin
ĂWPW,g̃PG

pRSpĂW,φ` ηg̃q

3: φ` Ð φ` ηg`

4: Return: W`, φ`, g`

Algorithm 3 Gradient Greedy Update
1: Input: Training data S, previous iterate pW,φq, learning rate
η, feature transformer class G

2: // Pick a descent direction
3: g` Ð argming̃PG

A

∇φ
pRSpW,φq, g̃

E

PX
n

4: φ` Ð φ` ηg`

5: // Update the linear predictor
6: W`

Ð argmin
ĂWPW

pRSpĂW,φ`q

7: Return: W`, φ`, g`

We now highlight certain drawbacks of the existing greedy layer-wise training techniques, which arise
from the particular choice of Gt used by these algorithms. Since tg ˝ φt´1 for g P Gu is constructed
solely based on the past iterate φt´1, any mistake in φt´1 is propagated to all the future iterates. As
a result, these algorithms can not recover from their past mistakes. As an example, consider the
following scenario where two points x1,x2 belonging to two different classes are placed close to
each other in the feature space, after 1st iteration of greedy; that is φ1px1q « φ1px2q. In such a
scenario, the future iterates tφtu8t“2 generated by existing greedy algorithms will always place x1,x2

close to each other in the representation space. As a result, the algorithm will always misclassify
at least one of x1,x2. Another issue with existing greedy techniques is that they do not guarantee
that the complexity of Gt increases with time t. In such scenarios, Algorithm 1 doesn’t make much
progress in each iteration and can result in poor models. As an example, consider the setting where G
is the set of all linear transformations. Suppose φ0 is the identity transform and φ1 is such that its
range lies in a low dimensional subspace. Then, it is evident that G1 Ě Gt for all t ě 2.
To fix these issues, we propose two new compositional boosting algorithms obtained with a more
careful choice of Gt. In our first algorithm, which we call DenseCompBoost, we choose Gt as follows

Gt “
!

g ˝
´

Id`
ÿt´1

i“0
αiφi

¯

, for g P G, αi P R
)

, (3)

where Idp¨q is the identify function. Such a choice of Gt helps us recover from the past mistakes. For
example, if φ1 is a constant function, then the algorithm can still learn a good feature transformer by
relying on the input x and the initial feature transform φ0. Moreover, our choice of Gt ensures its
complexity grows with t and satisfies: Gt´1 Ď Gt, for all t. We call our algorithm DenseCompBoost,
since the resulting model for this choice of Gt resembles a DenseNet [23], where each layer is allowed
to be connected to all the previous layers. That being said, the models output by DenseCompBoost
differ from DenseNet in how they aggregate the previous layers. DenseNet concatenates the features
from previous layers, whereas DenseCompBoost adds the features. Our second algorithm, which we
call CmplxCompBoost, tries to increase the complexity of Gt in each iteration as follows

Gt “
!

g ˝ φt´1, for g P rGt
)

, (4)

where rGt is a weak feature transformer class and satisfies rGt´1 Ă rGt for all t. In the case of one
layer neural networks, such rGt’s can be constructed by increasing the layer width with t. We note that
the rGt in this algorithm is independent of the past iterates. By increasing the complexity of rGt with t,
we expect the complexity of Gt to increase and Algorithm 1 to make more progress in each iteration.
While not immediately evident, we note that this technique can also fix the mistakes made by past
iterates. For example, suppose φ1 is such that it places two points x1,x2 from different classes,

5

close to each other in the feature space. Then having a more complex rG2 can help recover from this
mistake, as one can potentially find a g P rG2 which can separate these two points. In Section 5, we
present empirical evidence showing that our new boosting algorithms have superior performance over
existing additive and compositional boosting algorithms. Further empirical evidence corroborating
the issues we identified with existing layer-wise training techniques can be found in Appendix J.1.

4 Excess Risk Bounds
In this section, we provide excess risk bounds for the models’ output by the generalized boosting
framework. Our results depend on a weak learning condition on the hypothesis class Gt used in the
tth iteration of Algorithm 1. This condition is a way to quantify the relative strength of Gt and roughly
says that there always exists an element in Gt which has an acute angle with the negative functional
gradient at the current iterate. Such a condition ensures progress in each iteration of boosting.
Definition 4.1. Let β P p0, 1s, ε ě 0 be constants. Gt`1 is said to satisfy the pβ, εq-weak learning
condition for a dataset S, if there exists a g P Gt`1 such that

A

g,´∇φ pRSpWt, φtq
E

PX
n

ě βBpGt`1q}∇φ pRSpWt, φtq}PX
n
´ ε,

where BpGt`1q “ supgPGt`1
}g}PX

n
, and Pn is the empirical distribution of S.

In traditional boosting, such conditions are typically referred to as the edge of a weak learner and
play a crucial role in the convergence analysis. For example, Freund and Schapire [14] assume
that for any set of weights over the training set S, there exists a classifier in the hypothesis class of
weak classifiers which has better than random accuracy on the weighted samples. The following
proposition shows that their condition is closely related to Definition 4.1.
Proposition 4.1. For binary classification, the weak learning condition of Freund and Schapire [14]
satisfies the empirical weak learning condition in Definition 4.1, albeit in the label space.

For binary classification problems, it is well known that the weak learning condition of [14] is
the weakest condition under which boosting is possible [15, 31]. This, together with the above
proposition, suggests that our weak learning condition in Definition 4.1 cannot be weakened for
binary classification problems.
To begin with, we derive excess risk bounds for the gradient greedy approach. Our analysis crucially
relies on the observation that it can be viewed as performing inexact gradient descent on the population
risk R. Several recent works have analyzed inexact gradient descent on convex objectives [2, 12,
33, 34]. However, the condition on the inexact gradient imposed by these works is different from
ours and in many cases is stronger than our condition. For example, the condition of Balakrishnan
et al. [2] translates to }g ` ∇φRpW,φq}PX ď ε in our setting, which is stronger than our weak
learning condition. So the core of our analysis focuses on understanding inexact gradient descent with
descent steps satisfying the weak learning condition in Definition 4.1. In our analysis, we consider a
sample-splitting variant of the algorithm, where in each iteration we use a fresh batch of samples.
This is mainly done to simplify the analysis by avoiding complex statistical dependencies between
the iterates of the algorithm. Let ñ “ t nT u, we split the training dataset S into T subsets tStuTt“1 of
size ñ, where St “ tpxt,i, yt,iquñi“1. We work with the subset St in the tth iteration of Algorithm 1.
We are now ready to state our main result on the excess risk bounds of the iterates of Algorithm 3.
Our results depend on the Rademacher complexity terms related to the hypothesis setsW,Gt

R pW,Gtq “ E

»

—

–

sup
WPW,
gPGt

1

ñ

ñ
ÿ

i“1

K
ÿ

k“1

ρikrWgpxt,iqsk

fi

ffi

fl

, R pGtq “ E

«

sup
gPGt

1

ñ

ñ
ÿ

i“1

D
ÿ

j“1

ρijrgpxt,iqsj

ff

,

where rusk denotes the kth entry of a vector u, and the expectation is taken w.r.t the randomness
from St and the Rademacher random variables ρij’s.
Theorem 4.1 (Gradient Greedy). Suppose the classification loss ` is L-Lipschitz and M -smooth
w.r.t the first argument. Let the hypothesis set of linear predictorsW be s.t. any W P W satisfies
λmin

`

WWT
˘

ě σ2
min ą 0 and λmax

`

WWT
˘

ď σ2
max. Moreover, suppose for all t, Gt satisfies the

pβ, εtq-weak learning condition of Definition 4.1 for any dataset St. Finally, suppose any g P Gt is
bounded with supX }gpXq}2 ď B. Let the learning rates tηtu8t“1 be chosen as ηt “ ct´s, for some

s P
´

β`1
β`2 , 1

¯

and positive constant c. If Algorithm 1 is run for T iterations with Algorithm 3 as

6

update routine, then pWT , φT q, the T th iterate output by the algorithm, satisfies the following risk
bound for any W˚, φ˚ and α P p0, βp1´ sqq, with probability at least 1´ δ over datasets of size n

RpWT , φT q ď RpW˚, φ˚q `O

¨

˝

1

Tα
` T 2´s

d

log T
δ

ñ

˛

‚` 2
T
ÿ

t“1

ηt pLR pW,Gtq ` LR pGtq ` εtq .

Proof Sketch. We first show that Algorithm 3 can be viewed as performing inexact gradient descent
on the population risk R. Specifically, we show that with high probability, the tth iterate gt satisfies

xgt,´∇φRpWt´1, φt´1qyP ě βB}∇φRpWt´1, φt´1q}P ´ εt ´ ζt,

for some ζt ą 0. This follows from the weak learning condition satisfied by Gt. Ignoring εt, ζt, the
above equation shows that gt makes acute angle with the population functional gradient at φt´1.
Consequently, we would expect the population risk to decrease, if we move along gt. This is indeed
the case, and the final step in the proof formalizes this intuition.

Remarks: We now briefly discuss the above result. See Appendix D for more discussion.
• The reference classifier pW˚, φ˚q in the above bound can be any classifier, as long as }W˚}2 ă

8, }φ˚}PX ă 8. In particular, if there exists a Bayes optimal classifier satisfying this condition,
then the above Theorem provides an excess risk bound w.r.t the Bayes optimal classifier.

• The T´α term in the bound corresponds to the optimization error. The ηtεt term corresponds to
the approximation error and the rest of the terms correspond to the generalization error. As T
increases, the optimization error goes down, and as ñ increases, the generalization error goes down.
If there is no approximation error, that is εt “ 0 for all t, then the excess risk goes down to 0 as
ñ, T Ñ8 at appropriate rate.

• If β “ 1, then for appropriate choice of step size the optimization error goes down asO
`

T´1{3`γ
˘

,
for some arbitrarily small γ ą 0. This rate is slower than the OpT´1q rates for inexact gradient
descent obtained by Devolder et al. [12], Schmidt et al. [33]. However, we note that unlike our
work, these works assume that the level sets of the objective are bounded. Under the assumption
that the level sets of population risk are bounded, the optimization error in Theorem 4.1 can be
improved to OpT´1q. However, such a condition need not hold in the our setting.

• Note that the risk bounds are modular and only depend on the Rademacher complexity terms
RpW,Gtq,RpGtq which capture the complexity of Gt. To instantiate Theorem 4.1 for specific
choices of Gt, we need to bound these two complexity terms.

We now extend the analysis of Theorem 4.1 to the exact greedy approach.
Corollary 4.1 (Exact Greedy). Consider the setting of Theorem 4.1. Suppose Algorithm 1 is run
with Algorithm 2 as update routine. Then pWT , φT q, the T th iterate output by the algorithm, satisfies
the same risk bounds as gradient greedy algorithm in Theorem 4.1.

In the rest of the section, we instantiate Theorem 4.1 for specific choices of Gt. We first consider the
additive representation boosting algorithm.
Corollary 4.2. Consider the setting of Theorem 4.1 and consider the additive representation boosting
algorithm, where Gt “ G for all t. Suppose G is the set of one layer neural networks with sigmoid
activation functions: G “

σpCxq, for C P RDˆd, }Ci,˚}1 ď Λ,@i
(

.Moreover, suppose the feature
domain X is a subset of r0, 1sd. Then the T th iterate output by Algorithm 1, with Algorithm 2 or 3 as
update routine, satisfies the following risk bound for any pW˚, φ˚q, with probability at least 1´ δ

RpWT , φT q ď RpW˚, φ˚q `O

ˆ

1

Tα

˙

` 2
T
ÿ

t“1

ηtεt `O

¨

˝

KDΛT 1´s logD
?
ñ

` T 2´s

d

log T
δ

ñ

˛

‚.

Next, we consider the layer-by-layer fitting technique of Bengio et al. [6].
Corollary 4.3. Consider the setting of Corollary 4.2 and consider the layer-by-layer training tech-
nique of Bengio et al. [6], where Gt “ tg ˝ φt´1 for g P Gu. Suppose G is the set of one layer neural
networks with sigmoid activation functions: G “

σpCxq, for C P RDˆD, }Ci,˚}1 ď Λ,@i
(

. Then
the T th iterate output by Algorithm 1, with Algorithm 2 or 3 as update routine, satisfies the following
risk bound for any pW˚, φ˚q with probability at least 1´ δ

RpWT , φT q ď RpW˚, φ˚q `O

ˆ

1

Tα

˙

` 2
T
ÿ

t“1

ηtεt `O

¨

˝

KDΛT 2´2s logD
?
ñ

` T 2´s

d

log T
δ

ñ

˛

‚.

7

Note that the generalization and optimization errors for both additive feature boosting and layer-
by-layer fitting have similar dependence on T, ñ. However, the latter tends to have a smaller
approximation error (εt) as it is able to build complex Gt’s over time. So one would expect layer-by-
layer fitting to output models with a better population risk, which our empirical results in fact verify.

5 Experiments

In this section, we present experiments comparing the performance of various boosting techniques on
both simulated and benchmark datasets.
Baselines. We compare our proposed boosting techniques with XGBoost, AdaBoost, additive
representation boosting (discussed in Corollary 4.2) and greedy layer-by-layer training technique of
Bengio et al. [6] (Corollary 4.3). XGBoost uses decision trees as weak classifiers. For AdaBoost, we
use 1 hidden layer neural networks as weak classifiers. We use two kinds of neural networks, based
on the dataset. For tabular datasets, we use fully connected networks and for image datasets, we
use convolutional networks (CNN) with the convolution block made up of Convolution, BatchNorm,
ReLU layers arranged sequentially. For additive representation boosting (Additive Feature Boost
from now on) and layer-by-layer fitting (StdCompBoost from now on), the weak feature transformer
class G consists of one layer neural network transformations. Similar to AdaBoost, we use two kinds
of transformations: a) fully connected transformations of the form gpxq “ ReLUpCx` dq, and b)
convolutional transformations with Convolution, BatchNorm, ReLU blocks arranged sequentially.
Finally, we also compare against end-to-end training of ResNets.
Proposed Techniques. For DenseCompBoost, we use a slight variant of Gt defined in Equation (3) :
Gt “ th ` g ˝ p

řt´1
i“0 αiφiq, for h P H, g P G, αi P Ru, where H,G are weak feature transformer

classes. We use this variant because the dimensions of the input feature space and the representation
space need not be the same, and as a consequence Gt in Equation (3) can not always be used. Similar
to StdCompBoost, we consider two choices for H,G: one based on fully connected blocks and
the other based on convolution blocks. For CmplxCompBoost, we again consider two choices for
the weak transformer class G̃t in Equation (4): a) ReLUpCx ` dq with C P RDtˆDt´1 , where
Dt “ Dt´1 `∆ for some positive constant ∆, and b) convolution blocks with number of output
channels equal to the number of input channels plus a constant ∆. This choice of feature transformers
ensures the complexity of G̃t increases with t. We use exact greedy updates (Algorithm 2) for both
of our proposed methods and set learning rate ηt to 1. We do not present experimental results for
Algorithm 3, which we noticed has marginally worse performance than Algorithm 2.

5.1 Simulated Datasets

Datasets. In this section we compare the techniques described above on simulated datasets. We gen-
erated 3 synthetic binary classification datasets in R32. Simulation 1 is a concentric ellipsoids dataset,
where a point x is classified based on xTAx, for some randomly generated positive semidefinite
matrix A. Simulations 2, 3 are datasets whose classification boundaries are polynomials of degrees 8
and 9 respectively. For each of these datasets, we generated 106 samples for training and testing.
Hyper-parameters. We used hold-out set validation to pick the best hyper-parameters for all the
methods. We used 20% of the training data as validation data and picked the best parameters using
grid search, based on validation accuracy. After picking the best parameters, we train on the entire
training data and report performance on the test data. For all the greedy techniques based on neural
networks, we used fully connected blocks and tuned the following parameters: weight decay, width
of weak feature transformers, number of boosting iterations T , which we upper bound by 15. For
CmplxCompBoost, we set ∆ “ D0{5. For end-to-end training, we tuned weight decay, width of
layers, depth. We used SGD for optimization of all these techniques. The number of epochs and step
size schedule of SGD are chosen to ensure convergence. For XGBoost, we tuned the number of trees,
depth of each tree, learning rate. The exact values of hyper-parameters tuned for each of the methods
can be found in Appendix J.
Results. Table 1 presents the results from our experiments. Both CmplxCompBoost and StdComp-
Boost largely outperform the additive boosting methods, with CmplxCompBoost being slightly better
due to the increasing complexity in G̃t. Notably, DenseCompBoost performs significantly better
than the rest and is able to bridge the gap between StdCompBoost and End-to-End. We attribute its
success to its ability to recover from earlier mistakes: while StdCompBoost or CmplxCompBoost
necessarily accumulate errors at each layer, DenseCompBoost is further connected to earlier layers,
allowing it to undo its past mistakes.

8

Table 1: Test accuracy of various boosting techniques on synthetic datasets. Numbers in bold indicate
the best performance among various greedy techniques.

Technique Simulation 1 Simulation 2 Simulation 3
XGBoost (Trees) 84.40 97.59 50.10
AdaBoost (1 NN) 67.90 93.73 72.64

Additive Feature Boost 88.49 93.91 73.13
StdCompBoost 91.53 96.95 82.49

DenseCompBoost 93.55 98.35 95.70
CmplxCompBoost 91.97 97.22 82.52

End-to-End 93.88 98.35 99.09

Table 2: Test accuracy of various boosting techniques on benchmark datasets. We use convolution
blocks for the first 5 datasets and fully connected blocks for the other datasets.

Technique SVHN FashionMNIST CIFAR10 Convex MNIST-rot-
back-image MNIST Letter CovType Connect4

XGBoost (Trees) 77.72 90.34 58.34 82.29 53.89 97.96 96.16 97.46 86.63
AdaBoost (1 NN) 82.88 88 72.78 86.17 50.02 98.27 92.08 90.95 86.39

Additive
Feature Boost 83.36 89.95 74.33 89.30 54.31 98.27 90.86 93.12 86.58

StdCompBoost 90.81 92.77 81.93 98.19 73.17 98.37 96.43 95.61 86.33
DenseCompBoost 91.03 93.17 82.31 98.6 73.1 98.34 96.96 96.28 86.85
CmplxCompBoost 91.25 93.18 82.43 98.52 74.32 98.34 96.66 95.92 86.49

End-to-End 94.82 93.49 86.88 98.81 82.69 98.95 97.67 96.86 87.37

5.2 Benchmark Datasets

Datasets. In this section, we compare various techniques on the following image datasets: CIFAR10,
MNIST, FashionMNIST [35], MNIST-rot-back-image [24], convex [35], SVHN [28], and the fol-
lowing tabular datasets from UCI repository [7]: letter recognition [17], forest cover type (covtype),
connect4. The convex dataset involves classifying shapes in images as either convex or non-convex.
Hyper-parameters. For covtype dataset, which doesn’t come with a test set, we randomly sample
20% of the original data and use it as the test set. We use a similar hyper-parameter selection technique
as above and tune the same set of hyper-parameters as described above. We use convolution blocks for
CIFAR10, SVHN, FashionMNIST, convex, MNIST-rot-back-image and fully connected blocks for
the rest. We limit the width of fully connected blocks to 4096, and the number of output channels in
convolution blocks to 128 while tuning the hyper-parameters for the composition boosting techniques
and end-to-end training. For AdaBoost and additive representation boosting, we set these limits to
16000 and 350 respectively. For CmplxCompBoost with convolution blocks, we set ∆ “ D0{8. We
do not use data augmentation in our experiments.
Results. Table 2 presents the results from our experiments. It can be seen that on image classification
tasks, additive boosting techniques have poor performance. Among compositional boosting methods,
StdCompBoost performs the worst. While DenseCompBoost performs comparably to CmplxComp-
Boost on image datasets, it is better on tabular data. We believe a hybrid of DenseCompBoost and
CmplxCompBoost algorithms can achieve better performance than either of the algorithms.

6 Conclusion
We proposed a generalized framework for boosting, which allows for more complex forms of
aggregation of weak learners than traditional boosting. Our generalized framework allows to derive
learning algorithms that (a) have performance close to that of end-to-end trained DNNs, and (b)
come with strong theoretical guarantees. Additive boosting algorithms do not satisfy property (a),
while DNNs do not satisfy property (b). In particular, additive boosting algorithms, even with
small neural networks as their weak classifiers, do not have the strong performance of end-to-end
trained DNNs. Improving their performance requires the hypothesis space to increase in complexity
while not increasing sample complexity of each boosting step too greatly, which can be achieved by
our generalized boosting framework. One particular instantiation of our framework is aggregation
using function compositions. A number of existing greedy techniques for learning neural networks
fall into our framework, and our analysis allowed us to delineate some of their key flaws, then
consequently, propose new techniques which improve upon them. We believe our work opens up a
new line of inquiry for greedy learning of highly flexible models with rigorous theoretical guarantees,
by leveraging the theory of boosting and generalized greedy algorithms in function spaces. We
moreover believe our work has the potential to bridge the gap in performance between existing greedy
layer-by-layer training techniques and end-to-end training of deep networks.

9

Broader Impact

Deep learning has been tremendously successful over the past decade in many application areas such
as computer vision, image recognition, speech recognition, and natural language processing. Despite
this success, deep neural networks have largely remained a mystery. With millions of parameters,
these models are blackboxes to humans, making it harder to diagnose errors. This also makes it harder
to adopt these models in critical applications such as healthcare, law and finance. Consequently, it is
crucial to come up with techniques that make neural networks transparent and easy to understand.
We take a step towards this goal by drawing inspiration from classical boosting. Similar to classical
boosting, our generalized boosting framework builds complex models greedily. But unlike classical
boosting, it allows us to derive learning algorithms that have performance close to that of end-to-end
trained DNNs. Moreover, models built using our framework are easy to understand and come with
strong theoretical guarantees.

Acknowledgement

We acknowledge the support of NSF via IIS-1909816, OAC-1934584 and ONR via N000141812861.

References
[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-

terized neural networks, going beyond two layers. In Advances in neural information processing
systems, pages 6155–6166, 2019.

[2] Sivaraman Balakrishnan, Martin J Wainwright, Bin Yu, et al. Statistical guarantees for the em
algorithm: From population to sample-based analysis. The Annals of Statistics, 45(1):77–120,
2017.

[3] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature communications, 5:4308, 2014.

[4] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

[5] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can
scale to imagenet. arXiv preprint arXiv:1812.11446, 2018.

[6] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise
training of deep networks. In Advances in neural information processing systems, pages
153–160, 2007.

[7] Catherine L Blake and Christopher J Merz. Uci repository of machine learning databases, 1998,
1998.

[8] Chang Chen, Zhiwei Xiong, Xinmei Tian, and Feng Wu. Deep boosting for image denoising.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 3–18, 2018.

[9] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

[10] Corinna Cortes, Mehryar Mohri, and Umar Syed. Deep boosting. volume 32 of Proceedings of
Machine Learning Research, pages 1179–1187, Bejing, China, 22–24 Jun 2014. PMLR. URL
http://proceedings.mlr.press/v32/cortesb14.html.

[11] Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang. Adanet:
Adaptive structural learning of artificial neural networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pages 874–883. JMLR. org, 2017.

[12] Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth convex
optimization with inexact oracle. Mathematical Programming, 146(1-2):37–75, 2014.

[13] Yoav Freund. Boosting a weak learning algorithm by majority. Information and computation,
121(2):256–285, 1995.

[14] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and
an application to boosting. In European conference on computational learning theory, pages
23–37. Springer, 1995.

10

http://proceedings.mlr.press/v32/cortesb14.html

[15] Yoav Freund and Robert E Schapire. Game theory, on-line prediction and boosting. In
Proceedings of the ninth annual conference on Computational learning theory, pages 325–332,
1996.

[16] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm. In icml,
volume 96, pages 148–156. Citeseer, 1996.

[17] Peter W Frey and David J Slate. Letter recognition using holland-style adaptive classifiers.
Machine learning, 6(2):161–182, 1991.

[18] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors). The annals of
statistics, 28(2):337–407, 2000.

[19] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

[20] Alexander Grubb and J Andrew Bagnell. Generalized boosting algorithms for convex optimiza-
tion. arXiv preprint arXiv:1105.2054, 2011.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[22] Furong Huang, Jordan Ash, John Langford, and Robert Schapire. Learning deep resnet blocks
sequentially using boosting theory. arXiv preprint arXiv:1706.04964, 2017.

[23] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[24] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An
empirical evaluation of deep architectures on problems with many factors of variation. In
Proceedings of the 24th international conference on Machine learning, pages 473–480, 2007.

[25] Sindy Löwe, Peter O’Connor, and Bastiaan Veeling. Putting an end to end-to-end: Gradient-
isolated learning of representations. In Advances in Neural Information Processing Systems,
pages 3033–3045, 2019.

[26] Llew Mason, Jonathan Baxter, Peter L Bartlett, and Marcus R Frean. Boosting algorithms as
gradient descent. In Advances in neural information processing systems, pages 512–518, 2000.

[27] Andreas Maurer. A vector-contraction inequality for rademacher complexities. In International
Conference on Algorithmic Learning Theory, pages 3–17. Springer, 2016.

[28] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[29] Atsushi Nitanda and Taiji Suzuki. Functional gradient boosting based on residual network
perception. arXiv preprint arXiv:1802.09031, 2018.

[30] Natalia Ponomareva, Thomas Colthurst, Gilbert Hendry, Salem Haykal, and Soroush Radpour.
Compact multi-class boosted trees. In 2017 IEEE International Conference on Big Data (Big
Data), pages 47–56. IEEE, 2017.

[31] Gunnar Rätsch and Manfred K Warmuth. Efficient margin maximizing with boosting. Journal
of Machine Learning Research, 6(Dec):2131–2152, 2005.

[32] Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.
[33] Mark Schmidt, Nicolas L Roux, and Francis R Bach. Convergence rates of inexact proximal-

gradient methods for convex optimization. In Advances in neural information processing
systems, pages 1458–1466, 2011.

[34] Vladimir Nikolaevich Temlyakov. Greedy expansions in convex optimization. Proceedings of
the Steklov Institute of Mathematics, 284(1):244–262, 2014.

[35] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

11

A Notation and Terminology

Notation

Symbol Description
X feature vector
Y label
X domain of feature vector
Y domain of the label
K number of classes in multi-class classification problem
S data set
P true data distribution
PX , PY marginal distributions of X,Y
Pn empirical distribution
PXn , P

Y
n empirical marginal distributions of X,Y in data set S

f : X Ñ RK score based classifier
φ feature transformer
W linear classifier on top of feature transformer
`0´1 0{1 classification loss
` convex surrogate of `0´1

Rpfq population risk of classifier f , measured w.r.t `
pRSpfq empirical risk of classifier f , measured w.r.t `
RpW,φq population risk of classifier f “Wφ, measured w.r.t `
pRSpW,φq empirical risk of classifier f “Wφ, measured w.r.t `
L2pP q set of square integrable functions w.r.t P
f ˝ gpxq denotes function composition fpgpxqq
rφ0, . . . , φtspxq denotes concatenation of vectors φ0pxq . . . φtpxq
F hypothesis class of weak classifiers
G hypothesis class of weak feature transformers
Gt hypothesis class of weak feature transformers used in the tth iteration of greedy
W hypothesis class of linear classifiers on top of feature transformers

Terminology

Term Description

Additive Boosting Classical boosting framework which constructs a strong classifier
using additive combinations of weak classifiers

Additive Feature Boosting
Feature boosting framework which constructs a strong classifier
using additive combinations of weak feature transformers with a
linear classifier on top of the feature transformer

Weak classifier Any classifier which by itself doesn’t achieve good performance on
a given classification task and whose performance we wish to boost

Weak feature transformer
Any feature transformation which by itself doesn’t provide good
performance on a given classification task and whose performance we
wish to boost

B Proof of Proposition 3.1

Notation. We use the notation of Huang et al. [22] in this proof. We note that this notation will
only be used in this section. Later sections use the notation introduced in Section 2. We let gtpxq be
the output of the tth residual block, which is given by the following recursion

gtpxq “ ft´1 ˝ gt´1pxq ` gt´1pxq “
t´1
ÿ

i“0

fi ˝ gipxq,

with g0, f0 equal to identity functions. The final output of a depth-T ResNet, given input x, is
rendered after a linear classifier W P RKˆD on representation gT`1pxq. Let Wt be the auxiliary

12

linear classifier on top of the residual block gt. Define otpxq as

otpxq
def
“ Wtgtpxq.

Note that otpxq “
řt
i“0Wtfi ˝ gipxq. Define htpxq as htpxq

def
“ αt`1ot`1pxq ´ αtotpxq, where

αt is a scalar. Huang et al. [22] consider exponential loss in their work, which is defined as

`popxq, yq “
ÿ

k‰y

exp propxqsk ´ ropxqsyq .

Algorithm of Bengio et al. [6]. Using this notation, the greedy layer-by-layer training technique
of Bengio et al. [6] for learning ResNets is given by the following update rule

Wt`1, ft Ð argmin
W,f

1

n

n
ÿ

i“1

` pW rf ˝ gtpxiq ` gtpxiqs , yiq . (5)

Algorithm of Huang et al. [22]. The algorithm of Huang et al. [22] for greedy learning of ResNets
is given in Algorithm 4, which is a reproduction of Algorithm 3 of Huang et al. [22]. Note that the
key update step is given in step 2 of Algorithm 5

ft, αt`1,Wt`1 Ð argmin
f,α,W

n
ÿ

i“1

`pαW rf ˝ gtpxiq ` gtpxiqs, yiq. (6)

Since α is a scalar, it can be consumed into the linear classifier W . This shows that the update step of
Huang et al. [22] is equivalent to Equation (5).

Algorithm 4 Greedy algorithm of Huang et al. [22] for learning ResNets
1: Input: Training data S “ tpxi, yiquni“1, iterations T , threshold γ
2: Initialize tÐ 0, γ̃0 Ð 0, α0 Ð 0, o0 Ð 0 P RK , s0pxiq “ 0 P RK ,@i P rns

3: Initialize cost function rC0piqsk Ð

"

1 if k ‰ yi
1´K if k “ yi

,@i P rns, k P rKs

4: while γt ą γ do
5: ft, αt`1,Wt`1, ot`1 Ð Algorithm 5pgtq

6: Compute γt Ð

c

γ̃2t`1´γ̃
2
t

1´γ̃2t
, where γ̃t`1 “

´
řn

i“1 Ctpiq
T ot`1pxiq

řn
i“1

ř

k‰yi
rCtpiqsk

7: Update st`1pxiq Ð stpxiq ` htpxiq, where htpxiq “ αt`1ot`1pxiq ´ αtotpxiq

8: Update cost function rCt`1piqsk Ð

"

exp prst`1pxiqsk ´ rst`1pxiqsyiq if k ‰ yi
´
ř

k1‰yi
exp prst`1pxiqsk1 ´ rst`1pxiqsyiq if k “ yi

,@i P

rns, k P rKs
9: tÐ t` 1

10: end while
11: T Ð t´ 1
12: Return: WT`1, tftp¨q,@tu

Algorithm 5 Training a ResNet module
1: Input: gt
2: pft, αt`1,Wt`1q Ð argminf,α,W

řn
i“1 `pαW rf ˝ gtpxiq ` gtpxiqs, yiq

3: ot`1pxq “Wt`1rft ˝ gtpxq ` gtpxqs
4: Return: ft, αt`1,Wt`1, ot`1

C Proof of Proposition 4.1

Freund and Schapire [14] consider the problem of binary classification with Y “ t´1,`1u. Let
F be a hypothesis space of weak classifiers mapping X to Y . Freund and Schapire [14] consider
the following weak learning condition. For any set of non-negative weights twiuni“1 over points

13

tpxi, yiqu
n
i“1 such that

ř

i wi “ 1, there is a classifier f P F which achieves an error at most 1
2 ´

β
2 ,

for some β ą 0. That is, there exists f P F such that
n
ÿ

i“1

wiIpyi ‰ fpxiqq ď
1

2
´
β

2
.

This can equivalently be written as
řn
i“1 wiyifpxiq “

ř

i:yi“fpxiq
wiyifpxiq ´

ř

i:yi‰fpxiq
wiyifpxiq ` 2

ř

i:yi‰fpxiq
wiyifpxiq

“ 1` 2
ř

i:yi‰fpxiq
wiyifpxiq

ě β

“ β p
řn
i“1 wiq

(7)
We now show that this condition implies Definition 4.1 in the label space. We first introduce the
notion of inner product between functions mapping X to R. For any f, g mapping X to R, we define
xf, gyn as

xf, gyn “
1

n

n
ÿ

i“1

fpxiqgpxiq.

Let the classification loss ` be such that `pfpxq, yq “ cpyfpxqq for some decreasing function
c : RÑ R. All the popular classification losses such as logistic, exponential, hinge losses satisfy this
assumption. The functional gradient of pRS w.r.t f in the above inner product space is defined as

∇f pRSpfqpxq “
"

yic
1pyifpxiqq, if x “ xi

0, otherwise
,

where c1pzq is the derivative of c at z. Note that since c is a decreasing function, c1pzq ă 0 for any z.
Using this notation, it is easy to see that any hypothesis class F satisfying Equation (7) satisfies the
following condition for any function h : X Ñ R

Df P F ,
A

f,´∇f pRSphq
E

n
ě β}∇f pRSphq}1 ě

β
?
n
}∇f pRSphq}n,

where }∇f pRSphq}1 “ n´1
řn
i“1 |∇f pRSphqpxiq|. This can be shown by substituting wi in Equa-

tion (7) with ´c1pyihpxiqq. This shows that the weak learning condition of Freund and Schapire
[14] satisfies the weak learning condition in Definition 4.1, albeit in the label space.

D Discussion of Theorem 4.1

In this section, we discuss the results of Theorem 4.1.
Remark D.1 (Reference Classifier). The reference classifier pW˚, φ˚q in the bound in Theorem 4.1
can be any classifier, as long as }W˚}2 ă 8, }φ

˚}PX ă 8. In particular, if there exists a Bayes
optimal classifier satisfying this condition, then the above Theorem provides an excess risk bound
w.r.t the Bayes optimal classifier.

Remark D.2 (Breakdown of Rates). The T´α term in the bound corresponds to the optimization
error. The ηtεt term corresponds to the approximation error and the rest of the terms correspond to
the generalization error. As T increases, the optimization error goes down, and as ñ increases, the
generalization error goes down. If there is no approximation error, that is εt “ 0 for all t, then the
excess risk goes down to 0 as ñ, T Ñ8 at appropriate rate.

Remark D.3 (Optimization Error). If β “ 1, then for appropriate choice of step size the optimization
error goes down as O

`

T´1{3`γ
˘

, for some arbitrarily small γ ą 0. This rate is slower than the
OpT´1q rates for inexact gradient descent obtained by Devolder et al. [12], Schmidt et al. [33].
However, we note that unlike our work, these works assume that the level sets of the objective are
bounded. Under the assumption that the level sets of population risk are bounded, the optimization
error in Theorem 4.1 can be improved to OpT´1q. However, such a condition need not hold in the
our setting.

14

Remark D.4 (Lipschitzness of loss). The assumptions of smoothness and Lipschitzness on ` are
satisfied by popular loss functions such as logistic loss, softmax + cross entropy loss. Consider
logistic loss for binary classification `pz, yq “ logp1 ` e´yzq. It is easy to verify that `pz, yq is
1-Lipschitz and 1-smooth w.r.t. z. Similarly, the softmax + cross entropy loss, which is given by,
`pz, yq “ ´zrys ` log

´

řK
k“1 e

zrks
¯

is 1-Lipschitz and 1-smooth w.r.t. z.

Remark D.5 (Bounded Feature Transformers). The boundedness assumption on the functions in Gt
is satisfied by neural networks made up of bounded activation functions such as sigmoid, tanh.
Remark D.6 (Modular Bounds). Note that the risk bounds are modular and only depend on the
Rademacher complexity termsRpW,Gtq,RpGtq which capture the complexity of Gt. To instantiate
Theorem 4.1 for specific choices of Gt, we need to bound these two complexity terms.
Remark D.7 (Bounds on 0{1 risk). Since 0{1 loss is upper bounded by surrogate losses such as
exponential, logistic loss, our Theorem also provides generalization bounds for 0{1 loss.
Remark D.8 (Sample Splitting). A natural question that might arise regarding sample splitting is:

“does this make our approach similar to bagging and random forests (RFs)?”. We would like to note
that even with sample splitting, our approach is not similar to bagging and RFs. Bagging and RFs
create ensembles by independently training each base learner. Whereas, in boosting, the base learners
are fit greedily and are not independent of each other. Another important distinction between RFs
and boosting is that RFs work with complex base classifiers with good predictive power and aim to
reduce the variance of these classifiers by averaging the predictions of multiple independently trained
base classifiers. Whereas in boosting, one works with base classifiers with very little predictive power
(i.e., high bias) and combines multiple such base classifiers to create a strong classifier with good
predictive power (i.e., low bias). Viewed this way, our approach is very similar to boosting than RFs.

E Proof of Theorem 4.1

E.1 Intermediate Results

In this section we present some intermediate results which we use in the proof of Theorem 4.1. The
proof of the Theorem can be found in Section E.2.

Lemma E.1. Consider the setting of Theorem 4.1. Let pWt, φtq be the tth iterate generated by
Algorithm 1 with Algorithm 3 as update routine. Then for any t, the following holds with probability
at least 1´ δ over datasets of size n

RpWt, φtq ď RpWt´1, φtq ` 2ηtLRpW,Gtq `
4cσmaxBLt

1´s

1´ s

˜

c

log 2{δ

ñ
`

c

K

ñ

¸

,

whereRpW,Gtq is the Rademacher complexity term, which is defined as

RpW,Gtq “ E

»

—

–

sup
WPW,
gPGt

1

ñ

ñ
ÿ

i“1

K
ÿ

k“1

ρikrWgpxt,iqsk

fi

ffi

fl

,

and the expectation is over the randomness from St, ρ’s.

Proof. Throughout the proof, we condition on the past datasets S1, . . . St´1 and show that the Lemma
holds for any choice of S1, . . . St´1. Consider the following upper bound for RpWt, φtq

RpWt, φtq ď pRSt
pWt, φtq ` sup

WPW,gPGt

|RpW,φt´1 ` ηtgq ´ pRSt
pW,φt´1 ` ηtgq|

paq
ď pRStpWt´1, φtq ` sup

WPW,gPGt

|RpW,φt´1 ` ηtgq ´ pRStpW,φt´1 ` ηtgq|

ď RpWt´1, φtq ` 2 sup
WPW,gPGt

|RpW,φt´1 ` ηtgq ´ pRSt
pW,φt´1 ` ηtgq|,

where paq follows from the definition of Wt. We now rely on Rademacher complexity bounds
in Theorem I.2 to bound the supremum in the RHS. To apply the bound, we first need to ensure

15

`pWφt´1pxq ` ηtWgpxq, yq is bounded. Since supX }gpXq}2 ď B and λmax
`

WWT
˘

ď σ2
max, it

is easy to see that

sup
X
}Wφt´1pxq ` ηtWgpxq}2 ď σmaxB

t
ÿ

i“1

ηi ď
cσmaxBt

1´s

1´ s
,

where the last inequality follows from the definition of ηt. Since ` is L-Lipschitz in its first argument,
we can show that `pWφt´1pxq ` ηtWgpxq, yq lies in an interval of width 2cσmaxBLt

1´s

1´s . Applying
Theorem I.2, we get with probability at least 1´ δ

RpWt, φtq ďRpWt´1, φtq ` 2E

«

sup
WPW,gPGt

1

ñ

ñ
ÿ

i“1

ρi`pWφt´1pxt,iq ` ηtWgpxt,iq, yt,iq

ff

`
4cσmaxBLt

1´s

1´ s

c

log 2{δ

ñ
.

We now focus on bounding the Rademacher complexity term appearing above. To this end, we rely
on the composition property of Rademacher complexity. Since ` is L-Lipscthiz in the first argument,
applying Theorem I.3 we get

RpWt, φtq ďRpWt´1, φtq ` 2LE

«

sup
WPW,gPGt

1

ñ

ñ
ÿ

i“1

K
ÿ

k“1

ρikrWφt´1pxt,iq ` ηtWgpxt,iqsk

ff

`
4cσmaxBLt

1´s

1´ s

c

log 2{δ

ñ

ďRpWt´1, φtq ` 2ηtLRpW,Gtq ` 2LE

«

sup
WPW

1

ñ

ñ
ÿ

i“1

K
ÿ

k“1

ρikrWφt´1pxt,iqsk

ff

loooooooooooooooooooooooomoooooooooooooooooooooooon

T1

`
4cσmaxBLt

1´s

1´ s

c

log 2{δ

ñ

T1 can be bounded as follows. Let ρ P RKˆñ be the matrix whose pk, iqth entry is given by ρik and
φt´1pStq P RDˆñ be the matrix whose pj, iqth entry is given by rφt´1pxt,iqsj . T1 can be rewritten
in terms of ρ, φt´1pStq as

T1 “ E
„

sup
WPW

1

ñ

@

ρφt´1pStq
T ,W

D

F

ď

„

sup
WPW

}W }2

E
„

1

ñ
}ρφt´1pStq

T }F

ď σmaxE
„

1

ñ
}ρφt´1pStq

T }F

ď
σmax

ñ

b

E r}ρφt´1pStqT }2F s

“
σmax

ñ

b

KE r}φt´1pStq}2F s ď σmax

c

K

ñ
E
„

sup
X
}φt´1pXq}2

ď
cσmaxBt

1´s

1´ s

c

K

ñ
,

where the last inequality follows from our choice of step size ηt and our assumption on the bounded-
ness of the outputs of functions in Gt. Substituting this upper bound on T1 in the previous inequality
gives us the required bound on RpWt, φtq.

Lemma E.2. Consider the setting of Theorem 4.1. Let pWt, φtq be the tth iterate generated by
Algorithm 1 with Algorithm 3 as update routine. Then for any t, the following holds with probability
at least 1´ 2δ over datasets of size n

xgt,´∇φRpWt´1, φt´1qyP ě βB}∇φRpWt´1, φt´1q}P´εt´2σmaxLRpGtq´4σmaxBL

c

log 2{δ

ñ
.

16

Proof. Let P̂ñ,t be the empirical distribution of dataset St. Since Gt satisfies the pβ, εtq-weak learning
condition w.r.t dataset St, we have

A

gt,´∇φ pRSt
pWt´1, φt´1q

E

PX
ñ,t

ě βB}∇φ pRSt
pWt´1, φt´1q}PX

ñ,t
´ εt.

Consider the following lower bound for xgt,´∇φRpWt´1, φt´1qyP

xgt,´∇φRpWt´1, φt´1qyP ě

A

gt,´∇φ pRStpWt´1, φt´1q

E

PX
ñ,t

looooooooooooooooooomooooooooooooooooooon

T1

´

ˇ

ˇ

ˇ

ˇ

A

gt,´∇φ pRStpWt´1, φt´1q

E

PX
ñ,t

´ xgt,´∇φRpWt´1, φt´1qyP

ˇ

ˇ

ˇ

ˇ

looomooon

T2

We now lower bound each of the terms appearing the RHS of the above inequality. Similar to the
proof of Lemma E.1, throughout the proof we condition on the past datasets S1, . . . St´1 and show
that the Lemma holds for any choice of S1, . . . St´1.

Bounding T1. Using the weak learning condition, T1 can be lower bounded as

T1 ě βB}∇φ pRSt
pWt´1, φt´1q}PX

ñ,t
´ εt.

Using triangle inequality, this can be further lower bounded as

T1 ěβB}∇φRpWt´1, φt´1q}P ´ βB
ˇ

ˇ

ˇ
}∇φRpWt´1, φt´1q}P ´ }∇φ pRStpWt´1, φt´1q}PX

ñ,t

ˇ

ˇ

ˇ
´ εt.

We now bound the middle term in the RHS using standard concentration inequalities. Define random
variable Z as

Z “WT
t´1∇`pWt´1φt´1pXq, Y q,

for pX,Y q „ P and define zt,i as

zt,i “WT
t´1∇`pWt´1φt´1pxt,iq, yt,iq,

where∇`pu, yq denotes the gradient of `w.r.t its first argument. Then from the definition of functional
gradients∇φ pRSt

pWt´1, φt´1q,∇φRpWt´1, φt´1q, we have

}∇φ pRStpWt´1, φt´1q}
2
PX

ñ,t
“

1

ñ

ñ
ÿ

i“1

}zt,i}
2, }∇φRpWt´1, φt´1q}

2
P “ E

“

}Z}2
‰

.

Since ` is L-Lipschitz, it is easy to see that }Z} is a bounded random variable and always lies in the
interval r0, σmaxLs. So using Chernoff bounds in Theorem I.1, we can show that the following holds
with probability at least 1´ δ

ˇ

ˇ

ˇ

ˇ

ˇ

ñ
ÿ

i“1

1

ñ
}zt,i}

2 ´ E
“

}Z}2
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ď σmaxL

c

3E r}Z}2s log 1{δ

ñ
.

Now, consider the following

ˇ

ˇ

ˇ
}∇φRpWt´1, φt´1q}P ´ }∇φ pRSt

pWt´1, φt´1q}PX
ñ,t

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

g

f

f

e

ñ
ÿ

i“1

1

ñ
}zt,i}2 ´

a

E r}Z}2s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

řñ
i“1

1
ñ}zt,i}

2 ´ E
“

}Z}2
‰

ˇ

ˇ

ˇ

a

E r}Z}2s
,

where the last inequality follows from the fact that |
?
a´

?
b| “ |a´b|

?
a`
?
b
ď
|a´b|
?
b

. This shows that,
with probability at least 1´ δ, T1 can be lower bounded as

T1 ě βB}∇φRpWt´1, φt´1q}P ´ βσmaxBL

c

3 log 1{δ

ñ
´ εt. (8)

17

Bounding T2. Using the definition of functional gradients, T2 can be rewritten as follows

T2 “

ˇ

ˇ

ˇ

ˇ

ˇ

EX rxgtpXq,∇φRpWt´1, φt´1qpXqys ´
1

ñ

ñ
ÿ

i“1

A

gtpxt,iq,∇φ pRStpWt´1, φt´1qpxt,iq
E

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

EX,Y
“@

gtpXq,W
T
t´1∇`pWt´1φt´1pXq, Y q

D‰

´
1

ñ

ñ
ÿ

i“1

@

gtpxt,iq,W
T
t´1∇`pWt´1φt´1pxt,iq, yt,iq

D

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
gPGt

ˇ

ˇ

ˇ

ˇ

ˇ

EX,Y
“@

gpXq,WT
t´1∇`pWt´1φt´1pXq, Y q

D‰

´
1

ñ

ñ
ÿ

i“1

@

gpxt,iq,W
T
t´1∇`pWt´1φt´1pxt,iq, yt,iq

D

ˇ

ˇ

ˇ

ˇ

ˇ

.

We now rely on uniform convergence bounds and bound the RHS in terms of the Rademacher
complexity termRpGtq. First note that the random variable

@

gpXq,WT
t´1∇`pWt´1φt´1pXq, Y q

D

is
bounded and lies in the interval r´σmaxBL, σmaxBLs. This follows from the Lipschitz property of
the loss ` and the boundedness of the functions in Gt. Using Theorem I.2, we get the following upper
bound for T2, which holds with probability at least 1´ δ

T2 ď 2E

«

sup
gPGt

1

ñ

ñ
ÿ

i“1

ρi
@

gpxt,iq,W
T
t´1∇`pWt´1φt´1pxt,iq, yt,iq

D

ff

` 2σmaxBL

c

log 2{δ

ñ
.

We now focus on bounding the Rademacher complexity term in the above inequality. Define function
hi : RD Ñ R as follows

hipuq “
@

u,WT
t´1∇`pWt´1φt´1pxt,iq, yt,iq

D

.

Note that, hipuq is σmaxL-Lipschitz in u. The Rademacher complexity can be written in terms of
hi’s as follows

E

«

sup
gPGt

1

ñ

ñ
ÿ

i“1

ρi
@

gpxt,iq,W
T
t´1∇`pWt´1φt´1pxt,iq, yt,iq

D

ff

“ ESt

«

Eρ

«

sup
gPGt

1

ñ

ñ
ÿ

i“1

ρihipgpxt,iqq
ˇ

ˇ

ˇ
St

ffff

.

Using the composition property of Rademacher complexities stated in Theorem I.3, we get

E

«

sup
gPGt

1

ñ

ñ
ÿ

i“1

ρi
@

gpxt,iq,W
T
t´1∇`pWt´1φt´1pxt,iq, yt,iq

D

ff

ď σmaxLESt

«

Eρ

«

sup
gPGt

1

ñ

ñ
ÿ

i“1

D
ÿ

j“1

ρijrgpxt,iqsj

ˇ

ˇ

ˇ
St

ffff

“ σmaxLE

«

sup
gPGt

1

ñ

ñ
ÿ

i“1

D
ÿ

j“1

ρijrgpxt,iqsj

ff

“ σmaxLRpGtq.
So we have the following bound for T2 which holds with probability at least 1´ δ

T2 ď 2σmaxLRpGtq ` 2σmaxBL

c

log 2{δ

ñ
. (9)

Combining Equations (8), (9) gives us the required bound.

E.2 Main Argument

Our analysis of inexact gradient descent uses similar arguments as in Temlyakov [34]. Let φt “
φt´1 ` ηtgt be the tth iterate generated by the algorithm. We first derive an upper bound for the
reduction in population risk in the tth iteration of the algorithm. From Lemma E.1 we know that with
probability at least 1´ δ{3T

RpWt, φtq ď RpWt´1, φtq ` C1ptq, (10)

where C1ptq “ 2ηtLRpW,Gtq ` 4cσmaxBLt
1´s

1´s

ˆ

b

log 6T {δ
ñ `

b

K
ñ

˙

. Since ` is M smooth, the

following holds for any two vectors u,v P RK and y P Y

`pu` v, yq ď `pu, yq ` xv,∇`pu, yqy ` M}v}22
2

.

18

Using this smoothness property, RpWt´1, φtq “ E r`pWt´1φt´1pxq ` ηtWt´1gt, yqs can be upper
bounded as

RpWt´1, φtq ď RpWt´1, φt´1q ` ηt xgt,∇φRpWt´1, φt´1qyP `
η2
tMσ2

max}gt}
2
P

2
. (11)

Combining Equations (10), (11), we get the following bound on RpWt, φtq which holds with
probability at least 1´ δ{3T

RpWt, φtq ď RpWt´1, φt´1q ` ηt xgt,∇φRpWt´1, φt´1qyP `
η2
tMσ2

maxB
2

2
` C1ptq.

Next, from Lemma E.2 we know that the gt chosen by the algorithm satisfies the following with
probability at least 1´ 2δ{3T

xgt,´∇φRpWt´1, φt´1qyP ě βB}∇φRpWt´1, φt´1q}P ´ εt ´ C2ptq,

where C2ptq “ 2σmaxLRpGtq ` 4σmaxBL
b

log 6T {δ
ñ . Substituting this in the previous equation, we

get the following bound on RpWt, φtq which holds with probability at least 1´ δ{T

RpWt, φtq ďRpWt´1, φt´1q ´ ηtβB}∇φRpWt´1, φt´1q}P `
c2MB2σ2

max

2
t´2s (12)

` ηtεt ` C1ptq ` ηtC2ptq. (13)

Let rt “ RpWt, φtq´RpW
˚, φ˚q´

řt
i“1pηiεi`C1ptq`ηtC2ptqq. Then the above equation implies

the following recurrence on rt

rt ď rt´1 `
c2MB2σ2

max

2
t´2s. (14)

We now try to tighten this recurrence. Let W :
t´1 be the pseudoinverse of Wt´1. From the convexity

of ` we have

RpWt´1, φt´1q ´RpW
˚, φ˚q

paq
“ RpWt´1, φt´1q ´RpWt´1,W

:
t´1W

˚φ˚q

pbq
ď ´

A

W :
t´1W

˚φ˚ ´ φt´1,∇φRpWt´1, φt´1q

E

P

ď }∇φRpWt´1, φt´1q}P
`

σ´1
min}W

˚}2}φ
˚}P ` }φt´1}P

˘

,

where paq follows from the definition of psuedoinverse and pbq follows from the convexity of `.
Letting At “

řt
i“1 ηiB, we can lower bound }∇φRpWt´1, φt´1q} as

}∇φRpWt´1, φt´1q} ě
RpWt´1, φt´1q ´RpW

˚, φ˚q

σ´1
min}W

˚}2}φ˚}P `At´1

.

Substituting this in Equation (12), we get

RpWt, φtq ďRpWt´1, φt´1q ´ ηtβB

ˆ

RpWt´1, φt´1q ´RpW
˚, φ˚q

σ´1
min}W

˚}2}φ˚}P `At´1

˙

`
c2MB2σ2

max

2
t´2s

` ηtεt ` C1ptq ` ηtC2ptq.

Rewriting the above equation in terms of rt, we get

rt ď rt´1 ´ ηtβB
´

rt´1

σ´1
min }W

˚}2}φ˚}P`At´1

¯

`
c2MB2σ2

max
2 t´2s

“

´

1´ ηtβB

σ´1
min }W

˚}2}φ˚}P`At´1

¯

rt´1 `
c2MB2σ2

max
2 t´2s.

(15)

In the rest of the proof, we try to solve the above recurrence relation on rt to obtain the required
excess risk bound. First note that there exists t0 such that for all t ě t0

2

ηtβB

σ´1
min}W

˚}2}φ˚}P `At´1

ě
α` 3βp1´ sq

4t
. (16)

2To be precise, t0 is such that t1´s0 “
ασ´1

min }W
˚}2}φ

˚}P

cβB
.

19

This follows from the observation that ηt “ ct´s and At´1 ď
cBt1´s

1´s . We now make use of
Theorem I.5 for solving the recurrence in Equation (15). We first show that rt satisfies the conditions
for Theorem I.5 with a “ α, b “ pα` βp1´ sqq{2 and D “ t0 and for some A which we specify
later. From Equation (14) we have

rt`1 ď rt `
c2MB2σ2

max

2
t´2s ď rt `Apt´ 1q´α,

where the last inequality holds for any A ě c2MB2σ2
max

2 and for our choice of α, s specified in the
theorem statement. This shows that the first condition of Theorem I.5 is satisfied by rt. Next, suppose
rt ě At´α, for some t ě t0. Then using Equations (15) and (16), rt`1 can be bounded as follows

rt`1 ď

ˆ

1´
α` 3βp1´ sq

4t

˙

rt `
c2MB2σ2

max

2
t´2s

“

ˆ

1´
α` βp1´ sq

2t

˙

rt´

ˆ

βp1´ sq ´ α

4t

˙

rt `
c2MB2σ2

max

2
t´2s

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

T1

.

Following our choices for α, s and using the fact that rt ě At´α, it is easy to verify that T1 ď 0 for
sufficiently large A. This shows that for appropriately chosen A, we have

rt`1 ď

ˆ

1´
α` βp1´ sq

2t

˙

rt.

Since the conditions for Theorem I.5 are satisfied, using it to solve our recurrence gives us the
following bound on rt which holds with probability at least 1´ δ

rT ď O

ˆ

1

Tα

˙

.

This finishes the proof of the Theorem.

F Proof of Corollary 4.1

A simple intuition for why the exact greedy approach satisfies similar risk bounds as gradient greedy
approach is that in exact greedy approach one solves the greedy step in Equation (2) exactly. Whereas,
in gradient greedy approach, the greedy step is only solved approximately and so one would expect the
objective value of exact greedy approach to be smaller than gradient greedy approach. We formalize
this intuition in the proof. Let pWt, φtq, where φt “ φt´1 ` ηtgt, be the tth iterate generated by the
exact greedy algorithm. And let pW̃ , φ̃tq, where φ̃t “ φt´1` ηtg̃t, be the iterate obtained by running
gradient greedy update in the tth iteration of the algorithm. We now bound RpWt, φtq in terms of
RpW̃ , φ̃tq

RpWt, φtq ď pRStpWt, φtq ` sup
WPW,gPGt

|RpW,φt´1 ` ηtgq ´ pRStpW,φt´1 ` ηtgq|

paq
ď pRSt

pW̃t, φ̃tq ` sup
WPW,gPGt

|RpW,φt´1 ` ηtgq ´ pRSt
pW,φt´1 ` ηtgq|

ď RppW̃t, φ̃tqq ` 2 sup
WPW,gPGt

|RpW,φt´1 ` ηtgq ´ pRStpW,φt´1 ` ηtgq|,

where paq follows from the definition of Wt, φt which are obtained by minimizing Equation (2). Note
that the supremum in the RHS above can be bounded using Lemma E.1.

From the proof of Theorem 4.1, we know that RppW̃t, φ̃tqq can be upper bounded in terms of
RppWt´1, φt´1qq. To be precise, from Equation (12) in the proof of Theorem 4.1, we know that with
probability at least 1´ 2δ{T

RpW̃t, φ̃tq ďRpWt´1, φt´1q ´ ηtβB}∇φRpWt´1, φt´1q}P `
c2MB2σ2

max

2
t´2s

` ηtεt ` C1ptq ` ηtC2ptq.

20

This shows that

RpWt, φtq ďRpWt´1, φt´1q ´ ηtβB}∇φRpWt´1, φt´1q}P `
c2MB2σ2

max

2
t´2s

` ηtεt ` C1ptq ` ηtC2ptq.

Using the exact same techniques as in the proof of Theorem 4.1, we get the required risk bound on
RpWT , φT q.

G Proof of Corollary 4.2

The major part of the proof involves bounding the Rademacher complexity terms appearing in the
risk bound of Theorem 4.1. We first boundRpGq.

R pGq “ E

«

sup
gPG

1

ñ

ñ
ÿ

i“1

D
ÿ

j“1

ρijrgpxt,iqsj

ff

“ E

«

sup
C:maxj }Cj,˚}1ďΛ

1

ñ

ñ
ÿ

i“1

D
ÿ

j“1

ρijσpxCj,˚,xt,iyq

ff

ď

D
ÿ

j“1

E

«

sup
}Cj,˚}1ďΛ

1

ñ

ñ
ÿ

i“1

ρijσpxCj,˚,xt,iyq

ff

paq
ď

D
ÿ

j“1

E

«

sup
}Cj,˚}1ďΛ

1

ñ

ñ
ÿ

i“1

ρij xCj,˚,xt,iy

ff

ď

D
ÿ

j“1

ΛE

«

1

ñ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ñ
ÿ

i“1

ρijxt,i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

ff

“
DΛ

ñ
E

«
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ñ
ÿ

i“1

ρi1xt,i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

ff

pbq
ď 2DΛ

c

log d

ñ
,

where paq follows from the Lipschitzness of sigmoid activation function and composition property of
Rademacher complexities(see Theorem I.3) and pbq follows from the following well known property
of sub-Gaussian random variables. Let Z1, . . . Zn be n random variables, not necessarily independent.
Moreover, lets suppose each Zi is sub-Gaussian with parameter σ. Then E rmaxi Zis ď

a

2σ2 log n.
Since X Ď r0, 1sd, it is easy to see that conditioned on data St, each co-ordinate of

řñ
i“1 ρi1xt,i

is a sub-Gaussian random variable with parameter
?
ñ. So using the above stated property of

sub-Gaussian random variables, we get

Eρ

«
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ñ
ÿ

i“1

ρi1xt,i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

ff

“ Eρ

«

max
jPrds

max

#

ñ
ÿ

i“1

ρi1rxt,isj ,´
ñ
ÿ

i“1

ρi1rxt,isj

+ff

ď
a

2ñ log 2d.

21

Next, we boundRpW,Gq

RpW,Gq “ E

»

—

–

sup
WPW,
gPG

1

ñ

ñ
ÿ

i“1

K
ÿ

k“1

ρikrWgpxt,iqsk

fi

ffi

fl

ď

K
ÿ

k“1

E

»

—

–

sup
WPW,
gPG

1

ñ

ñ
ÿ

i“1

ρik xWk,˚, gpxt,iqy

fi

ffi

fl

paq
ď 2σmaxK

D
ÿ

j“1

E

«

sup
}Cj,˚}1ďΛ

1

ñ

ñ
ÿ

i“1

ρi xCj,˚,xt,iy

ff

`O

˜

σmaxK
?
D logD

?
ñ

¸

pbq
ď 4σmaxKDΛ

c

log d

ñ
`O

˜

σmaxK
?
D logD

?
ñ

¸

ď O

ˆ

σmaxKDΛ log pdDq
?
ñ

˙

.

where paq follows from the property of Rademacher complexity stated in Theorem I.4 and pbq uses
the arguments used to bound RpGq above. Substituting the above bounds for RpGq and RpW,Gq
in Theorem 4.1 and using the fact that supX }gpXq}2 ď

?
D, for all g P G, we get the required risk

bound.

H Proof of Corollary 4.3

Similar to the proof of Corollary 4.2, we focus on bounding the Radmacher complexity termsRpGtq
andRpW,Gtq. To boundRpGtq, we use the same argument we used to boundRpGq in Corollary 4.2.

R pGtq “ E

«

sup
gPGt

1

ñ

ñ
ÿ

i“1

D
ÿ

j“1

ρijrgpxt,iqsj

ff

“ E

«

sup
C:maxj }Cj,˚}1ďΛ

1

ñ

ñ
ÿ

i“1

D
ÿ

j“1

ρijσpxCj,˚, φt´1pxt,iqyq

ff

ď

D
ÿ

j“1

E

«

sup
}Cj,˚}1ďΛ

1

ñ

ñ
ÿ

i“1

ρijσpxCj,˚, φt´1pxt,iqyq

ff

ď

D
ÿ

j“1

E

«

sup
}Cj,˚}1ďΛ

1

ñ

ñ
ÿ

i“1

ρij xCj,˚, φt´1pxt,iqy

ff

ď

D
ÿ

j“1

ΛE

«

1

ñ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ñ
ÿ

i“1

ρijφt´1pxt,iq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

ff

“
DΛ

ñ
E

«
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ñ
ÿ

i“1

ρiφt´1pxt,iq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

ff

paq
ď

2cDΛt1´s

1´ s

c

log d

ñ
,

22

where paq uses similar arguments as in the proof of Corollary 4.2 and relies on the fact that
}φt´1pxq}8 ď

řt´1
i“1 ηi ď

ct1´s

1´s . Next, we boundRpW,Gtq

RpW,Gtq “ E

»

—

–

sup
WPW,
gPGt

1

ñ

ñ
ÿ

i“1

K
ÿ

k“1

ρikrWgpxt,iqsk

fi

ffi

fl

ď

K
ÿ

k“1

E

»

—

–

sup
WPW,
gPGt

1

ñ

ñ
ÿ

i“1

ρik xWk,˚, gpxt,iqy

fi

ffi

fl

paq
ď 2σmaxK

D
ÿ

j“1

E

«

sup
}Cj,˚}1ďΛ

1

ñ

ñ
ÿ

i“1

ρi xCj,˚, φt´1pxt,iqy

ff

`O

˜

σmaxK
?
D logD

?
ñ

¸

pbq
ď

4σmaxcDKΛt1´s

1´ s

c

log d

ñ
`O

˜

σmaxK
?
D logD

?
ñ

¸

ď O

ˆ

t1´s
σmaxKDΛ log dD

?
ñ

˙

,

where paq follows from the property of Rademacher complexity stated in Theorem I.4 and pbq relies
on arguments used to bound RpGtq. Substituting the above bounds for RpGtq and RpW,Gtq in
Theorem 4.1, we get the required risk bound.

I Some Useful Results

Theorem I.1 (Chernoff Bounds). Let X “
řn
i“1Xi, where Xi’s are independently distributed in

r0, 1s. Then, for ε P p0, 1q

P pX ą p1` εqE rXsq ď exp

ˆ

´
ε2

3
E rXs

˙

, P pX ă p1´ εqE rXsq ď exp

ˆ

´
ε2

2
E rXs

˙

.

Theorem I.2 (Bartlett and Mendelson [4]). Let F be a class of functions mapping X to ra, bs and let
tXiu

n
i“1 be independently selected according to the probability measure P . Then for any integer n

and any 0 ă δ ă 1, with probability at least 1´ δ over samples of length n, every f in F satisfies
ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

fpXiq ´ E rfpXqs
ˇ

ˇ

ˇ
ď 2RpFq ` pb´ aq

c

log 2{δ

n
,

whereRpFq is the Rademacher complexity of F which is defined as

RpFq “ E

«

sup
fPF

1

n

n
ÿ

i“1

ρifpXiq

ff

,

where the expectation is taken w.r.t the Rademacher random variables ρ’s and data tXiu
n
i“1.

We next present an important result on the composition property of Rademacher complexities.
Theorem I.3 (Maurer [27]). Let F be a class of functions mapping X to Rd and let thiuni“1 be
L-Lipschitz functions from Rd to R. Then

Eρ

«

sup
fPF

1

n

n
ÿ

i“1

ρihipfpXiqq

ff

ď LEρ

«

sup
fPF

1

n

n
ÿ

i“1

d
ÿ

j“1

ρijrfpXiqsj

ff

.

Theorem I.4 (Proposition A.12 of Allen-Zhu et al. [1]). Let u : R Ñ R be a fixed 1-Lipschitz
function. Given F1 . . .Fm classes of functions X Ñ R and suppose for each j P rms there exists a
function f p0qj P Fj satisfying supxPX |upf

p0q
j pxqq| ď A, then

F 1 “

#

xÑ
m
ÿ

j“1

vjupfjpxqq
ˇ

ˇ

ˇ
fj P Fj ^ }v}1 ď B ^ }v}8 ď D

+

23

satisfies

E

«

sup
fPF 1

n
ÿ

i“1

1

n
ρi

m
ÿ

j“1

vjupfjpxiqq

ff

ď 2D
m
ÿ

j“1

E

«

sup
fPFj

n
ÿ

i“1

1

n
ρifpxiq

ff

`O

ˆ

AB logm
?
n

˙

.

Theorem I.5 (Temlyakov [34]). Let four positive numbers a ă b ď 1, A,D P N be given and let a
sequence trtu8t“1 have the following properties: r1 ď A and for any t ě 2

rt ď rt´1 `Apt´ 1q´a.

Moreover, suppose the sequence is such that if rt ě At´a for some t ě D, then rt`1 ď rtp1´ b{tq.
Then there exists a constant C such that for all t P N we have

rt ď Ct´a.

J Experiments

This section provides experimental details, including the datasets, hyperparameter settings, and
additional experimental evidence not presented in the main paper.

We first note that in our experiments for DenseCompBoost, we use a slight variant of Gt defined in
Equation (3)

Gt “

#

h` g ˝

˜

t´1
ÿ

i“0

αiφi

¸

, for h P H, g P G, αi P R

+

,

whereH,G are weak feature transformer classes. We use this variant because the dimensions of the
input feature space and the representation space need not be the same, and as a consequence Gt in
Equation (3) can not always be used. Similar to StdCompBoost, we consider two choices forH,G:
one based on fully connected blocks and the other based on convolution blocks.

J.1 Drawbacks of Layer-by-Layer fitting

In this section, we provide empirical evidence highlighting drawbacks of layer-by-layer fitting and
how our proposed techniques address these drawbacks. Similar to Section 5, we use StdCompBoost
to denote standard layer-by-layer fitting.

DenseCompBoost can recover from mistakes. We mentioned earlier that compared to StdComp-
Boost, one advantage of DenseCompBoost is that the dense connections allow it to more easily
recover from mistakes made in earlier layers. We now provide empirical evidence to support this
claim. We introduce mistakes in the weights of the first layers learned using StdCompBoost and
DenseCompBoost. To be precise, we fix the weights of the first layer of both StdCompBoost and
DenseCompBoost to (a) the same random matrix, (b) an all-0 matrix, and then continue the training
of the later layers. Table 3 shows the results: while StdCompBoost suffers a significant performance
drop (from 82.49% when every layer is greedily trained, to 72.99% with a random first layer), the
performance of dense greedy is barely affected (from 95.70% when every layer is trained, to 95.0%
with a random first layer). Similar trend occurs when setting the first layer to 0: dense greedy still
achieves a 93.69% test accuracy, while standard greedy would fail to train at all since any signal in
the data has been cut off.

layer 1 layer 2 layer 3 layer 4 layer 5
StdCompBoost Random 49.71 50.25 52.51 69.70 72.99

DenseCompBoost Random 49.71 50.86 70.07 92.31 95.00
Zero 50.06 61.76 89.19 93.17 93.69

Table 3: Test accuracy at each layer, with the first layer being set to a random value or the all-0 matrix.
Compared to the performance without corrupted first layer, StdCompBoost suffers a performance
drop, while DenseCompBoost is almost unaffected, demonstrating its ability to recover from mistakes
made in early layers.

24

Narrow-to-Wide architecture of CmplxCompBoost. Note that in CmplxCompBoost, we in-
crease the widths of layers over iterations. We now justify this choice of architecture. There are two
possible ways to vary the complexity of the G̃t, increasing or decreasing. We tested both approaches
on one tabular dataset CovType, and one image dataset SVHN. On CovType, we started with a layer
width of 4096, then increase or decrease the width of subsequent layers by 512 at each layer. On
SVHN, the starting layer width is 128, followed by 4 additional layers, each increasing or decreasing
the width by 16. As can be seen in table 4, increasing complexity gives slightly better results for both
the datasets, therefore we choose to increase the width for CmplxCompBoost in all other experiments.

Decreasing width Increasing width
CovType 95.58 ˘ 0.04 95.64 ˘ 0.16
SVHN 88.30 ˘ 0.28 89.05 ˘ 0.01

Table 4: Test accuracy using CmplxCompBoost with decreasing or increasing layer widths.

J.2 Datasets and Hyperparameters

In this section, we present the details of datasets used in our experiments and describe our process for
hyperparameter selection.

Simulated Datasets. We generated 3 synthetic binary classification datasets in R32. Simulation 1
is a concentric ellipsoids dataset, where a point x is classified based on xTAx, for some randomly
generated positive semi-definite matrix A. Simulations 2 and 3 are datasets whose classification
boundaries are polynomials of degrees 8 and 9 respectively. For each of these datasets, we generated
106 samples for training and testing.

Hyper-parameters. We used hold-out set validation to pick the best hyper-parameters for all the
methods. We used 20% of the training data as validation data and picked the best parameters using
grid search, based on validation accuracy. After picking the best parameters, we train on the entire
training data and report performance on the test data. For all the greedy techniques based on neural
networks, we used fully connected blocks and tuned the following parameters: weight decay, width
of weak feature transformers, number of iterations T . For CmplxCompBoost, we set ∆ “ D0{5. For
end-to-end training, we tuned weight decay, width of layers, depth. We used SGD for optimization
of all these techniques. The number of epochs and step size schedule of SGD are chosen to ensure
convergence. For XGBoost, we tuned the number of trees, depth of each tree, learning rate.

Benchmark Datasets. We consider the following image datasets: CIFAR10, MNIST, FashionM-
NIST [35], MNIST-rot-back-image [24], convex [35], SVHN [28], and the following tabular datasets
from UCI repository [7]: letter recognition [17], forest cover type (covtype), connect4. The convex
dataset involves classifying shapes in images as either convex or non-convex. MNIST-rot-back-image
is generated from MNIST by rotating the images and adding random images in the background.

Hyper-parameters. For covtype dataset, which doesn’t come with a test set, we randomly sample 20%
of the original data and use it as the test set. We use a similar hyper-parameter selection technique as
above and tune the same set of hyper-parameters as described above. We use convolution blocks for
CIFAR10, SVHN, FashionMNIST, convex, MNIST-rot-back-image and fully connected blocks for
the rest. We limit the width of fully connected blocks to 4096, and the number of output channels in
convolution blocks to 128 while tuning the hyper-parameters for the composition boosting techniques
and end-to-end training. For AdaBoost and additive representation boosting, we set these limits to
16000 and 350 respectively. For CmplxCompBoost with convolution blocks, we set ∆ “ D0{8. We
do not use data augmentation in our experiments.

J.3 Further Experimental Details

Tables 5, 6 list the statistics of datasets used in our experiments. We now list the hyper-parameters
tuned for each dataset and learning algorithm. Table 7 presents the list of hyper-parameters tuned
for XGBoost. All the other techniques we use in our experiments rely on neural networks. We use
SGD with momentum to learn these models. In all our experiments, we set the initial learning rate
of SGD to 0.01, momentum to 0.9, batch size to 64 and tune the following weight decay values:
t0.0001, 0.0005, 0.001, 0.005, 0.01u. The number of epochs we used for SGD varied with the dataset
and is chosen to be large enough to ensure convergence. Over the course of the SGD optimization,

25

we reduce the learning rate by a factor of 0.5, if the training loss doesn’t decrease for certain number
of SGD iterations (we rely on scheduler-tolerance option in PyTorch to implement this). We run
all the greedy techniques (AdaBoost, additive feature boosting, StdCompBoost, DenseCompBoost,
CmplxCompBoost) for 10 iterations and use validation dataset to decide the best early stopping rule.
For End-2-End training, we tune two values of depth: 5, 10. Tables 8, 9 presents the list of all the
other hyper-parameters tuned.

Table 5: Details of simulated datasets used in our experiments. We use 20% of the training data as
validation set for picking the best hyper-parameter

Dataset Simulation 1 Simulation 2 Simulation 3
Train samples 1000000 1000000 1000000
Test samples 500000 500000 500000

Classes 2 2 2

Table 6: Details of benchmark datasets used in our experiments. We use 20% of the training data as
validation set for picking the best hyper-parameter

Image Datasets
Details SVHN FashionMNIST CIFAR10 Convex MNIST-rot-back-image

Train samples 73257 60000 50000 8000 12000
Test samples 26032 10000 10000 50000 50000

Classes 10 10 10 2 10

Tabular Datasets
Details MNIST Letter CovType Connect4

Train samples 60000 15000 464809 54045
Test samples 10000 5000 116203 13512

Classes 10 26 7 3

Table 7: List of hyper-parameters tuned for XGBoost, on all the datasets used in our experiments.

Parameter Values Tuned
Tree Depth t10, 15, 20u

Learning Rate t0.1, 0.2u
Number of Trees t400, 800, 1600u

26

Table 8: List of hyper-parameters tuned for various compositional boosting techniques and end-2-end
training.

Dataset Hyper-parameters tuned
Simulation-1 width:t32, 64, 128u
Simulation-2 width:t64, 128, 256u
Simulation-3 width:t256, 512, 1024u

SVHN output channels:t32, 64, 128u
FashionMNIST output channels:t32, 64, 128u

Convex output channels:t32, 64, 128u
MNIST-rot-back-image output channels:t32, 64, 128u

CIFAR10 output channels:t32, 64, 128u

MNIST width:t256, 512, 1024u
LETTER width:t256, 512, 1024u
Covtype width:t1024, 2048, 4096u
Connect4 width:t256, 512, 1024u

Table 9: List of hyper-parameters tuned for AdaBoost and additive feature boosting. To be fair for
additive boosting techniques, we considered wider weak learners than the ones used for compositional
boosting and end-2-end training.

Dataset Hyper-parameters tuned
Simulation-1 width:t256, 512, 1024u
Simulation-2 width:t256, 512, 1024u
Simulation-3 width:t4096, 8192, 16384u

SVHN output channels:t128, 256, 350, 512u
FashionMNIST output channels:t128, 256, 350, 512u

Convex output channels:t128, 256, 350, 512u
MNIST-rot-back-image output channels:t128, 256, 350, 512u

CIFAR10 output channels:t128, 256, 350, 512u

MNIST width:t256, 512, 1024u
LETTER width:t256, 512, 1024u
Covtype width:t4096, 8192, 16384u
Connect4 width:t256, 512, 1024u

27

