
Generalized Boosting

Arun Sai Suggala, Bingbin Liu, Pradeep Ravikumar
Carnegie Mellon University

Pittsburgh, PA 15213
{asuggala,bingbinl,pradeepr}@cs.cmu.edu

Abstract

Boosting is a widely used learning technique in machine learning for solving
classification problems. In boosting, one predicts the label of an example using an
ensemble of weak classifiers. While boosting has shown tremendous success on
many classification problems involving tabular data, it performs poorly on complex
classification tasks involving low-level features such as image classification tasks.
This drawback stems from the fact that boosting builds an additive model of weak
classifiers, each of which has very little predictive power. Often, the resulting
additive models are not powerful enough to approximate the complex decision
boundaries of real-world classification problems. In this work, we present a general
framework for boosting where, similar to traditional boosting, we aim to boost the
performance of a weak learner and transform it into a strong learner. However,
unlike traditional boosting, our framework allows for more complex forms of
aggregation of weak learners. In this work, we specifically focus on one form of
aggregation - function composition. We show that many popular greedy algorithms
for learning deep neural networks (DNNs) can be derived from our framework
using function compositions for aggregation. Moreover, we identify the drawbacks
of these greedy algorithms and propose new algorithms that fix these issues. Using
thorough empirical evaluation, we show that our learning algorithms have superior
performance over traditional additive boosting algorithms, as well as existing
greedy learning techniques for DNNs. An important feature of our algorithms is
that they come with strong theoretical guarantees.

1 Introduction

Boosting is a widely used learning technique in machine learning for solving classification problems.
Boosting aims to improve the performance of a weak learner by combining multiple weak classifiers
to produce a strong classifier with good predictive performance. Since the seminal works of Freund
[13], Schapire [32], a number of practical algorithms such as AdaBoost [16], gradient boosting [26],
XGBoost [9], have been proposed for boosting. Over the years, boosting based methods such as
XGBoost in particular, have shown tremendous success in many real-world classification problems,
as well as competitive settings such as Kaggle competitions. However, this success is mostly
limited to classification tasks involving structured or tabular data with hand-engineered features.
On classification problems involving low-level features and complex decision boundaries, boosting
tends to perform poorly [3, 30] (also see Section 5). One example where this is evident is the image
classification task, where the decision boundaries are often complex and the features are low-level
pixel intensities. This drawback stems from the fact that boosting builds an additive model of weak
classifiers, each of which has very little predictive power. Since such additive models with any
reasonable number of weak classifiers are usually not powerful enough to approximate complex
decision boundaries, the models’ output by boosting tend to have poor performance.

In this work, we aim to overcome this drawback of traditional boosting by considering a generalization
of boosting which allows for more complex forms of aggregation than linear combinations of
weak classifiers. To achieve this goal, we work in the feature representation space and boost the

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



performance of weak feature transformers. Working in the representation space allows for more
flexible combinations of weak feature transformers. This is unlike traditional boosting which works
in the label space and builds an additive model on the predictions of the weak classifiers. The
starting point for our approach is the greedy view of boosting, originally studied by Friedman et al.
[18], Mason et al. [26]. Letting pRSpfq be the risk of a classifier f on training samples S, boosting
techniques aim to approximate the minimizer of pRS in terms of linear combinations of elements
from a set of weak classifiers F . Many popular boosting algorithms including AdaBoost, XGBoost,
rely on greedy techniques to find such an approximation. In our generalized framework for boosting,
we take this greedy view, but differ in how we aggregate the weak learners. We approximate the
minimizer of pRS using models of the form fT “ WφT , where φT “

řT
t“0 gt, and tgtuTt“0 are

feature transformations learned in each iteration of the greedy algorithm, and W is the linear classifier
on top of the feature transformation. Unlike additive boosting, where each gt comes from a fixed
weak feature transformer class G, in our framework each gt comes from a class Gt which evolves over
time t and is allowed to depend on the past iterates tφiut´1

i“0. Some potential choices for Gt that could
be of interest are tg ˝ φt´1 for g P Gu, tg ˝ prφ0, . . . , φt´1sq for g P Gu, where g ˝ φpxq “ gpφpxqq
denotes function composition of g and φ, and G is a weak feature transformer class. Note that the
former choice of Gt is connected to layer-by-layer training of models with ResNet architecture [21].

As one particular instantiation of our framework, we consider weak feature transformers that are
neural networks and use function compositions to combine them; that is, we use Gt’s constructed
using function compositions. We show that for certain choices of Gt, our framework recovers the
layer-by-layer training techniques developed in deep learning [6, 22]. Greedy layer-by-layer training
techniques have seen a revival in recent years [5, 8, 22, 25, 29]. One reason for this revival is
that greedy techniques consume less memory than end-to-end training of deep networks, as they
do not perform end-to-end back-propagation. Consequently, they can accommodate much larger
models in limited memory. As a primary contribution of the paper, we identify several drawbacks of
existing layer-by-layer training techniques, and show that the choice of Gt used by these algorithms
can lead to a drop in performance. We propose alternative choices for Gt which fix these issues
and empirically demonstrate that the resulting algorithms have superior performance over existing
layer-by-layer training techniques, and in some cases achieve performance close to that of end-to-end
trained DNNs. Moreover, we show that the proposed algorithms perform much better than traditional
additive boosting algorithms, on a variety of classification tasks.

As the second contribution of the paper, we provide excess risk bounds for models learned using our
generalized boosting framework. Our results depend on a certain weak learning condition on feature
transformer classes tGtuTt“1, which is a natural generalization of the weak learning condition that
is typically imposed in traditional boosting. The resulting risk bounds are modular and depend on
the generalization bounds of tGtuTt“1. An advantage of such modular bounds is that one can rely on
the best-known generalization bounds for weak transformation classes tGtuTt“1 and obtain tight risk
bounds for boosting. As an immediate consequence of this result, we obtain excess risk bounds for
existing greedy layer-by-layer training techniques.

Related Work. Several works have proposed generalizations of traditional boosting [10, 11, 20, 22].
Cortes et al. [10] propose a boosting algorithm where the hypothesis set of weak classifiers is chosen
adaptively. However, the resulting models are still additive models of weak classifiers and usually
perform poorly on hard classification problems. Several recent works have attempted to learn neural
networks greedily based on boosting theory. Cortes et al. [11] propose a boosting-style algorithm to
learn both the structure and weights of neural networks in an adaptive way. However, the algorithms
developed are restricted to feed forward neural networks and are mostly theoretical in nature. The
experimental evidence in the paper is a proof-of-concept and only considers small scale binary
classification tasks. Huang et al. [22], Nitanda and Suzuki [29] use ideas from classical boosting to
learn neural networks in a layer-by-layer fashion. As we show later, these algorithms are specific
instances of our generalized framework, and have certain drawbacks arising from the choice of Gt
they use.

2 Preliminaries

In this section, we set up the notation and review the necessary background on additive boosting. A
consolidated list of notation can be found in Appendix A.
Notation. Let pX,Y q P X ˆ Y denote a feature-label pair following a probability distribution P .
Let PX , PY denote the marginal distributions of X and Y . In this work, we consider the multi-class

2



classification problem where Y “ t0, . . .K ´ 1u, and assume X Ď Rd. Let S “ tpxi, yiquni“1 be n
i.i.d samples drawn from P . Let Pn be the empirical distribution of S and PXn , P

Y
n be the marginal

distributions of txiuni“1, tyiuni“1.

In classification, our goal is to find a predictor that can well predict the label of any feature from just the
samples S. Let f : X Ñ RK denote a score-based classifier which assignsX to class argmaxi fipXq.
The expected classification risk of f is defined as EX,Y r`0´1pfpXq, Y qs, where `0´1pfpXq, Y q “ 0
if argmaxi fipXq “ Y , and 1 otherwise. Since optimizing 0{1 risk is computationally intractable,
we consider convex surrogates of `0´1pfpXq, Y q, which we denote by `pfpXq, Y q; typical choices
for ` include the logistic loss and the exponential loss. The population risk of f is then defined
as Rpfq “ EX,Y r`pfpXq, Y qs . Since directly optimizing the population risk is impossible, we
approximate it with the empirical risk pRSpfq “

1
n

řn
i“1 `pfpxiq, yiq and try to find its minimizer.

We consider classifiers of the form fpXq “WφpXq, where φ : X Ñ RD is the feature transformer
and W P RKˆD is the linear classifier on top. A popular choice for φ is a neural network. We denote
the population and empirical risks of such an f as RpW,φq, pRSpW,φq. We usually work in the space
of feature transforms. Let L2pP q denote the space of square integrable functions w.r.t P , and define
the inner product between φ1, φ2 P L2pP q as xφ1, φ2yP “ EX„P rxφ1pXq, φ2pXqys. We denote
with ∇φRpW,φq the functional gradient of RpW,φq w.r.t φ in the L2pP

Xq space, which is defined
as ∇φRpW,φqpxq “ EY |x

“

WT∇`pWφpxq, Y q
‰

, where ∇`pWφpxq, yq denotes the gradient of `
w.r.t its first argument, evaluated at Wφpxq. Similarly, we let ∇φ pRSpW,φq denote the functional
gradient of pRSpW,φq in the L2pP

X
n q space

∇φ pRSpW,φqpxq “
"

WT∇`pWφpxiq, yiq, if x “ xi,

0 otherwise
.

Additive Boosting. In this work, we refer to traditional boosting as additive boosting, as it constructs
additive models of weak classifiers. Let F be a hypothesis class of weak classifiers, a typical example
being decision trees of bounded depth. Additive boosting aims to find an element in the linear span
of F which minimizes the empirical risk pRSpfq. As previously mentioned, there exists a duality
between boosting and greedy algorithms [18, 19, 26]. Many popular boosting algorithms use a greedy
forward stagewise approach to find a minimizer of pRSpfq, and solve the following in each iteration:

ηt, ft “ argminηPR,fPF pRS

´

ÿt´1

i“1
ηifi ` ηf

¯

,

where η is the learning rate. Various algorithms differ in how they solve this optimization problem.
In gradient boosting, one uses a linear approximation of pRS around

řt´1
i“1 ηifi [26]. In this work,

we take this greedy view of boosting to design the generalized boosting framework.
Additive Representation Boosting. In this work, we perform boosting in the representation space,
contrasting with traditional boosting which works in the output space. Let G be a hypothesis class
of weak feature transformers, whose examples include the set of one layer neural networks of
bounded width and a set of vector-valued polynomials of bounded degree. More generally, G can be
any set of non-linear transformations. In additive representation boosting, we aim to find a strong
feature transform φ in the linear span of G, and a linear predictor W PW Ď RKˆD that minimizes
pRSpW,φq. To this end, we consider greedy algorithms that solve the following problem each iteration:

Wt, gt “ argminWPW,gPG
pRS pW,φt´1 ` ηtgq , (1)

where φt “ φ0 `
řt
i“1 ηigi with φ0 being the initial feature transformation, and tηiu8i“1 is a

predefined learning rate schedule.

3 Generalized Boosting

The starting point for our generalized boosting framework is the additive representation boosting
described in Section 2. Typically, linear combinations of weak feature transformations are not
powerful enough to model complex decision boundaries. Consequently, the minimizer of pRSpW,φq
over the linear span of G tends to have a high risk. A simple workaround for this issue would be
to perform additive boosting with a complex hypothesis class G. For example, if the weak feature
transformers are one layer neural networks, then one could increase the complexity of G by using
deeper networks. However, such an alternative has several drawbacks both from an optimization

3



and generalization perspective and defeats the purpose of boosting, which aims to convert weak
learners into strong learners. From an optimization perspective, moving to complex G makes each
greedy step harder to optimize. For example, compared to deep neural networks, shallow networks
are easier to optimize, require fewer resources, and are easier to analyze or interpret [5]. From a
generalization perspective, since the generalization bounds of boosting depend on the complexity of
G, larger hypothesis classes can lead to overfitting and poor performance on unseen data.

In this work, we are interested in other approaches for increasing the complexity of models produced
by boosting, while ensuring the boosting/greedy steps are easy to implement. One way to achieve
this is by considering more complex combinations of weak feature transformers than the linear
combinations considered in additive representation boosting. Formally, let Gt denote the hypothesis
class of feature transformations used in the tth iteration of boosting. In additive boosting, Gt “ G for
all t. In our generalized boosting framework, we increase the complexity of Gt by letting it depend
on the past iterates tφiut´1

i“0. Here are some potential choices for Gt, other than the ones stated in the
introduction: tg ˝p

řt´1
i“0 αiφiq, for g P G, αi P Ru, tg ˝φt´1 ˝φt´2 ¨ ¨ ¨˝φ0, for g P Gu. Depending

on the problem domain, one could consider several other ways of constructing Gt using the past
iterates. Note that even with these complex choices of Gt, the greedy steps are easy to implement and
only need a weak learner which can identify an element in G that best fits the data. As a result, this
remains in the spirit of boosting and at the same time ensures the models learned are complex enough
for real world problems.

We now present our algorithm for generalized boosting (see Algorithm 1). Similar to additive
representation boosting, our algorithm proceeds in a greedy fashion. In the tth iteration of the
algorithm, we aim to solve the following optimization problem:

Wt, gt “ argmin
WPW,gPGt

pRS pW,φt´1 ` ηtgq . (2)

We provide two approaches for solving this problem. One is the exact greedy approach, which
directly solves the optimization problem (Algorithm 2). For problems where direct optimization of
Equation (2) is difficult1, we provide an approximate technique which performs functional gradient
descent on the objective. In this approach, which we call gradient greedy approach, we approximate
the objective with the linear approximation of pRS around φt´1 (Algorithm 3):

pRS pW,φt´1 ` ηtgq « pRS pW,φt´1q ` ηt

A

∇φ pRSpW,φt´1q, g
E

PX
n

.

To optimize the linear approximation, we first fix W to Wt´1 and find a minimizing gt P Gt.
Intuitively, this step can be seen as finding a g which best aligns with the negative functional gradient
of empirical risk at the current iterate. For appropriate choice of learning rate η, moving along
gt results in reduction of pRS . Next, we fix gt and find a linear predictor W which minimizes the
empirical risk pRSpW,φtq. This alternating optimization of g and W makes the algorithm easy to
implement in practice. Moreover, this algorithm is more stable than joint optimization of g and W .
We note that such gradient greedy approaches have been developed for traditional boosting [26].

3.1 Compositional Boosting

As one particular instantiation of our framework, we consider Gt’s constructed by composing elements
from a weak feature transformer class G with the past iterates tφiut´1

i“0 and study the resulting boosting
algorithms. We refer to such boosting algorithms as compositional boosting algorithms since the
strong feature transformer is constructed from weak feature transformer via function composition.
When Gt “ tg ˝ φt´1 for g P Gu, the models in our framework have the ResNet architecture and can
be defined recurrently as φt “ φt´1` ηtgt ˝ φt´1. Moreover, Algorithm 1 with this choice of Gt and
Algorithm 2 as update routine give us the greedy layer-wise supervised training technique proposed
by Bengio et al. [6] and recently revisited by Belilovsky et al. [5]. In another recent work, Huang
et al. [22] propose a boosting-based algorithm for learning ResNets (see Algorithm 4 in Appendix).
We now show that their approach is equivalent to the greedy technique of Bengio et al. [6], and thus
can be seen as an instance of our general framework. We note that such a connection is not known
previously.
Proposition 3.1. Suppose the classification loss ` is the exponential loss. Then the greedy technique
of Huang et al. [22] for learning ResNets is equivalent to the greedy layer-wise supervised training
technique of Bengio et al. [6].

1Such scenarios can potentially arise if the feature transformations are non-differentiable functions.

4



In another recent work, Nitanda and Suzuki [29] propose a gradient boosting technique to greedily
learn a ResNet. This algorithm is closely related to the gradient greedy approach described in
Algorithm 3, with Gt “ tg ˝ φt´1 for g P Gu.

Algorithm 1 Generalized Boosting
1: Input: Training data S “ tpxi, yiquni“1, iterations T , initial linear predictor W0, initial feature transformer
φ0, learning rates tηiuTi“1, Update-routine: UPDATE

2: tÐ 1
3: while t ď T do
4: Construct feature transformer class Gt based on past iterates tpWi, φiqu

t´1
i“0

5: Wt, φt, gt Ð UPDATE pS,Wt´1, φt´1, ηt,Gtq
6: tÐ t` 1
7: end while
8: Return: WT , φT

Algorithm 2 Exact Greedy Update
1: Input: Training data S, previous iterate
pW,φq, learning rate η, feature trans-
former class G

2:

W`, g` Ð argmin
ĂWPW,g̃PG

pRSpĂW,φ` ηg̃q

3: φ` Ð φ` ηg`

4: Return: W`, φ`, g`

Algorithm 3 Gradient Greedy Update
1: Input: Training data S, previous iterate pW,φq, learning rate
η, feature transformer class G

2: // Pick a descent direction
3: g` Ð argming̃PG

A

∇φ
pRSpW,φq, g̃

E

PX
n

4: φ` Ð φ` ηg`

5: // Update the linear predictor
6: W`

Ð argmin
ĂWPW

pRSpĂW,φ`q

7: Return: W`, φ`, g`

We now highlight certain drawbacks of the existing greedy layer-wise training techniques, which arise
from the particular choice of Gt used by these algorithms. Since tg ˝ φt´1 for g P Gu is constructed
solely based on the past iterate φt´1, any mistake in φt´1 is propagated to all the future iterates. As
a result, these algorithms can not recover from their past mistakes. As an example, consider the
following scenario where two points x1,x2 belonging to two different classes are placed close to
each other in the feature space, after 1st iteration of greedy; that is φ1px1q « φ1px2q. In such a
scenario, the future iterates tφtu8t“2 generated by existing greedy algorithms will always place x1,x2

close to each other in the representation space. As a result, the algorithm will always misclassify
at least one of x1,x2. Another issue with existing greedy techniques is that they do not guarantee
that the complexity of Gt increases with time t. In such scenarios, Algorithm 1 doesn’t make much
progress in each iteration and can result in poor models. As an example, consider the setting where G
is the set of all linear transformations. Suppose φ0 is the identity transform and φ1 is such that its
range lies in a low dimensional subspace. Then, it is evident that G1 Ě Gt for all t ě 2.
To fix these issues, we propose two new compositional boosting algorithms obtained with a more
careful choice of Gt. In our first algorithm, which we call DenseCompBoost, we choose Gt as follows

Gt “
!

g ˝
´

Id`
ÿt´1

i“0
αiφi

¯

, for g P G, αi P R
)

, (3)

where Idp¨q is the identify function. Such a choice of Gt helps us recover from the past mistakes. For
example, if φ1 is a constant function, then the algorithm can still learn a good feature transformer by
relying on the input x and the initial feature transform φ0. Moreover, our choice of Gt ensures its
complexity grows with t and satisfies: Gt´1 Ď Gt, for all t. We call our algorithm DenseCompBoost,
since the resulting model for this choice of Gt resembles a DenseNet [23], where each layer is allowed
to be connected to all the previous layers. That being said, the models output by DenseCompBoost
differ from DenseNet in how they aggregate the previous layers. DenseNet concatenates the features
from previous layers, whereas DenseCompBoost adds the features. Our second algorithm, which we
call CmplxCompBoost, tries to increase the complexity of Gt in each iteration as follows

Gt “
!

g ˝ φt´1, for g P rGt
)

, (4)

where rGt is a weak feature transformer class and satisfies rGt´1 Ă rGt for all t. In the case of one
layer neural networks, such rGt’s can be constructed by increasing the layer width with t. We note that
the rGt in this algorithm is independent of the past iterates. By increasing the complexity of rGt with t,
we expect the complexity of Gt to increase and Algorithm 1 to make more progress in each iteration.
While not immediately evident, we note that this technique can also fix the mistakes made by past
iterates. For example, suppose φ1 is such that it places two points x1,x2 from different classes,

5



close to each other in the feature space. Then having a more complex rG2 can help recover from this
mistake, as one can potentially find a g P rG2 which can separate these two points. In Section 5, we
present empirical evidence showing that our new boosting algorithms have superior performance over
existing additive and compositional boosting algorithms. Further empirical evidence corroborating
the issues we identified with existing layer-wise training techniques can be found in Appendix J.1.

4 Excess Risk Bounds
In this section, we provide excess risk bounds for the models’ output by the generalized boosting
framework. Our results depend on a weak learning condition on the hypothesis class Gt used in the
tth iteration of Algorithm 1. This condition is a way to quantify the relative strength of Gt and roughly
says that there always exists an element in Gt which has an acute angle with the negative functional
gradient at the current iterate. Such a condition ensures progress in each iteration of boosting.
Definition 4.1. Let β P p0, 1s, ε ě 0 be constants. Gt`1 is said to satisfy the pβ, εq-weak learning
condition for a dataset S, if there exists a g P Gt`1 such that

A

g,´∇φ pRSpWt, φtq
E

PX
n

ě βBpGt`1q}∇φ pRSpWt, φtq}PX
n
´ ε,

where BpGt`1q “ supgPGt`1
}g}PX

n
, and Pn is the empirical distribution of S.

In traditional boosting, such conditions are typically referred to as the edge of a weak learner and
play a crucial role in the convergence analysis. For example, Freund and Schapire [14] assume
that for any set of weights over the training set S, there exists a classifier in the hypothesis class of
weak classifiers which has better than random accuracy on the weighted samples. The following
proposition shows that their condition is closely related to Definition 4.1.
Proposition 4.1. For binary classification, the weak learning condition of Freund and Schapire [14]
satisfies the empirical weak learning condition in Definition 4.1, albeit in the label space.

For binary classification problems, it is well known that the weak learning condition of [14] is
the weakest condition under which boosting is possible [15, 31]. This, together with the above
proposition, suggests that our weak learning condition in Definition 4.1 cannot be weakened for
binary classification problems.
To begin with, we derive excess risk bounds for the gradient greedy approach. Our analysis crucially
relies on the observation that it can be viewed as performing inexact gradient descent on the population
risk R. Several recent works have analyzed inexact gradient descent on convex objectives [2, 12,
33, 34]. However, the condition on the inexact gradient imposed by these works is different from
ours and in many cases is stronger than our condition. For example, the condition of Balakrishnan
et al. [2] translates to }g ` ∇φRpW,φq}PX ď ε in our setting, which is stronger than our weak
learning condition. So the core of our analysis focuses on understanding inexact gradient descent with
descent steps satisfying the weak learning condition in Definition 4.1. In our analysis, we consider a
sample-splitting variant of the algorithm, where in each iteration we use a fresh batch of samples.
This is mainly done to simplify the analysis by avoiding complex statistical dependencies between
the iterates of the algorithm. Let ñ “ t nT u, we split the training dataset S into T subsets tStuTt“1 of
size ñ, where St “ tpxt,i, yt,iquñi“1. We work with the subset St in the tth iteration of Algorithm 1.
We are now ready to state our main result on the excess risk bounds of the iterates of Algorithm 3.
Our results depend on the Rademacher complexity terms related to the hypothesis setsW,Gt

R pW,Gtq “ E

»

—

–

sup
WPW,
gPGt

1

ñ

ñ
ÿ

i“1

K
ÿ

k“1

ρikrWgpxt,iqsk

fi

ffi

fl

, R pGtq “ E

«

sup
gPGt

1

ñ

ñ
ÿ

i“1

D
ÿ

j“1

ρijrgpxt,iqsj

ff

,

where rusk denotes the kth entry of a vector u, and the expectation is taken w.r.t the randomness
from St and the Rademacher random variables ρij’s.
Theorem 4.1 (Gradient Greedy). Suppose the classification loss ` is L-Lipschitz and M -smooth
w.r.t the first argument. Let the hypothesis set of linear predictorsW be s.t. any W P W satisfies
λmin

`

WWT
˘

ě σ2
min ą 0 and λmax

`

WWT
˘

ď σ2
max. Moreover, suppose for all t, Gt satisfies the

pβ, εtq-weak learning condition of Definition 4.1 for any dataset St. Finally, suppose any g P Gt is
bounded with supX }gpXq}2 ď B. Let the learning rates tηtu8t“1 be chosen as ηt “ ct´s, for some

s P
´

β`1
β`2 , 1

¯

and positive constant c. If Algorithm 1 is run for T iterations with Algorithm 3 as

6



update routine, then pWT , φT q, the T th iterate output by the algorithm, satisfies the following risk
bound for any W˚, φ˚ and α P p0, βp1´ sqq, with probability at least 1´ δ over datasets of size n

RpWT , φT q ď RpW˚, φ˚q `O

¨

˝

1

Tα
` T 2´s

d

log T
δ

ñ

˛

‚` 2
T
ÿ

t“1

ηt pLR pW,Gtq ` LR pGtq ` εtq .

Proof Sketch. We first show that Algorithm 3 can be viewed as performing inexact gradient descent
on the population risk R. Specifically, we show that with high probability, the tth iterate gt satisfies

xgt,´∇φRpWt´1, φt´1qyP ě βB}∇φRpWt´1, φt´1q}P ´ εt ´ ζt,

for some ζt ą 0. This follows from the weak learning condition satisfied by Gt. Ignoring εt, ζt, the
above equation shows that gt makes acute angle with the population functional gradient at φt´1.
Consequently, we would expect the population risk to decrease, if we move along gt. This is indeed
the case, and the final step in the proof formalizes this intuition.

Remarks: We now briefly discuss the above result. See Appendix D for more discussion.
• The reference classifier pW˚, φ˚q in the above bound can be any classifier, as long as }W˚}2 ă

8, }φ˚}PX ă 8. In particular, if there exists a Bayes optimal classifier satisfying this condition,
then the above Theorem provides an excess risk bound w.r.t the Bayes optimal classifier.

• The T´α term in the bound corresponds to the optimization error. The ηtεt term corresponds to
the approximation error and the rest of the terms correspond to the generalization error. As T
increases, the optimization error goes down, and as ñ increases, the generalization error goes down.
If there is no approximation error, that is εt “ 0 for all t, then the excess risk goes down to 0 as
ñ, T Ñ8 at appropriate rate.

• If β “ 1, then for appropriate choice of step size the optimization error goes down asO
`

T´1{3`γ
˘

,
for some arbitrarily small γ ą 0. This rate is slower than the OpT´1q rates for inexact gradient
descent obtained by Devolder et al. [12], Schmidt et al. [33]. However, we note that unlike our
work, these works assume that the level sets of the objective are bounded. Under the assumption
that the level sets of population risk are bounded, the optimization error in Theorem 4.1 can be
improved to OpT´1q. However, such a condition need not hold in the our setting.

• Note that the risk bounds are modular and only depend on the Rademacher complexity terms
RpW,Gtq,RpGtq which capture the complexity of Gt. To instantiate Theorem 4.1 for specific
choices of Gt, we need to bound these two complexity terms.

We now extend the analysis of Theorem 4.1 to the exact greedy approach.
Corollary 4.1 (Exact Greedy). Consider the setting of Theorem 4.1. Suppose Algorithm 1 is run
with Algorithm 2 as update routine. Then pWT , φT q, the T th iterate output by the algorithm, satisfies
the same risk bounds as gradient greedy algorithm in Theorem 4.1.

In the rest of the section, we instantiate Theorem 4.1 for specific choices of Gt. We first consider the
additive representation boosting algorithm.
Corollary 4.2. Consider the setting of Theorem 4.1 and consider the additive representation boosting
algorithm, where Gt “ G for all t. Suppose G is the set of one layer neural networks with sigmoid
activation functions: G “

 

σpCxq, for C P RDˆd, }Ci,˚}1 ď Λ,@i
(

.Moreover, suppose the feature
domain X is a subset of r0, 1sd. Then the T th iterate output by Algorithm 1, with Algorithm 2 or 3 as
update routine, satisfies the following risk bound for any pW˚, φ˚q, with probability at least 1´ δ

RpWT , φT q ď RpW˚, φ˚q `O

ˆ

1

Tα

˙

` 2
T
ÿ

t“1

ηtεt `O

¨

˝

KDΛT 1´s logD
?
ñ

` T 2´s

d

log T
δ

ñ

˛

‚.

Next, we consider the layer-by-layer fitting technique of Bengio et al. [6].
Corollary 4.3. Consider the setting of Corollary 4.2 and consider the layer-by-layer training tech-
nique of Bengio et al. [6], where Gt “ tg ˝ φt´1 for g P Gu. Suppose G is the set of one layer neural
networks with sigmoid activation functions: G “

 

σpCxq, for C P RDˆD, }Ci,˚}1 ď Λ,@i
(

. Then
the T th iterate output by Algorithm 1, with Algorithm 2 or 3 as update routine, satisfies the following
risk bound for any pW˚, φ˚q with probability at least 1´ δ

RpWT , φT q ď RpW˚, φ˚q `O

ˆ

1

Tα

˙

` 2
T
ÿ

t“1

ηtεt `O

¨

˝

KDΛT 2´2s logD
?
ñ

` T 2´s

d

log T
δ

ñ

˛

‚.

7



Note that the generalization and optimization errors for both additive feature boosting and layer-
by-layer fitting have similar dependence on T, ñ. However, the latter tends to have a smaller
approximation error (εt) as it is able to build complex Gt’s over time. So one would expect layer-by-
layer fitting to output models with a better population risk, which our empirical results in fact verify.

5 Experiments

In this section, we present experiments comparing the performance of various boosting techniques on
both simulated and benchmark datasets.
Baselines. We compare our proposed boosting techniques with XGBoost, AdaBoost, additive
representation boosting (discussed in Corollary 4.2) and greedy layer-by-layer training technique of
Bengio et al. [6] (Corollary 4.3). XGBoost uses decision trees as weak classifiers. For AdaBoost, we
use 1 hidden layer neural networks as weak classifiers. We use two kinds of neural networks, based
on the dataset. For tabular datasets, we use fully connected networks and for image datasets, we
use convolutional networks (CNN) with the convolution block made up of Convolution, BatchNorm,
ReLU layers arranged sequentially. For additive representation boosting (Additive Feature Boost
from now on) and layer-by-layer fitting (StdCompBoost from now on), the weak feature transformer
class G consists of one layer neural network transformations. Similar to AdaBoost, we use two kinds
of transformations: a) fully connected transformations of the form gpxq “ ReLUpCx` dq, and b)
convolutional transformations with Convolution, BatchNorm, ReLU blocks arranged sequentially.
Finally, we also compare against end-to-end training of ResNets.
Proposed Techniques. For DenseCompBoost, we use a slight variant of Gt defined in Equation (3) :
Gt “ th ` g ˝ p

řt´1
i“0 αiφiq, for h P H, g P G, αi P Ru, where H,G are weak feature transformer

classes. We use this variant because the dimensions of the input feature space and the representation
space need not be the same, and as a consequence Gt in Equation (3) can not always be used. Similar
to StdCompBoost, we consider two choices for H,G: one based on fully connected blocks and
the other based on convolution blocks. For CmplxCompBoost, we again consider two choices for
the weak transformer class G̃t in Equation (4): a) ReLUpCx ` dq with C P RDtˆDt´1 , where
Dt “ Dt´1 `∆ for some positive constant ∆, and b) convolution blocks with number of output
channels equal to the number of input channels plus a constant ∆. This choice of feature transformers
ensures the complexity of G̃t increases with t. We use exact greedy updates (Algorithm 2) for both
of our proposed methods and set learning rate ηt to 1. We do not present experimental results for
Algorithm 3, which we noticed has marginally worse performance than Algorithm 2.

5.1 Simulated Datasets

Datasets. In this section we compare the techniques described above on simulated datasets. We gen-
erated 3 synthetic binary classification datasets in R32. Simulation 1 is a concentric ellipsoids dataset,
where a point x is classified based on xTAx, for some randomly generated positive semidefinite
matrix A. Simulations 2, 3 are datasets whose classification boundaries are polynomials of degrees 8
and 9 respectively. For each of these datasets, we generated 106 samples for training and testing.
Hyper-parameters. We used hold-out set validation to pick the best hyper-parameters for all the
methods. We used 20% of the training data as validation data and picked the best parameters using
grid search, based on validation accuracy. After picking the best parameters, we train on the entire
training data and report performance on the test data. For all the greedy techniques based on neural
networks, we used fully connected blocks and tuned the following parameters: weight decay, width
of weak feature transformers, number of boosting iterations T , which we upper bound by 15. For
CmplxCompBoost, we set ∆ “ D0{5. For end-to-end training, we tuned weight decay, width of
layers, depth. We used SGD for optimization of all these techniques. The number of epochs and step
size schedule of SGD are chosen to ensure convergence. For XGBoost, we tuned the number of trees,
depth of each tree, learning rate. The exact values of hyper-parameters tuned for each of the methods
can be found in Appendix J.
Results. Table 1 presents the results from our experiments. Both CmplxCompBoost and StdComp-
Boost largely outperform the additive boosting methods, with CmplxCompBoost being slightly better
due to the increasing complexity in G̃t. Notably, DenseCompBoost performs significantly better
than the rest and is able to bridge the gap between StdCompBoost and End-to-End. We attribute its
success to its ability to recover from earlier mistakes: while StdCompBoost or CmplxCompBoost
necessarily accumulate errors at each layer, DenseCompBoost is further connected to earlier layers,
allowing it to undo its past mistakes.

8



Table 1: Test accuracy of various boosting techniques on synthetic datasets. Numbers in bold indicate
the best performance among various greedy techniques.

Technique Simulation 1 Simulation 2 Simulation 3
XGBoost (Trees) 84.40 97.59 50.10
AdaBoost (1 NN) 67.90 93.73 72.64

Additive Feature Boost 88.49 93.91 73.13
StdCompBoost 91.53 96.95 82.49

DenseCompBoost 93.55 98.35 95.70
CmplxCompBoost 91.97 97.22 82.52

End-to-End 93.88 98.35 99.09

Table 2: Test accuracy of various boosting techniques on benchmark datasets. We use convolution
blocks for the first 5 datasets and fully connected blocks for the other datasets.

Technique SVHN FashionMNIST CIFAR10 Convex MNIST-rot-
back-image MNIST Letter CovType Connect4

XGBoost (Trees) 77.72 90.34 58.34 82.29 53.89 97.96 96.16 97.46 86.63
AdaBoost (1 NN) 82.88 88 72.78 86.17 50.02 98.27 92.08 90.95 86.39

Additive
Feature Boost 83.36 89.95 74.33 89.30 54.31 98.27 90.86 93.12 86.58

StdCompBoost 90.81 92.77 81.93 98.19 73.17 98.37 96.43 95.61 86.33
DenseCompBoost 91.03 93.17 82.31 98.6 73.1 98.34 96.96 96.28 86.85
CmplxCompBoost 91.25 93.18 82.43 98.52 74.32 98.34 96.66 95.92 86.49

End-to-End 94.82 93.49 86.88 98.81 82.69 98.95 97.67 96.86 87.37

5.2 Benchmark Datasets

Datasets. In this section, we compare various techniques on the following image datasets: CIFAR10,
MNIST, FashionMNIST [35], MNIST-rot-back-image [24], convex [35], SVHN [28], and the fol-
lowing tabular datasets from UCI repository [7]: letter recognition [17], forest cover type (covtype),
connect4. The convex dataset involves classifying shapes in images as either convex or non-convex.
Hyper-parameters. For covtype dataset, which doesn’t come with a test set, we randomly sample
20% of the original data and use it as the test set. We use a similar hyper-parameter selection technique
as above and tune the same set of hyper-parameters as described above. We use convolution blocks for
CIFAR10, SVHN, FashionMNIST, convex, MNIST-rot-back-image and fully connected blocks for
the rest. We limit the width of fully connected blocks to 4096, and the number of output channels in
convolution blocks to 128 while tuning the hyper-parameters for the composition boosting techniques
and end-to-end training. For AdaBoost and additive representation boosting, we set these limits to
16000 and 350 respectively. For CmplxCompBoost with convolution blocks, we set ∆ “ D0{8. We
do not use data augmentation in our experiments.
Results. Table 2 presents the results from our experiments. It can be seen that on image classification
tasks, additive boosting techniques have poor performance. Among compositional boosting methods,
StdCompBoost performs the worst. While DenseCompBoost performs comparably to CmplxComp-
Boost on image datasets, it is better on tabular data. We believe a hybrid of DenseCompBoost and
CmplxCompBoost algorithms can achieve better performance than either of the algorithms.

6 Conclusion
We proposed a generalized framework for boosting, which allows for more complex forms of
aggregation of weak learners than traditional boosting. Our generalized framework allows to derive
learning algorithms that (a) have performance close to that of end-to-end trained DNNs, and (b)
come with strong theoretical guarantees. Additive boosting algorithms do not satisfy property (a),
while DNNs do not satisfy property (b). In particular, additive boosting algorithms, even with
small neural networks as their weak classifiers, do not have the strong performance of end-to-end
trained DNNs. Improving their performance requires the hypothesis space to increase in complexity
while not increasing sample complexity of each boosting step too greatly, which can be achieved by
our generalized boosting framework. One particular instantiation of our framework is aggregation
using function compositions. A number of existing greedy techniques for learning neural networks
fall into our framework, and our analysis allowed us to delineate some of their key flaws, then
consequently, propose new techniques which improve upon them. We believe our work opens up a
new line of inquiry for greedy learning of highly flexible models with rigorous theoretical guarantees,
by leveraging the theory of boosting and generalized greedy algorithms in function spaces. We
moreover believe our work has the potential to bridge the gap in performance between existing greedy
layer-by-layer training techniques and end-to-end training of deep networks.

9



Broader Impact

Deep learning has been tremendously successful over the past decade in many application areas such
as computer vision, image recognition, speech recognition, and natural language processing. Despite
this success, deep neural networks have largely remained a mystery. With millions of parameters,
these models are blackboxes to humans, making it harder to diagnose errors. This also makes it harder
to adopt these models in critical applications such as healthcare, law and finance. Consequently, it is
crucial to come up with techniques that make neural networks transparent and easy to understand.
We take a step towards this goal by drawing inspiration from classical boosting. Similar to classical
boosting, our generalized boosting framework builds complex models greedily. But unlike classical
boosting, it allows us to derive learning algorithms that have performance close to that of end-to-end
trained DNNs. Moreover, models built using our framework are easy to understand and come with
strong theoretical guarantees.

Acknowledgement

We acknowledge the support of NSF via IIS-1909816, OAC-1934584, ONR via N000141812861,
and Amazon Web Services (AWS).

References
[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-

terized neural networks, going beyond two layers. In Advances in neural information processing
systems, pages 6155–6166, 2019.

[2] Sivaraman Balakrishnan, Martin J Wainwright, Bin Yu, et al. Statistical guarantees for the em
algorithm: From population to sample-based analysis. The Annals of Statistics, 45(1):77–120,
2017.

[3] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature communications, 5:4308, 2014.

[4] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

[5] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can
scale to imagenet. arXiv preprint arXiv:1812.11446, 2018.

[6] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise
training of deep networks. In Advances in neural information processing systems, pages
153–160, 2007.

[7] Catherine L Blake and Christopher J Merz. Uci repository of machine learning databases, 1998,
1998.

[8] Chang Chen, Zhiwei Xiong, Xinmei Tian, and Feng Wu. Deep boosting for image denoising.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 3–18, 2018.

[9] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

[10] Corinna Cortes, Mehryar Mohri, and Umar Syed. Deep boosting. volume 32 of Proceedings of
Machine Learning Research, pages 1179–1187, Bejing, China, 22–24 Jun 2014. PMLR. URL
http://proceedings.mlr.press/v32/cortesb14.html.

[11] Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang. Adanet:
Adaptive structural learning of artificial neural networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pages 874–883. JMLR. org, 2017.

[12] Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth convex
optimization with inexact oracle. Mathematical Programming, 146(1-2):37–75, 2014.

[13] Yoav Freund. Boosting a weak learning algorithm by majority. Information and computation,
121(2):256–285, 1995.

[14] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and
an application to boosting. In European conference on computational learning theory, pages
23–37. Springer, 1995.

10

http://proceedings.mlr.press/v32/cortesb14.html


[15] Yoav Freund and Robert E Schapire. Game theory, on-line prediction and boosting. In
Proceedings of the ninth annual conference on Computational learning theory, pages 325–332,
1996.

[16] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm. In icml,
volume 96, pages 148–156. Citeseer, 1996.

[17] Peter W Frey and David J Slate. Letter recognition using holland-style adaptive classifiers.
Machine learning, 6(2):161–182, 1991.

[18] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors). The annals of
statistics, 28(2):337–407, 2000.

[19] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

[20] Alexander Grubb and J Andrew Bagnell. Generalized boosting algorithms for convex optimiza-
tion. arXiv preprint arXiv:1105.2054, 2011.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[22] Furong Huang, Jordan Ash, John Langford, and Robert Schapire. Learning deep resnet blocks
sequentially using boosting theory. arXiv preprint arXiv:1706.04964, 2017.

[23] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[24] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An
empirical evaluation of deep architectures on problems with many factors of variation. In
Proceedings of the 24th international conference on Machine learning, pages 473–480, 2007.

[25] Sindy Löwe, Peter O’Connor, and Bastiaan Veeling. Putting an end to end-to-end: Gradient-
isolated learning of representations. In Advances in Neural Information Processing Systems,
pages 3033–3045, 2019.

[26] Llew Mason, Jonathan Baxter, Peter L Bartlett, and Marcus R Frean. Boosting algorithms as
gradient descent. In Advances in neural information processing systems, pages 512–518, 2000.

[27] Andreas Maurer. A vector-contraction inequality for rademacher complexities. In International
Conference on Algorithmic Learning Theory, pages 3–17. Springer, 2016.

[28] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[29] Atsushi Nitanda and Taiji Suzuki. Functional gradient boosting based on residual network
perception. arXiv preprint arXiv:1802.09031, 2018.

[30] Natalia Ponomareva, Thomas Colthurst, Gilbert Hendry, Salem Haykal, and Soroush Radpour.
Compact multi-class boosted trees. In 2017 IEEE International Conference on Big Data (Big
Data), pages 47–56. IEEE, 2017.

[31] Gunnar Rätsch and Manfred K Warmuth. Efficient margin maximizing with boosting. Journal
of Machine Learning Research, 6(Dec):2131–2152, 2005.

[32] Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.
[33] Mark Schmidt, Nicolas L Roux, and Francis R Bach. Convergence rates of inexact proximal-

gradient methods for convex optimization. In Advances in neural information processing
systems, pages 1458–1466, 2011.

[34] Vladimir Nikolaevich Temlyakov. Greedy expansions in convex optimization. Proceedings of
the Steklov Institute of Mathematics, 284(1):244–262, 2014.

[35] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

11


