
Targeted Adversarial Perturbations
for Monocular Depth Prediction

SUPPLEMENTARY MATERIALS

Alex Wong
UCLA Vision Lab

alexw@cs.ucla.edu

Safa Cicek
UCLA Vision Lab

safacicek@ucla.edu

Stefano Soatto
UCLA Vision Lab

soatto@cs.ucla.edu

1 Summary of Contents

In Sec. 2, the robustness of perturbations against defenses is discussed. Additional implementation
details that we could not fit into main text due to space constraints are given in Sec. 3. We verify our
claim that targeted adversarial perturbations are visually imperceptible in Sec. 4. More experimental
results on changing the scale of the scene are provided in Sec. 5. In Sec. 6, existence of the successful
adversarial attacks for indoor scenes (NYU-V2) is shown for state-of-the-art indoor monocular depth
prediction model. In Sec. 7, we examine how predictions behave when linear operations are applied
to perturbations (sum of two perturbations and linear scaling of a perturbation). Failure cases for the
perturbations are analyzed in Sec. 8. Finally, in Sec. 9, more qualitative and quantitative results are
provided for the experiments whose compressed versions are presented in the main text.

2 Robustness of the Targeted Attacks Against Defense Mechanisms

In the main text, we have shown that depth prediction networks are prone to adversarial attacks. In this
section, we will examine the robustness of the perturbations against common defense mechanisms:
(i) Gaussian blurring and (ii) adversarial training.

2.1 Defense through Gaussian Blurring

In Fig. 1, we show the effect of Gaussian blurring as a simple defense mechanism on our targeted
attacks by blurring the image with additive perturbations. Even though Gaussian blur does reduce
the effectiveness of the perturbations (increased ARE over all scales), the resulting scene is still
only ≈ 3% away from a target depth that is 10% closer or farther than the original predictions for
ξ = 2×10−2. This is the performance that the method achieves for the case of ξ = 2×10−3 without
blurring. In other words, the effect of the blurring can be suppressed simply by increasing the upper
norm of the noise by 10× for scaling the scene by ±10%.

Figure 1: Gaussian blur. Absolute relative error (ARE) achieved by adversarial perturbations of
different norms (ξ) for different scales. For each scale, we plot the ARE with and without Gaussian
blur. Even though absolute relative error increases with the Gaussian blur, the proposed method can
still find a small norm noise to alter the scene.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Figure 2: Adversarial training. Absolute relative error (ARE) achieved by adversarial perturbations
of different norms (ξ) for different scales. For each scale, we plot the ARE with and without
adversarial training. Even though absolute relative error increases with the adversarial training, the
perturbations can still affect the predicted scene with small norm noise.

Figure 3: Adversarial training vs Gaussian blur. Absolute relative error (ARE) achieved by
adversarial perturbations of different norms (ξ) for different scales. For each scale, we plot the
ARE without any defense, with Gaussian blur and with adversarial training. Both Gaussian blur and
adversarial training makes the depth prediction network more robust to perturbations. Performances
of the two defense mechanisms are comparable for small norms (ξ), but adversarial training is more
effective on larger norms.

2.2 Defense through Adversarial Training

To examine the robustness of adversarial perturbations to adversarial training, we crafted adversarial
perturbations for scaling the scene by a factor of 1 + α where α ∈ {−0.10,−0.05,+0.05,+0.10}
for the KITTI Eigen split [3] (consisting of 22600 stereo pairs). We trained Monodepth2 [5] by
minimizing the normalized discrepancy between the predicted depth of a perturbed image (fd(x+
v(x))) and its prediction for the original image (fd(x)).

`(x, v(x), fd) =
‖fd(x)− fd(x+ v(x))‖1

fd(x)
(1)

Fig. 2 shows the effect of the perturbations on Monodepth2 after adversarial training. While training
does reduce the influence of adversarial perturbations on the scene scaling task, it does not make the
network invariant to the adversarial perturbations. With perturbations of ξ = 2× 10−3, the predicted
scene is ≈ 7% from the target scene that is 10% closer than or farther from the original and ≈ 3%
from the target scene that is 5% closer or farther. For ξ = 2× 10−2, perturbations can still fool the
network to be predict a target scene scaled by ±10% with ≈ 5% absolute relative error and ≈ 2%
error for fooling the network to predict a target scene that is scaled by ±10%.

To compare the two defense mechanisms, we refer to Fig. 3. For smaller norms, e.g. ξ = 2×10−3, we
observe a similar performance in using Gaussian blur (Sec. 2.1) and adversarial training as defenses
against adversarial perturbations; whereas, adversarial training is clearly better for larger ξ. This
may be due to Gaussian blur’s ability to destroy the perturbation for small norms and, hence, able to
mitigate the effect of the perturbations. However, for larger norms, the blurring does not corrupt the
perturbations enough and therefore does not reduce the effect of perturbations by as much.

3 Additional Implementation Details for Outdoor Scenario

In this section, we provide the additional implementation details for crafting adversarial perturbations
for Monodepth [4] and Monodepth2 [5] on the KITTI dataset (outdoor driving scenario) as discussed
in the main text.

2

Upper Norm ξ = 2× 10−3 ξ = 5× 10−3 ξ = 1× 10−2 ξ = 2× 10−2

Monodepth η = 1.0 η = 2.0 η = 3.0 η = 4.0

Monodepth2 η = 0.1 η = 1.0 η = 3.0 η = 5.0

Table 1: Learning rates. We achieve the best performances with the given learning rates.

3.1 Hyper-parameters

Regarding hyper-parameters for crafting adversarial perturbations: We search the learning rate for
each noise norm from the set {0.1, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0}. We report the best performing ones
in Table 1. Regarding our choice for the number of steps to run, we experimented with 200, 400,
500, 800, and 1000 steps and found little difference in performance measured by ARE between 500
steps, and 800 and 1000 steps. While an increased number of steps will obtain slight performance
improvements, conscious of the time complexity, we chose 500 for our experiments.

Regarding hyper-parameters for adversarial training: As a defense against adversarial perturbations,
we optimized Eqn. 1 for Monodepth2 using Adam [7] with β1 = 0.9 and β2 = 0.999. We used a
batch size of 4 and starting learning rate of 1× 10−5. We decreased the learning rate to 5× 10−6

after 10 epochs and to 2.5 × 10−6 after 20 epochs and 1 × 10−6 after 30 epochs for a total of 40
epochs. Training takes approximately 4 hours using an Nvidia GeForce GTX 1080 GPU.

3.2 Monodepth, Monodepth2, and PackNet

We study the effects of adversarial perturbations on the state-of-the-art monocular depth prediction
method, PackNet [6], Monodepth2 [5] and its predecessor Monodepth [4]. Monodepth2 and Mon-
odepth models utilize similar 2D convolutional network architectures and are also trained with similar
loss functions. PackNet is built on 3D convolutions and uses a different loss function than Monodepth
models. In this section, we provide details on the three methods.

Regarding Monodepth: Monodepth uses a ResNet50 encoder architecture as its backbone and a
standard decoder with skip connections. Monodepth predicts both left and right disparities from
a single image (assuming it is the left image of a stereo-pair) and uses image reconstruction as
supervision. Additionally, it is trained with a standard local smoothness term weighted by image
gradients and a left-right disparity consistency term as its regularizers.

Regarding Monodepth2: Monodepth2, unlike Monodepth, uses ResNet18 encoder (pretrained on
ImageNet) as its backbone network architecture. Rather than simply minimizing an image recon-
struction loss, Monodepth2 leverages a heuristic to discount occluded pixels and also uses a criterion
to discount static frames. Similar to Monodepth, Monodepth2 also minimizes a local smoothness
regularizer weighted by image gradients.

Regarding PackNet: PackNet uses 3D convolutions. While the general architecture is still of the
encoder-decoder form, they use “packing” and “unpacking” to convert 2D features into 3D features.
PackNet and the Monodepth methods all leverage structure from motion, but PackNet also uses
velocity at every time step as a prior to obtain metric depth.

4 Imperceptibility

While we have provided the L∞ norm (from 2 × 10−3 to 2 × 10−2) and L1 norm (ranging from
≈0.0124 to≈0.0348, depending on the target scene) of the perturbations in the main text, it is difficult
to quantify how “visually imperceptible” these perturbations really are. The real test is whether a
human can spot the difference between the original and perturbed image. Hence, we conducted
a study with 28 people where we ask if two images (the original image paired with itself or its
associated perturbed image with the highest norm, ξ = 0.02) are the same. The perturbation types
were randomly chosen from scaling ±10%, horizontal, or vertical flipping. Of the 40 random pairs
(20 perturbed), users identified only 1 perturbed image on average, which verifies our claim on the
imperceptibility of the perturbations.

3

Figure 4: ARE with various upper norm ξ for scaling Monodepth2 predictions by larger factors.
We increased the scaling to 15%, 20%, 25% and 30% closer and farther. We can see that for
ξ = 2× 10−2, perturbations are still able to scale the entire scene by ≈ 1% error.

(a) (b) (c)

Figure 5: Indoor quantitative results. ARE with various upper norm ξ for scaling and flipping VNL
predictions. (a) Results for horizontally and vertically flipping the predictions. (b) Results for scaling
the scene by ±10%. (c) comparison between scaling and flipping tasks.

5 Scaling with Larger Factors

In Sec. 4.1 and Fig. 2-(a, b) of the main text, we showed that it is possible, even for small norms such
as ξ = 2× 10−3 to scale the scene to be 5% or 10% closer or farther with small error. In this section,
we demonstrate that it is possible to scale the scene by larger amounts (up to 30% closer or farther).
Fig. 4 shows that with ξ = 2 × 10−3, it is only able to scale the up to 15% with reasonable error;
whereas perturbations with ξ = 5 × 10−3 can achieve this up to 20% closer or farther. However,
using larger norms (1 × 10−2 and ξ = 2 × 10−2), one can scale the scene up to 30% with small
errors (less than 5% ARE for ξ = 1× 10−2 and ≈ 1% ARE for ξ = 2× 10−2).

To see how far we can push for each upper norm, Fig. 9 shows various scales that each upper norm
is capable of achieving. We note that ξ = 2× 10−2, is still able to obtain less than 2% ARE when
scaling the scene by 45%; however, standard deviation starts to grow larger as the scaling increases.

6 Adversarial Attacks for Indoor Scenes

To show the applicability of the adversarial method on indoor scenes, we examine the adversarial
perturbations for Kinect Dataset NYU Depth V2 (NYU-V2) [8]. We tested the effectiveness of
adversarial perturbations on Virtual Normal Loss (VNL) [10] which is the state-of-the-art monocular
depth prediction method for NYU-V2, trained in the supervised setting.

6.1 Implementation Details

NYU-V2 consists of 1449 RGBD images gathered from a wide range of buildings, comprising 464
different indoor scenes across 26 scene classes. The images were hand-selected from 435,103 video
frames, to ensure diversity. 1449 labeled samples are split into 795 training and 654 test images.

In the method proposed by [10], a 3D point cloud is reconstructed from the estimated depth map.
Then, three non-colinear points are randomly sampled with large distances to form a virtual plane. The

4

(a) (b) (c) (d)

Figure 6: Indoor qualitative results. From left to right: (a) horizontal flip, (b) vertical flip, (c) scale
10% closer and (d) scale 10% farther. From top to bottom: RGB, noise, original disparity, disparity
prediction for the perturbed image.

deviation between ground truth and prediction for the direction of the normal vector corresponding
to the plane is penalized. The pre-trained ResNeXt-101 [9] model on ImageNet [2] is used as the
backbone architecture. During training, images are cropped to the size 384×384 for NYU-V2. We
use the same image resolution for our experiments. The training set is randomly sampled from 29K
images of the raw unlabeled training set.

The time it takes to forward an image with this method is ≈ 0.15 seconds (≈ 7 times more than
Monodepth2). Due to computational limitations, we choose the first 20 images out of 654 images of
the test split for our experiments. We run SGD for 1000 steps. The learning rate is kept at 10.0 for
the entire optimization.

6.2 Scaling and Symmetrically Flipping the Scene

In Fig. 5, we compare the performance for different target depth maps: scaling the scene by ±10%,
horizontal and vertical flipping. Unlike outdoor case (KITTI), in the indoor (NYU-V2) horizontal
flipping is a harder task than vertical flipping. Achieving a vertically flipped scene was expected to
be simpler as layouts of indoor scenes are more diverse. Hence, the depth network does not overfit to

5

a particular layout type e.g. the one in which there are large depth values only at the top of the image.
Horizontal flipping being relatively harder for indoor scenes can be explained by the large divergence
between the depth distributions of the original predictions and the target depths. The reason is that
for the indoor scenes, most scenes are not symmetric in the horizontal direction, unlike the outdoor
driving scenario where the left and right parts of the scene from the ego-view are usually symmetric.

Since [10] normalizes images with the deviation of the dataset which approximately scales the image
by 5, it also effectively scales the noise with the same deviation. But, since the relative norm is still
the same, we use the same norm values ξ ∈ {2×10−3, 5×10−3, 1×10−2, 2×10−2} when plotting
the ARE in Fig. 5.

In Fig. 6, we present qualitative results for NYU-V2 for ξ = 2× 10−2. Small, white borders around
RGB images exist in the raw dataset. For all the tasks, including vertical flip, adversarial perturbations
manage to fool the model to predict the target depth with small errors. For horizontally flipped target
depth (a), predictions have more artifacts than vertical flipped depth (b) and scaled depths (c,d).

7 Linear Operations

Figure 7: Disparity for x+ γv(x) where γ is 0.0, 0.25, 0.5, 0.75, 1.0 from top to bottom. v(x) is
calculated for dt = fliph(fd(x)). So, the top is the original disparity map while bottom most is the
flipped one. In between, portions of the scene are flipped smoothly.

Figure 8: (1st row) left to right: RGB, sum of noises. (2nd row) left to right: original disparity,
disparity when two noises v1(x) + v2(x) are added to the image. (3rd row) left to right: noise
for 10% closer, noise for 10% farther. (4th row): Disparity predictions for the images perturbed
with the noises in the 3rd row. When added, two noises cancel each other’s effect: the scale for
fd(x+ v1(x) + v2(x)) is close to the original one fd(x).

To better understand how predictions of the depth network changes within a ball of small radius, we
examine the effect of linear operations on perturbations. Specifically, we visualize the predictions
for the scaled perturbations and for the perturbations which we get after summing two perturbations
calculated for two different target depth maps.

6

Figure 9: ARE with various upper norm ξ for scaling Monodepth2 predictions. This time error
is plotted for large scale ratios 15%, 20%, 25% and 30% (up to 45% for larger ξ), for scaling both
closer and farther, showing the limitations of each norm for the scaling task. While ARE is still
relatively small for larger norms, standard deviation grows larger – meaning the perturbations can no
longer scale the scene consistency with low error.

Figure 10: Additional examples of failure cases for vertical flip. While adversarial perturbations
with ξ = 2× 10−2, can fool Monodepth2 to predicted scenes that are scaled by large amounts, and
horizontally flipped. They cannot cause the network to vertically flip the scene, leaving behind cars
and roads as artifacts.

In Fig. 7, we take the perturbation v(x), which we calculated to horizontally flip the prediction
for the given image, and we visualize the prediction of the network for x + γv(x) where γ ∈
{0.0, 0.25, 0.5, 0.75, 1.0}. As can be seen, between γ = 0 and γ = 1, the scene is smoothly flipped.
This implies that the adversarial perturbations can be used to control the depth prediction in a
disentangled way. In other words, one causal factor (e.g. horizontal orientation) of the prediction can
be independently controlled by tweaking γ only, keeping everything else the same.

As observed before, noise is small for the white regions. See the third column, where there is a gray
rectangle in the noise corresponding to the white region of the truck. We speculate the reason behind
this phenomenon as the white color being on the border of the support of RGB images. But, the
noise is still large for black regions which are at the other extreme of the support (see perturbations
corresponding to black vehicles). So, we left further understanding of this phenomenon as future
work.

In Fig. 8, we take v1(x) and v2(x) which are optimized to scale the scene to 10% closer and 10%
farther. Then, visualize the summed perturbation, v(x) = v1(x) + v2(x) and the prediction for
x+ v(x). As can be seen, two noises cancel each other: ||v1(x)|| ≈ ||v2(x)|| � ||v1(x) + v2(x)||.
Furthermore, the prediction for the image perturbed with the summed noise is close to the original
prediction: fd(x) ≈ fd(x + v1(x) + v2(x)). This shows that two perturbations with inverse
functionalities can neutralize their effects when applied together.

8 Failure Cases

Fig. 9 shows the absolute relative error (ARE) with respect to the target scaling factor for each upper
norm. As we can see, for smaller norms of 2× 10−3 and 5× 10−3, the perturbations are limited to
scaling the scene by ≈ 15% and ≈ 20%, respectively. Scaling factors higher than such increases the
ARE by ≈ 4% for every 5% increase in scaling factor, signaling the limit for these norms. For larger
norms of 1× 10−2 and 2× 10−2, the perturbations can afford to scale the scene by a much larger
factor. For ξ = 1 × 10−2, perturbations can scale the scene by as much as 30% closer and farther

7

less than 5% error. Whereas, for ξ = 1× 10−2, perturbations can scale the scene up to ±45% with
less than 2% ARE. However, while large scaling still as a low ARE, the standard deviation for larger
norms increases drastically showing that it can no longer consistently scale the scene.

While for smaller scales (e.g. ±5, ±10) the ARE and amount of noise required is approximately the
same (see Sec. 4.1, main text), suggesting similar difficulty levels. As we plot the errors for larger
scales in Fig. 9, scaling the scene farther generally yields lower error than scaling the scene closer.

Fig. 10 shows additional examples of failure cases for vertical flip. While we have shown in the main
paper as well as Sec. 5 and 9 that it is possible to manipulate the scene with small norm perturbations,
we show here that perturbations cannot fool a network into vertically flipping the scene.

8

9 Additional Results on Outdoor Scenarios

In this section, we show (i) side by side visualization of the perturbations required to scale the
scene, (ii) additional visualizations of perturbations to horizontally and vertically flip the scene, (iii)
quantitative results on targeted attacks to semantic categories and (iv) qualitative results on targeted
attacks to instances.

9.1 Scaling the Scene

Figure 11: Visually imperceptible perturbations v(x), with ξ = 2× 10−2, can fool Monodepth2 to
predicted scenes that are 5% or 10% closer and also 5% or 10% farther.

Here, we show qualitative results for the task of scaling the scene (Sec. 4.1, main text) by a factor of
1+α where α ∈ {−0.10,−0.05,+0.05,+0.10}. As seen in Fig. 11, the perturbations are successful
in fooling state-of-the-art monocular depth prediction method, Monodepth2 [5], into predicting the
scene 5% or 10% closer and also 5% or 10% farther. Additionally, the perturbations are concentrated
in similar regions for scaling the scene 5% or 10% closer and for 5% or 10% farther as well. As
noted in the main text, the amount of noise required for scaling the scene by ±5% are approximately
the same, as is the amount for scaling the scene by ±10%. This is visible in Fig. 11.

9.2 Symmetrically Flipping the Scene

In Sec. 4.2 and Fig. 3 in the main text, we demonstrated that adversarial perturbation can cause a
monocular depth prediction network to predict a horizontally or vertically flipped scene. Here, we
show additional qualitative results on the horizontal and vertical flipping tasks in Fig. 12 and Fig. 13.

9

Figure 12: Additional examples of horizontal flip. Adversarial perturbations with ξ = 2× 10−2, can
fool Monodepth2 to predicted scenes that horizontally flipped.

Figure 13: Additional examples of vertical flip. Adversarial perturbations with ξ = 2× 10−2, can
fool Monodepth2 to predicted scenes that vertically flipped. Even in these successful examples, there
are still artifacts (ripples, wavy-ness) in the output.

We note that perturbations can cause the network to predict a horizontally flip scene, they have trouble
fooling the network to predict a vertically flipped scene. This is unlike our findings in the indoor
scenario (Sec. 6) as seen in Fig. 6 and 5. Fooling the network to vertically flip the scene is in fact
easier than fooling it to horizontally flip the scene. This confirms the biases (roads on bottom, sky on
top) that the network learned from the outdoor dataset that are not present in the indoor dataset.

9.3 Category Conditioned Scaling

In Sec. 5.1 and Fig. 5 of the main text, we showed category specific attacks to scale all objects belong-
ing a given category to be a factor of 1+α closer or farther where α ∈ {−0.10,−0.05,+0.05,+0.10}.
Here, we provide performance, measured in ARE, of adversarial perturbations crafted for each cate-
gory. We use the same convention for grouping different classes into categories as the Cityscapes
dataset [1], with the exception of the “Human” category, which includes the bicycles that the bikers
are riding.

Fig. 14 shows a comparative study between different categories. Not all categories are equally easy
to be fooled by the perturbations, some are more robust to adversarial attacks than others. As seen in
Fig. 14, each category exhibits a different level of robustness to adversarial noise – “Human” and
“Traffic” categories are the hardest to fool, “Construction”, “Vehicle” and “Flat” are more susceptible,
and “Sky” and “Nature” are the easiest to attack. Plots are cropped at the maximum error across
different categories to enable comparison of difficulty in fooling different categories. We note that

10

attacking localized regions in the scene is considerably harder than attacking the entire scene. Fig. 4
shows that perturbations can attack the entire scene with small errors across various norms while
Fig. 14 shows that, even with large norms, there are still errors (≈ 2% to 6% ARE). We show
visualizations for the “Construction”, “Nature”, and “Vehicle” categories in Fig. 15, 16, and 17
respectively.

Figure 14: ARE for scaling different categories closer and farther. From top to bottom: “Con-
struction”, “Flat”, “Human”, “Nature”, “Sky”, “Traffic”, “Vehicle”. From left to right: 10% closer,
5% closer, 5% farther, 10% farther. Y-axis is kept the same for the same scale, for making the
comparison across categories possible. It is easier to fool the network to predict vehicle and nature
categories closer and farther than is to fool human and traffic categories.

11

Figure 15: Examples of targeted attacks on regions belonging to “Construction” category.

Figure 16: Examples of targeted attacks on regions belonging to “Nature” category.

Figure 17: Examples of targeted attacks on regions belonging to “Vehicle” category.

12

Figure 18: Additional examples of human removal. Targeted adversarial perturbations can remove
humans from the predicted scene. Rightmost panel shows that we can target multiple humans and
remove them from the scene without affecting the remaining pedestrian on the right.

Figure 19: Examples of vehicle removal. Targeted adversarial perturbations can remove vehicles
from the predicted scene. Rightmost panel shows that we can target a truck and a car on the right side
and remove them. Note that the cars in the middle of the road still remain.

9.4 Instance Conditioned Targeted Attacks

In Sec. 5.2 and Fig. 6 in the main text, we show that, when given instance segmentation, adversarial
perturbations can target specific instances and remove them from the scene and thus causing unforseen
consequences. Fig. 18 shows additional examples of removing humans from the scene and Fig. 19
demonstrates that it is possible to remove vehicles from the scene as well. In the rightmost panel
of Fig. 18, we show that it is possible to remove some pedestrians from the scene without affecting
others. Similarly, in the rightmost panel of Fig. 19, we removed a truck and a car on the right side
and left the cars in the center untouched – leaving this as still a plausible highway driving scenario.

In Sec. 5.4 and Fig. 7 in the main text, we show that perturbations can move an instance to another
location in the scene (requires removing the instance from its original location and creating it in the
new location). In this section, we give more visuals for the perturbations used for moving an instance
(e.g. vehicle, pedestrian) horizontally or vertically in the image space while keeping the rest of the
scene unchanged.

Fig. 20 shows that perturbations can fool a network to move the target instance by ≈ 8% across the
image in the left and right directions. Furthermore, Fig. 21 shows that perturbations can move select
instances by ≈ 42% in the upward direction, creating the illusion that there are “flying vehicles” in
the scene. We note that in both cases, the perturbations are concentrated on the instance and the region

13

Figure 20: Move instance horizontally. Selected instance is moved by ≈ 8% in left and right
directions while rest of the scene is preserved. Noise and disparity for both directions are given. We
note that the noise is concentrated around the targeted instance and the region to which the instance
is moved.

Figure 21: Flying vehicles. Selected vehicle is moved by ≈ 42% in the vertical direction while
rest of the scene is preserved. We note that the noise is generally concentrated around the targeted
instance and the region to which the instance is moved.

to which the instance is moved. For example, when moving a vehicle right or left, the corresponding
perturbations also move right or left.

14

References
[1] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., and

Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. In Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[2] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee.

[3] Eigen, D. and Fergus, R. (2015). Predicting depth, surface normals and semantic labels with a common
multi-scale convolutional architecture. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2650–2658.

[4] Godard, C., Mac Aodha, O., and Brostow, G. J. (2017). Unsupervised monocular depth estimation with
left-right consistency. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 270–279.

[5] Godard, C., Mac Aodha, O., Firman, M., and Brostow, G. J. (2019). Digging into self-supervised monocular
depth estimation. In Proceedings of the IEEE International Conference on Computer Vision, pages 3828–
3838.

[6] Guizilini, V., Ambrus, R., Pillai, S., Raventos, A., and Gaidon, A. (2020). 3d packing for self-supervised
monocular depth estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2485–2494.

[7] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[8] Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). Indoor segmentation and support inference from
rgbd images. In European conference on computer vision, pages 746–760. Springer.

[9] Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1492–1500.

[10] Yin, W., Liu, Y., Shen, C., and Yan, Y. (2019). Enforcing geometric constraints of virtual normal for depth
prediction. In Proceedings of the IEEE International Conference on Computer Vision, pages 5684–5693.

15

	Summary of Contents
	Robustness of the Targeted Attacks Against Defense Mechanisms
	Defense through Gaussian Blurring
	Defense through Adversarial Training

	Additional Implementation Details for Outdoor Scenario
	Hyper-parameters
	Monodepth, Monodepth2, and PackNet

	Imperceptibility
	Scaling with Larger Factors
	Adversarial Attacks for Indoor Scenes
	Implementation Details
	Scaling and Symmetrically Flipping the Scene

	Linear Operations
	Failure Cases
	Additional Results on Outdoor Scenarios
	Scaling the Scene
	Symmetrically Flipping the Scene
	Category Conditioned Scaling
	Instance Conditioned Targeted Attacks

