
Supplementary Material
A Proofs

A.1 Proof of Theorem 1.

The proof for the first part follows from [49], which showed that if the constraint set is a k-extendible
system, then the greedy algorithm can find a 1

k -approximate solution. So it suffices to check that
A1+2+3
◦ is 2-extendible.

Let T be a finite set and L be a collection of subsets of T . Then (T,L) is 2-extendible if

• For all C ⊆ D, if D ∈ L then C ∈ L;
• Suppose C ⊆ D ∈ L, and x be such that x /∈ C and C ∪ {x} ∈ L. Then there exists
Y ⊆ D\C such that |Y | ≤ k and D\Y ∪ {x} ∈ L.

Consider the obvious bijection between V ∈ A1+2+3
◦ and a graph of n nodes where two different

nodes i and j are connected by an undirected edge if, and only if, (Xji =)Xij = 1. So let T be the
set of all possible (non-self) undirected edges, and L be the set of undirected graphs with at most
δg edges and each node has degree at most δl. Clearly such (T,L) satisfies the first condition. To
check the second condition, let x be an edge (i, j). If x ∈ D, then the condition holds trivially with
Y = ∅. Otherwise, x /∈ D, hence x /∈ C. Note that the degree of i and j in the graph C must be
strictly less than δl, because otherwise C ∪ {x} would not be in L (i.e., not valid). If the degree of
i in D is δl, then we can find an edge e1 ∈ D\C that is incident to i, and add e1 to Y . Similarly if
the degree of j in D is δl, then we can find an edge e2 ∈ D\C that is incident to j, and add e2 to Y .
Clearly |Y | ≤ 2, Y ⊆ D\C, and D\Y ∪ {x} ∈ L.

To prove the second part, note by convexity, F (A) = F ◦(A) ≥ F ◦(Zt) + tr((A−Zt)>∇F ◦(Zt)).
Therefore

min
A∈A

F (A) ≥ F ◦(Zt) + tr(R>Zt)−max
A∈A

tr(R>A), where R = −∇F ◦(Zt). (26)

If the PO can be solved exactly, then the right-hand side can be evaluated exactly, leading to a
slightly tighter certificate than F ◦(Zt). However, if the PO is not tractable, then let V ∗ be the result
returned by the greedy algorithm, and it follows from Theorem 1 that

max
A∈A1+2+3

tr(R>A) = max
V ∈A1+2+3

◦

tr(R>((−2Aori + E) ◦ V +Aori)) (27)

≤ 2 tr(J>V ∗) + tr(R>Aori), where J = R ◦ (−2Aori + E). (28)

Plugging it into (26) and we get a feasible certificate, though at a price of 2.

A.2 Representing coA1 ∩ coA2 ∩ A3 by linear inequalities.

We first show that

coD = {z ∈ [0, 1]n : ‖z − α‖1 ≤ δl} , where D := {z ∈ {0, 1}n : ‖z − α‖1 ≤ δl} . (29)

Clearly, the right-hand side subsumes D and is convex. Therefore it subsumes coD. To show
the converse direction, it suffices to show that for any γ ∈ Rn, maxz∈z∈[0,1]n:‖z−α‖1≤δl γ

>z can
be attained at an integral solution (hence in D). To this end, without loss of generality, suppose
α1 = . . . = αm = 0 and αm+1 = . . . = αn = 1, where m ∈ {0, 1, . . . , n}. Then ‖z − α‖1 ≤ δl
can be written as

∑m
i=1 zi−

∑n
i=m+1 zi ≤ δl−n+m. So this linear inequality, along with zi ≤ 1,

can be written as Pz ≤ (1, . . . , 1, δl − n+m)>, where

P :=

1
1

1
1

1
1

1 . . . 1 −1 . . . −1

 ∈ R(n+1)×n. (30)

13

Here the last row has m ones, followed by n−m copies of−1. Now we can partition the rows of P
into two groups R1 and R2, where R1 consists of the first m rows, and R2 consists of the remaining
n−m+ 1 rows. Now obviously each column contains at most two nonzero entries. For the first m
columns, the two nonzero entries have the same sign, with one belonging to R1 and the other to R2.
For the last n −m + 1 columns, both the 1 and −1 belong to R2. So P is totally unimodular [50].
Finally noting that δl − n+m is integral, there must be an optimal solution that is integral.

B ADMM Properties

Although ADMM is not guaranteed to find the global optimum, the analogy with convex ADMM
suggests that it may well minimize F (A) approximately. This is verified in our experiment, and it
trivially provides an upper bound for F (A) under A ∈ A1+2+3.

In practice, we can add additional constraints to B in the splitting formula (7), hoping that the
overlap of constraints with A can help accelerate convergence. For example, if we replace δ(B ∈
A3) by δ(B ∈ A2+3), then the update of Bt in (10) still admits a closed form because the objective
is linear in B (note x2 = x for x ∈ {0, 1}).
In particular, since B must be symmetric, the linearity of the objective allows it to be written as
tr(Q>B) for some symmetric matrix Q. So we only need to sort the entries {Qij : i < j} in an
ascending order. If there are at least δg negative numbers in it, then take the first δg indices and set
their corresponding entries inB to 1, with the rest set to 0. If there are less than δg negative numbers,
then find their indices and set the corresponding entries in B to 1. Finally mirror the 1’s to the lower
triangle Overall, the computational cost is O(n2 log n).

Similarly, to optimize F (A) over A1+3 and A2+3, simply use δ(A ∈ A1) + δ(B ∈ A1+3) and
δ(A ∈ A2) + δ(B ∈ A2+3), respectively. In both cases, the optimization in A is over simple
constraints, while that over B can be done as above.

To further improve the solution, we also applied local adjustment by looping over:

Pruning: if removing an edge can improve F , then pick one that improves F best.

Adding: if the local/global budget allows, then add an edge that best improves F .

Replacing: If removing an edge and adding a new one improves F , then find the substitution that
best improves F while respecting the local budgets

The process can be terminated if no more change is made to the graph in the loop.

C Algorithmic Details

C.1 Optimizing fi(Ai:) over Pi := {z ∈ {0, 1}n : zi = 1,
∥∥z −Aorii: ∥∥1

= j}

Recall from (3) that fi(Ai:) = αiσ
(

(Âi:1)−1Âi:XW
)

(U:y − U:c). When σ is identity, we can

write it as fi(Ai:) = (Âi:1)−1Âi:π for some vector π. Denote a = (Aorii:)> and let vk encode
whether Aik changes upon Aoriik (1 for true and 0 for false). Then A>i: = v+ a− 2a ◦ v. Noting that
1>v = j, the optimization can now be written as

min
v
f(v) =

β>v + c1
a>v + c2

, s.t. v ∈ {0, 1}n, 1>v = j, vi = 0, (31)

for some vector β and scalar c1, c2. Now we only need to enumerate all possible values of s := a>v
from 0 to min(j,1>a) in the denominator. Let I+ := {k ∈ [n] : ak = 1} and I− = [n]\({i} ∪ I+).
Then it is trivial to optimize the numerator under a>v = s by computing

min
vk:k∈I+

∑
k∈I+

βkvk, s.t. vk ∈ {0, 1},
∑
k∈I+

vk = s, (32)

min
vk:k∈I−

∑
k∈I−

βkvk, s.t. vk ∈ {0, 1},
∑
k∈I−

vk = j − s. (33)

14

Both can be computed by sorting {βk : k ∈ I+} and {βk : k ∈ I−}, and this sorting only needs to
be done once (and be used for all values of s). So the overall complexity of optimizing fi(Ai:) over
Pi is O(n log n).

C.2 Lower and upper bound for ReLU approximation

Both l and u of the j-th entry of Âi:XW can be easily estimated under
∥∥Ai: −Aorii: ∥∥1

≤ δl. Let
V = |Ai: − Aorii: |, so that Vj = 0 if Ai: makes no change to Aoriij , and Vj = 1 otherwise (adding or
removing an edge). Then

l = min
‖Ai:−Aorii: ‖1≤δl

Ai:(XW):j + (XW)i,j (34)

= min
1>V≤δl

(2Aorii: − 1) ◦ (−2V > + 1) + 1

2
(XW):j + (XW)i,j (35)

= min
1>V≤δl

[(1− 2Aorii:) ◦ (XW)>:j]V +Aorii: (XW):j + (XW)i,j (36)

Now the detailed algorithm can be derived and is presented in Algorithm 3.

Algorithm 3: l and u of the j-th entry of Âi:XW

1 Initialize V l = V u = 0 and set J = (1− 2Aorii:) ◦ (XW)>:j .
2 Sort the indices I := {1, . . . , n} in an ascending order of J .
3 Let k = 1

4 while J [I[k]] < 0 and 1>V l < δl and 1>V l < δg do
5 If I[k] 6= i, set V l[I[k]] = 1
6 k = k + 1

7 Return V l

8 l = [(1− 2Aorii:) ◦ (XW)>:j]V
l +Aorii: (XW):j + (XW)i,j

9 Let k = n

10 while J [I[k]] > 0 and 1>V u < δl and 1>V u < δg do
11 If I[k] 6= i, set V u[I[k]] = 1
12 k = k − 1
13 Return V u

14 u = [(1− 2Aorii:) ◦ (XW)>:j]V
u +Aorii: (XW):j + (XW)i,j

C.3 Derivative of (25) in α.

Note we can change variable by θ = |w − Aorii: |, so that θj = 0 if w makes no change to Aoriij ,
and θj = 1 otherwise (adding or removing an edge). Then w = 1

2 [(2Aorii: − 1) ◦ (−2θ + 1) + 1].
So 1>w = α can be translated into a linear constraint on θ, which we denote as β>θ = ηα.
Now w ∈ coPi is equivalent to θj ∈ [0, 1] and 1>θ ∈ [0, δl]. Write out the Lagrangian for the
minimization over w:

J(α) := min
θ:1>θ≤δl,β>θ=ηα,θj∈[0,1]

(α+ 1)−1κ(θ)− γ>θ (37)

= min
θ

max
λ≥0,µ,ρj≥0,ξj≥0

(α+ 1)−1κ(θ)− γ>θ + λ(1>θ − δl) + µ(β>θ − ηα) (38)

+
∑
j

ρj(θj − 1)−
∑
j

ξjθj . (39)

Taking partial derivative with respect to θj , we have

(α+ 1)−1∇jκ(θ)− γj + λ+ µβj + ρj − ξj = 0. (40)

If θj ∈ (0, 1), then ρj = ξj = 0, and

(α+ 1)−1∇jκ(θ)− γj + λ+ µβj = 0. (41)

15

So as long as there are two indices j which satisfy θj ∈ (0, 1), we can solve for (λ, µ). If 1>θ < δl,
we can further simplify by λ = 0. In practice, we can collect all such j and find the least square
solution of (λ, µ). With that, we can compute J ′(α) = −κ(θ)(α+ 1)−2 − µ ∂

∂αηα.

D Extension to Multiple Hidden Layers

As noted by [1], GCNs do not benefit from more than two hidden layers. For completeness, we
sketch here how our approach can be extended to two hidden layers. In this case

F (A) =
∑n

i=1
αiLi:σ(LXW)(U:y − U:c)︸ ︷︷ ︸

=:fi(Ai:)

, where L := D̂−1Â. (42)

F is quadratic in L when σ is the linear activation. When σ is ReLU, we can use the double linear
approximation as in [26], and it will again make F quadratic in L. As a result, in both cases, the
second-order Taylor expansion will be exact

F (L) = F (Lori) + tr((L− Lori)>∇F (Lori)) + 1
2 vec(L− Lori)> ·H · vec(L− Lori), (43)

where we vectorized Lori so that H := ∇2F (vec(L)) is a n2-by-n2 matrix, which is in fact inde-
pendent of L because F is quadratic in L. Letting

σF := max{vec(V)> ·H · vec(V) : V ∈ Rn×n, ‖V ‖F ≤ 1}, (44)

then

F (L) ≥ F (Lori) + tr((L− Lori)>∇F (Lori))− σF
2

∥∥L− Lori∥∥2

F
. (45)

To minimize the right-hand side of (45), notice that all terms linear in L can be dealt with in the same
way as in one-hidden-layer GCNs. The only new term is ‖L‖2F , which is equal to

∑
i(A
>
i:1)−1.

Since the dynamic programming in Algorithm 1 is based on A>i:1 (see Appendix C), it can be easily
extended to handle the extra terms arising from ‖L‖2.

The bound in (45) can be tightened in two major ways:

1) The norm can be refined. For example, instead of Frobenious norm, we can adopt∥∥L− Lori∥∥
2,∞ := maxi

∥∥Li: − Lorii: ∥∥2
, which is equal to maxi(A

>
i:1)−1/2. The major benefit is

that this norm cannot be greater than 1, so squaring it in (45) is indeed a reduction. On the flip side,
this new norm will complicate the computation of σF , so we propose the following semi-definite
relaxation which offers a log n-approximate solution.

Denote X = vec(V)vec(V)> ∈ Rn2×n2

. Then vec(V)> ·H ·vec(V) = tr(HX) and the constraint
that ‖V ‖2,∞ ≤ 1 implies

n∑
i=1

X(i−1)n+t,(i−1)n+t ≤ 1, ∀t ∈ [n]. (46)

So σF is upper bounded by an SDP relaxation on X:

max
X

tr(HX), s.t. X � 0,

n∑
i=1

X(i−1)n+t,(i−1)n+t ≤ 1, ∀t ∈ [n]. (47)

Then by

A. Nemirovski, C. Roos, and T. Terlaky. On maximization of quadratic form over intersection of
ellipsoids with common center. Math. Program. Ser. A, 86:463–473, 1999.

the optimal SDP objective is at most 2 log(2n) times of the true value of σF under ‖·‖2,∞.

2) The domain of v considered in (44) only needs to cover the subset of the unit ball (under the
above refined norm) that is attainable by L−Lori for some A ∈ A. It can be much smaller than the
value of σF computed from the unit ball.

16

E Experiment

Here we provide detailed experiments for all datasets. Although part of the results for Enzymes
have been shown in Section 5, we will further provide the results when the attack strength is s = 4
at testing. The observations and conclusions from all datasets are similar to what is presented in
Section 5. The properties of all datasets are summarized in Table 1.

Table 1: Datasets for used in experiment.

dataset #graphs #labels # node features median #node median #edge

Enzymes 600 6 21 32 120

NCI1 4110 2 37 27 58

PROTEINS 1113 2 4 26 98

MUTAG 188 2 7 17 38

E.1 Comparing activation and pooling functions

We first show in Table 2 that the performance of (linear, ReLU) activation, in conjunction with
various pooling methods, can be quite mixed. No combination is uniformly the best. In particular,
we considered average pooling (avg), max pooling (max), and attention pooling with

• att_node: the attention weights α were trained as functions of node features only;
• att_topo: the attention weights α were trained also using the graph Laplacian [51].

dataset activation
pooling

avg max att_topo att_node

Enzymes
ReLU 31.6 ± .5 29.8 ± .4 29.5 ± 1.1 19.9 ± 1.3

Linear 29.1 ± 1.7 30.3 ± .0 30.1 ± .8 21.3 ± 4.4

NCI1
ReLU 65.0 ± 0.3 62.5 ± .0 67.6 ± .2 63.0 ± .1

Linear 58.3 ± .0 62.5 ± .3 61.4 ± .0 63.2 ± .2

PROTEINS
ReLU 67.4 ± 1.2 66.9 ± 1.6 66.0 ± .0 64.9 ± .0

Linear 64.1 ± 3.3 69.5 ± .4 65.5 ± .1 62.9 ± 2.3

MUTAG
ReLU 68.8 ± 1.5 66.1 ± .8 70.2 ± .4 73.3 ± 3.5

Linear 65.3 ± .0 65.7 ± .8 69.4 ± 2.0 74.1 ± 2.0

Table 2: Comparison of graph classification accuracy under various activations and pooling func-
tions. The best result of each row is marked in boldface. 30% data were used for training, 20% for
validation, and 50% for testing. There is one hidden layer with d′ = 64 hidden nodes. All settings
were run for 10 times to obtain mean and standard deviation.

As a result, it is meaningful and useful to study the robustness certificate and attack for all combina-
tions of activation and pooling.

17

E.2 More results on Enzymes

NR S=2
R S=2
NR S=3
R S=3
NR S=4
R S=4

0 5 10 15 20
g

50

60

70

80

90

100

%
 o

f g
ra

ph
s

(a) Linear activation

0 5 10 15 20
g

50

60

70

80

90

100

%
 o

f g
ra

ph
s

(b) ReLU activation

Figure 7: Fraction of graphs certified robust with s ∈ {2, 3, 4}, under robust training (R) and non-
robust training (NR). Dataset: Enzymes.

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(a) s = 2

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(b) s = 3

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(c) s = 4

Figure 8: Fraction of graphs that are certified as robust (lower green area) and vulnerable (upper
red area, percentage = 100 − y-axis. Linear activation. All are under robust training. Dataset:
Enzymes.

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(a) s = 2

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(b) s = 3

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(c) s = 4

Figure 9: Same as Figure 8, but using ReLU activation.

0 5 10 15 20
g

25.0

27.5

30.0

32.5

35.0

37.5

Ac
cu

ra
cy

 %

Dai et al. (R)
ADMM (R)
Dai et al. (NR)
ADMM (NR)

(a) s = 3

0 5 10 15 20
g

15

20

25

30

35

Ac
cu

ra
cy

 %

Dai et al. (R)
ADMM (R)
Dai et al. (NR)
ADMM (NR)

(b) s = 6

Figure 10: Test accuracy under various attacks, and robust training (R) or non-robust training (NR).
ReLU activation. Dataset: Enzymes.

18

E.3 More results on NCI1

NR S=2
R S=2
NR S=3
R S=3
NR S=4
R S=4

0 5 10 15 20
g

50

60

70

80

90

100

%
 o

f g
ra

ph
s

(a) Linear activation

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

(b) ReLU activation

Figure 11: Fraction of graphs certified robust with s ∈ {2, 3, 4}, under robust training (R) and
non-robust training (NR). Dataset: NCI1.

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(a) s = 2

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(b) s = 3

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(c) s = 4

Figure 12: Fraction of graphs that are certified as robust (lower green area) and vulnerable (upper
red area, percentage = 100 − y-axis. Linear activation. All are under robust training. Dataset:
NCI1.

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(a) s = 2

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(b) s = 3

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(c) s = 4

Figure 13: Same as Figure 12, but using ReLU activation.

0 5 10 15 20
g

20

40

60

Ac
cu

ra
cy

 %

Dai et al. (R)
ADMM (R)
Dai et al. (NR)
ADMM (NR)

(a) s = 3

0 5 10 15 20
g

20

40

60

Ac
cu

ra
cy

 %

Dai et al. (R)
ADMM (R)
Dai et al. (NR)
ADMM (NR)

(b) s = 6

Figure 14: Test accuracy under various attacks, and robust training (R) or non-robust training (NR).
ReLU activation. Dataset: NCI1.

19

In general, the gap for linear activation should be smaller than that for ReLU activation. This has
been the case for all datasets, except when s = 2 and 3 for NCI1 (Figure 12 and 13). Since the
convex envelop is still a lower bound of the true objective Fc(A), there could be exceptions in some
cases for some datasets.

20

E.4 More results on PROTEINS

NR S=2
R S=2
NR S=3
R S=3
NR S=4
R S=4

0 5 10 15 20
g

85

90

95

100

%
 o

f g
ra

ph
s

(a) Linear activation

0 5 10 15 20
g

50

60

70

80

90

100

%
 o

f g
ra

ph
s

(b) ReLU activation

Figure 15: Fraction of graphs certified robust with s ∈ {2, 3, 4}, under robust training (R) and non-
robust training (NR). Dataset: PROTEINS. In (a), all the three lines for NR certified 100% graphs
as robust for all δg .

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(a) s = 2

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(b) s = 3

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(c) s = 4

Figure 16: Fraction of graphs that are certified as robust (lower green area) and vulnerable (upper
red area, percentage = 100 − y-axis. Linear activation. All are under robust training. Dataset:
PROTEINS.

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(a) s = 2

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(b) s = 3

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(c) s = 4

Figure 17: Same as Figure 16, but using ReLU activation.

0 5 10 15 20
g

55.0

57.5

60.0

62.5

65.0

67.5

Ac
cu

ra
cy

 %

Dai et al. (R)
ADMM (R)
Dai et al. (NR)
ADMM (NR)

(a) s = 3

0 5 10 15 20
g

55.0

57.5

60.0

62.5

65.0

67.5

Ac
cu

ra
cy

 %

Dai et al. (R)
ADMM (R)
Dai et al. (NR)
ADMM (NR)

(b) s = 6

Figure 18: Test accuracy under various attacks, and robust training (R) or non-robust training (NR).
ReLU activation. Dataset: PROTEINS.

21

E.5 More results on MUTAG

NR S=2
R S=2
NR S=3
R S=3
NR S=4
R S=4

0 5 10 15 20
g

75

80

85

90

95

100

%
 o

f g
ra

ph
s

(a) Linear activation

0 5 10 15 20
g

40

60

80

100

%
 o

f g
ra

ph
s

(b) ReLU activation

Figure 19: Fraction of graphs certified robust with s ∈ {2, 3, 4}, under robust training (R) and
non-robust training (NR). Dataset: MUTAG.

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(a) s = 2

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(b) s = 3

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(c) s = 4

Figure 20: Fraction of graphs that are certified as robust (lower green area) and vulnerable (upper
red area, percentage = 100 − y-axis. Linear activation. All are under robust training. Dataset:
MUTAG.

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(a) s = 2

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(b) s = 3

0 5 10 15 20
g

0

20

40

60

80

100

%
 o

f g
ra

ph
s

Certifiably robust
Certifiably vulnerable

(c) s = 4

Figure 21: Same as Figure 20, but using ReLU activation.

0 5 10 15 20
g

40

50

60

70

Ac
cu

ra
cy

 %

Dai et al. (R)
ADMM (R)
Dai et al. (NR)
ADMM (NR)

(a) s = 3

0 5 10 15 20
g

40

50

60

70

Ac
cu

ra
cy

 %

Dai et al. (R)
ADMM (R)
Dai et al. (NR)
ADMM (NR)

(b) s = 6

Figure 22: Test accuracy under various attacks, and robust training (R) or non-robust training (NR).
ReLU activation. Dataset: MUTAG.

22

	Introduction
	Preliminaries
	Threat model, margin, and robustness certificate

	Certifying Robustness by Lagrange Duality
	Approximate certificates of robustness for A1+3, A2+3, and A1+2+3 via dualization
	Emprically characterizing the certificate's tightness: approximate attack by ADMM

	Certifying Robustness by Convex Envelope
	Convexification of A and its polar operators
	Convexification of F(A) for linear activation
	Convexification of F(A) for ReLU activation

	Experimental Results
	Proofs
	Proof of Theorem 1.
	Representing coA1 ∩coA2 ∩A3 by linear inequalities.

	ADMM Properties
	Algorithmic Details
	Optimizing fi(Ai:) over Pi := { z ∈{0,1}n: zi = 1, "026B30D z - Aorii:"026B30D 1 = j}
	Lower and upper bound for ReLU approximation
	Derivative of (25) in α.

	Extension to Multiple Hidden Layers
	Experiment
	Comparing activation and pooling functions
	More results on Enzymes
	More results on NCI1
	More results on PROTEINS
	More results on MUTAG

