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A Proof of Lemma 3

We prove Lemma 3 by providing a concrete CMDP example as shown in Figure 3. States s3, s4, and
s5 are terminal states with zero reward and utility. We consider non-trivial state s1 with two actions:
a1 moving ‘up’ and a2 going ‘right’, and the associated value functions are given by

V
⇡
r (s1) = ⇡(a2 | s1)⇡(a1 | s2)

V
⇡
g (s1) = ⇡(a1 | s1) + ⇡(a2 | s1)⇡(a1 | s2).

s1 s2 s3

s4 s5

(0, 0) (0, 0)

(0, 0)
(0, 1)

(0, 0)

(1, 1)

(0, 0)

Figure 3: An example of CMDP in the proof of Lemma 3 where V
⇡✓
r (s) is nonconcave and the set

{✓ 2 ⇥ |V ⇡✓
g (s) � b} is not convex. The pair (r, g) alongside the arrow depicts reward r and utility

g of taking an action at certain state.

We consider the following two policies ⇡(1) and ⇡
(2) using the softmax parametrization (5),

✓
(1) = (log 1, log x, log x, log 1)

✓
(2) = (� log 1,� log x,� log x,� log 1)

where the parameter takes form of (✓s1,a1 , ✓s1,a2 , ✓s2,a1 , ✓s2,a2) with x > 0.

First, we show that V ⇡
r is not concave. We compute that
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⇡
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Now, we consider policy ⇡
(⇣),

⇣ ✓
(1) + (1� ⇣) ✓(2) =

�
log 1, log
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x
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�
, log

�
x
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�
, log 1

�

for some ⇣ 2 [0, 1], which is defined on the segment between ✓
(1) and ✓

(2). Therefore,

⇡
(1)(a1 | s1) =

1

1 + x2⇣�1
, ⇡
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x
2⇣�1

1 + x2⇣�1
, ⇡
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x
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1 + x2⇣�1

V
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✓
x
2⇣�1
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◆2

, V
(⇣)
g (s1) =

1 + x
2⇣�1 + (x2⇣�1)2

(1 + x2⇣�1)2
.

When x = 3 and ⇣ = 1
2 ,
1
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which implies that V ⇡
r is not concave.

When x = 10 and ⇣ = 1
2 ,

V
(1)
g (s1) = V

(2)
g (s1) � 0.9 and V

( 1
2 )

g (s1) = 0.75

which shows that if we take constraint offset b = 0.9, then V (1)
g (s1) = V

(2)
g (s1) � b, and V ( 1

2 )
g (s1) <

b in which the policy ⇡
( 1
2 ) is infeasible. Therefore, the set {✓ |V ⇡✓

g (s) � b} is not convex.

B Proof of Lemma 4

The dual update is based on Lemma 1. Since �
?  (V ?

r (⇢)� V
⇡̄
r (⇢)) /⇠ with 0  V

?
r , V ⇡̄

r  1
1�� ,

we take projection interval ⇤ = [0, 2
(1��)⇠ ] such that upper bound 2

(1��)⇠ is such that 2
(1��)⇠ � 2�?.

We now verify the primal update. We expand the primal update in (7) into the following form,

✓
(t+1) = ✓

(t) + ⌘1F⇢(✓
(t))† ·r✓V

✓(t)

r (⇢) + ⌘1�
(t)
F⇢(✓

(t))† ·r✓V
✓(t)

g (⇢). (13)

We now deal with: F⇢(✓(t))† ·r✓V
✓(t)

r (⇢) and F⇢(✓(t))† ·r✓V
✓(t)

g (⇢). For the first one, the proof
begins with solutions to the following approximation error minimization problem:

minimize
w2R|S||A|

Er(w) := Es⇠ d
⇡✓
⇢ ,a⇠⇡✓(a | s)

h
(A⇡✓

r (s, a)� w ·r✓ log ⇡✓(a | s))2
i
.

Using the Moore-Penrose inverse, the optimal solution reads,
w

?
r = F⇢(✓)

†Es⇠ d
⇡✓
⇢ ,a⇠⇡✓(a | s)

⇥
r✓ log ⇡✓(a | s)A⇡✓,�

r (s, a)
⇤
= (1� �)F⇢(✓)

† ·r✓V
⇡✓,�
r (⇢)

where F⇢(✓) is the Fisher information matrix induced by ⇡✓. One key observation from this solution
is that w?

r is parallel to the natural PG direction F⇢(✓)† ·r✓V
⇡✓,�
r (⇢).

On the other hand, it is easy to verify that A⇡✓
r is a minimizer of Er(w). The softmax parametriza-

tion (5) implies that
@ log ⇡✓(a | s)

@✓s0,a0
= I{s = s

0} (I{a = a
0}� ⇡✓(a

0 | s)) (14)

where I{E} is the indicator function of event E being true. Thus, we have

w ·r✓ log ⇡✓(a | s) = ws,a �
X

a0 2A

ws,a0⇡✓(a
0 | s).

The above equality together with the fact:
P

a2A ⇡✓(a | s)A⇡✓,�
r (s, a) = 0, shows that Er(A⇡✓

r ) = 0.
However, A⇡✓

r may not be the unique minimizer. We consider the following general form of possible
solutions,

A
⇡✓
r + u, where u 2 R|S||A|

.

For any state s and action a such that s is reachable under ⇢, using (14) yields
u ·r✓ log ⇡✓(a | s) = us,a �

X

a0 2A

us,a0⇡✓(a
0 | s).

Here, we make use of the following fact: ⇡✓ is a stochastic policy with ⇡✓(a | s) > 0 for all actions a
in each state s, so that if a state is reachable under ⇢, then it will also be reachable using ⇡✓. Therefore,
we require zero derivative at each reachable state:

u ·r✓ log ⇡✓(a | s) = 0
for all s, a so that us,a is independent of the action and becomes a constant cs for each s. Therefore,
the minimizer of Er(w) is given up to some state-dependent offset,

F⇢(✓)
† ·r✓V

⇡✓
r (⇢) =

A
⇡✓
r

1� �
+ u (15)

where us,a = cs for some cs 2 R for each state s and action a.

We can repeat the above procedure for F⇢(✓(t))†r✓V
✓(t)

g (⇢) and show,

F⇢(✓)
† ·r✓V

⇡✓
g (⇢) =

A
⇡✓
g

1� �
+ v (16)

15



where vs,a = ds for some ds 2 R for each state s and action a.

Substituting (15) and (16) into the primal update (13) yields,

✓
(t+1) = ✓

(t) +
⌘1

1� �

⇣
A

(t)
r + �

(t)
A

(t)
g

⌘
+ ⌘1

⇣
u+ �

(t)
v

⌘

⇡
(t+1)(a | s) = ⇡

(t)(a | s)
exp

⇣
⌘1

1��

⇣
A

(t)
r (s, a) + �

(t)
A

(t)
g (s, a)

⌘
+ ⌘1

�
cs + �

(t)
ds

�⌘

Z(t)(s)

where the second equality also utilizes the normalization term Z
(t)(s). Finally, we complete the

proof by setting cs = ds = 0.

C Supporting Results from Optimization

We collect some optimization results from the literature for readers’ convenience.

It is noted that all these results hold for the parametric setting of (3) and (4) if the parametrized policy
class is complete, e.g., the closure of the softmax policy class (5). To rephrase them for our general
purpose, we recall the maximization problem (1),

maximize
⇡ 2⇧

V
⇡
r (⇢) subject to V

⇡
g (⇢) � b

in which we maximize over all policies and b 2 (0, 1/(1 � �)) with � 2 [0, 1). Let the optimal
solution be ⇡

? such that
V

⇡?

r (⇢) = maximize
⇡ 2⇧

{V ⇡
r (⇢) |V ⇡

g (⇢) � b }.

Let the Lagrangian be V
⇡,�
L (⇢) := V

⇡
r (⇢) + �(V ⇡

g (⇢)� b), where � � 0 is the Lagrange multiplier
or dual variable. The associated dual function is defined as

V
�
D(⇢) := maximize

⇡ 2⇧
V

⇡,�
L (⇢) := V

⇡
r (⇢) + � (V ⇡

g (⇢)� b)

and the optimal dual is �? = argmin�� 0 V
�
D(⇢),

V
�?

D (⇢) := minimize
�� 0

V
�
D(⇢)

We recall that the problem (1) enjoys strong duality under the Slater condition [36, Proposition 1].
Assumption 5 (Slater condition). There exists ⇠ > 0 and ⇡̄ such that V

⇡̄
g (⇢)� b � ⇠.

We use the shorthand notation V
⇡?

r (⇢) = V
?
r (⇢) and V

�?

D (⇢) = V
?
D(⇢) whenever it is clear from the

context.
Lemma 5 (Strong duality). [36, Proposition 1] If the Slater condition holds, then the strong duality

holds,

V
?
r (⇢) = V

?
D(⇢).

It is implied by the strong duality that the optimal solution to the dual problem: minimize�� 0 V
�
D(⇢)

is obtained at �?. Denote the set of all optimal dual variables as ⇤?.

Under the Slater condition, a useful property of the dual variable is that the sublevel sets are
bounded [7, Section 8.5]. Although our problem is nonconcave, we customize it as follows.
Theorem 5 (Boundedness of sublevel sets of the dual function). Let the Slater condition hold. Fix

C� 2 R. For any � 2 {� � 0 |V �
D(⇢)  C�}, it holds that

�  1

⇠

�
C� � V

⇡̄
r (⇢)

�
.

Proof. If � 2 {� � 0 |V �
D(⇢)  C�}, then,

C� � V
�
D(⇢) � V

⇡̄
r (⇢) + � (V ⇡̄

g (⇢)� b) � V
⇡̄
r (⇢) + � ⇠

where we utilize the Slater point ⇡̄ in the last inequality. We complete the proof by noting ⇠ > 0.

Corollary 1. If we take C� = V
?
r (⇢) = V

?
D, then ⇤? = {� � 0 |V �

D(⇢)  C�}. Thus, for any

� 2 ⇤?
,

�  1

⇠

⇣
V

⇡?

r (⇢)� V
⇡̄
r (⇢)

⌘
.
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Another useful theorem from the convex optimization [7, Section 3.5] is given as follows. It describes
that the constraint violation b� V

⇡
g (⇢) can be bounded similarly even if we have some weak bound.

We next state and prove it for our problem, which is used in our constraint violation analysis.
Theorem 6. Let the Slater condition hold and �

? 2 ⇤?
. Let C�? � 2�?

. Assume that e⇡ 2 ⇧ satisfies

V
?
r (⇢) � V

e⇡
r (⇢) + C�?

h
b� V

e⇡
g (⇢)

i

+
 �.

Then, h
b� V

e⇡
g (⇢)

i

+
 2�

C�?

where [x]+ = max(x, 0).

Proof. Let
v(⌧) = maximize

⇡ 2⇧
{V ⇡

r (⇢) |V ⇡
g (⇢) � b+ ⌧ }.

By the definition of v(⌧), we have v(0) = V
?
r (⇢). We note the proof of [36, Proposition 1] that v(⌧)

is concave. First, we show that ��
? 2 @v(0). By the definition of Lagrangian V

⇡,�
L (⇢) and the

strong duality,
V

⇡,�?

L (⇢)  maximize
⇡ 2⇧

V
⇡,�?

L (⇢) = V
?
D(⇢) = V

?
r (⇢) = v(0), for all ⇡ 2 ⇧.

Hence, for any ⇡ 2 {⇡ 2 ⇧ |V ⇡
g (⇢) � b+ ⌧}, we have

v(0)� ⌧�
? � V

⇡,�?

L (⇢)� ⌧�
?

= V
⇡
r (⇢) + �

?(V ⇡
g (⇢)� b)� ⌧�

?

= V
⇡
r (⇢) + �

?(V ⇡
g (⇢)� b� ⌧)

� V
⇡
r (⇢).

If we maximize the right-hand side of above inequality over ⇡ 2 {⇡ 2 ⇧ |V ⇡
g (⇢) � b+ ⌧}, then

v(0)� ⌧�
? � v(⌧) (17)

which show that ��
? 2 @v(0).

On the other hand, if we take ⌧ = e⌧ := �(b� V
e⇡
g (⇢))+, then

V
e⇡
r (⇢)  V

?
r (⇢) = v(0)  v(e⌧). (18)

Combing (17) and (18) yields
V

e⇡
r (⇢)� V

?
r (⇢)  �e⌧�?

.

Thus,
(C�? � �

?) |e⌧ | = ��
? |e⌧ |+ C�? |e⌧ |

= e⌧�? + C�? |e⌧ |

 V
?
r (⇢)� V

e⇡
r (⇢) + C�? |e⌧ | .

By our assumption and e⌧ =
⇥
b� V

e⇡
g (⇢)

⇤
+

,
h
b� V

e⇡
g (⇢)

i

+
 �

C�? � �?
 2�

C�?
.

D Proof of Theorem 1

We warm-up with an improvement lemma, stating a difference for two consecutive policies.

Lemma 6 (Non-monotonic Improvement). The iterates ⇡
(t)

generated by algorithm (8) satisfy

V
(t+1)
r (µ) � V

(t)
r (µ) + �

(t)
�
V

(t+1)
g (µ) � V

(t)
g (µ)

�
� 1� �

⌘1
Es⇠µ logZ

(t)(s) (19)

and Es⇠µ logZ(t)(s) � 0 for any initial state distributions µ, where notation d
(t+1)
µ means d

⇡(t+1)

µ .
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Proof. To prove our main inequality, we first apply the performance difference lemma as follows:

V
(t+1)
r (µ) � V

(t)
r (µ) =

1

1� �
E
s⇠ d(t+1)

µ ,a⇠⇡(t+1)(· | s)

h
A

(t)
r (s, a)

i

=
1

1� �
E
s⇠ d(t+1)

µ

"
X

a2A

⇡
(t+1)(a | s)A(t)

r (s, a)

#

=
1

⌘1
E
s⇠ d(t+1)

µ

"
X

a2A

⇡
(t+1)(a | s) log

✓
⇡
(t+1)(a | s)
⇡(t)(a | s)

Z
(t)(s)

◆#

� �
(t)

1� �
E
s⇠ d(t+1)

µ

"
X

a2A

⇡
(t+1)(a | s)A(t)

g (s, a)

#

=
1

⌘1
E
s⇠ d(t+1)

µ

h
DKL

⇣
⇡
(t+1)(a | s) k⇡(t)(a | s)

⌘i

+
1

⌘1
E
s⇠ d(t+1)

µ
logZ(t)(s)

� �
(t)

1� �
E
s⇠ d(t+1)

µ

"
X

a2A

⇡
(t+1)(a | s)A(t)

g (s, a)

#

� 1

⌘1
E
s⇠ d(t+1)

µ
logZ(t)(s)

� �
(t)

1� �
E
s⇠ d(t+1)

µ

"
X

a2A

⇡
(t+1)(a | s)A(t)

g (s, a)

#

=
1

⌘1
E
s⇠ d(t+1)

µ
logZ(t)(s) � �

(t)
⇣
V

(t+1)
g (µ) � V

(t)
g (µ)

⌘

where the first two equalities are clear from definitions, the third equality is due to the multiplicative
weights update in (8), the fourth equality utilizes the Kullback–Leibler divergence or relative entropy
between two distributions p, q: DKL(p k q) := Ex⇠ p log

p(x)
q(x) , we drop a nonnegative term in the

inequality, and the last equality is due to the performance difference lemma again. Finally, we obtain
the desired inequality by noting d

(t+1)
µ � (1� �)µ componentwise from (6).

It is easy to show that logZ(t)(s) � 0.

logZ(t)(s) = log

 
X

a2A

⇡
(t)(a | s) exp

✓
⌘1

1� �

⇣
A

(t)
r (s, a) + �

(t)
A

(t)
g (s, a)

⌘◆!

�
X

a2A

⇡
(t)(a | s) log

✓
exp

✓
⌘1

1� �

⇣
A

(t)
r (s, a) + �

(t)
A

(t)
g (s, a)

⌘◆◆

=
⌘1

1� �

X

a2A

⇡
(t)(a | s)

⇣
A

(t)
r (s, a) + �

(t)
A

(t)
g (s, a)

⌘

=
⌘1

1� �

X

a2A

⇡
(t)(a | s)A(t)

r (s, a) +
⌘1

1� �
�
(t)
X

a2A

⇡
(t)(a | s)A(t)

g (s, a)

= 0

In the above inequality, we apply the Jensen’s inequality to the concave function log(x). The last
equality is due to X

a2A

⇡
(t)(a | s)A(t)

r (s, a) =
X

a2A

⇡
(t)(a | s)A(t)

g (s, a) = 0.

Next, we prove the average difference to the optimal policy.

Lemma 7 (Bounded Average Performance). Let Assumption 1 hold. Fix T > 0, ⇢ 2 �S , ✓
(0) = 0,

and �
(0) = 0. Then the iterates ⇡

(t)
and �

(t)
generated by algorithm (8) satisfy

1

T

T�1X

t=0

�
V

?
r (⇢)�V

(t)
r (⇢)

�
+

1

T

T�1X

t=0

�
(t)
�
V

?
g (⇢)�V

(t)
g (⇢)

�
 log |A|

⌘1T
+

1

(1� �)2T
+

2⌘2
(1� �)3

.
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Proof. Since ⇢ is fixed, we unload notation d
⇡?

⇢ as d?. We first apply the performance difference
lemma as follows:

V
?
r (⇢) � V

(t)
r (⇢) =

1

1� �
Es⇠ d?

"
X

a2A

⇡
?(a | s)A(t)

r (s, a)

#

=
1

⌘1
Es⇠ d?

"
X

a2A

⇡
?(a | s) log

✓
⇡
(t+1)(a | s)
⇡(t)(a | s)

Z
(t)(s)

◆#

� �
(t)

1� �
Es⇠ d?

"
X

a2A

⇡
?(a | s)A(t)

g (s, a)

#

=
1

⌘1
Es⇠ d?

h
DKL

⇣
⇡
?(a | s) k⇡(t)(a | s)

⌘
�DKL

⇣
⇡
?(a | s) k⇡(t+1)(a | s)

⌘i

+
1

⌘1
Es⇠ d? logZ(t)(s) � �

(t)

1� �
Es⇠ d?

"
X

a2A

⇡
?(a | s)A(t)

g (s, a)

#

=
1

⌘1
Es⇠ d?

h
DKL

⇣
⇡
?(a | s) k⇡(t)(a | s)

⌘
�DKL

⇣
⇡
?(a | s) k⇡(t+1)(a | s)

⌘i

+
1

⌘1
Es⇠ d? logZ(t)(s) � �

(t)
⇣
V

?
g (⇢) � V

(t)
g (⇢)

⌘

(20)
where the second equality is due to the multiplicative weights update in (8), the third equality utilizes
the Kullback–Leibler divergence or relative entropy between two distributions p, q: DKL(p k q) :=
Ex⇠ p log

p(x)
q(x) , and the last equality is due to the performance difference lemma again.

According to Lemma 6, if we choose µ = d
?, then,

V
(t+1)
r (d?) � V

(t)
r (d?) + �

(t)
⇣
V

(t+1)
g (d?) � V

(t)
g (d?)

⌘
� 1� �

⌘1
Es⇠ d? logZ(t)(s). (21)

Therefore, we have

1

T

T�1X

t=0

⇣
V

?
r (⇢) � V

(t)
r (⇢)

⌘

=
1

⌘1T

T�1X

t=0

Es⇠ d?

h
DKL

⇣
⇡
?(a | s) k⇡(t)(a | s)

⌘
�DKL

⇣
⇡
?(a | s) k⇡(t+1)(a | s)

⌘i

+
1

⌘1T

T�1X

t=0

Es⇠ d? logZ(t)(s) � 1

T

T�1X

t=0

�
(t)
⇣
V

?
g (⇢) � V

(t)
g (⇢)

⌘

 1

⌘1T

T�1X

t=0

Es⇠ d?

h
DKL

⇣
⇡
?(a | s) k⇡(t)(a | s)
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where in the second inequality we take telescoping sums for the first two sums and drop all non-
positive terms: DKL

�
⇡
?(a | s) k⇡(T )(a | s)

�
, V (0)
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to the third sum,
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where in the first inequality we take telescoping sums for the first sum and drop a non-positive term,
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Bounding the optimality gap. By the dual update in (8),
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where the last inequality is due to the feasibility of the optimal policy ⇡
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We substitute the above inequality into (23) and use the fact that: DKL (p k q)  log |A|, where
p, q 2 �A and q is the uniform distribution to show the optimality gap bound, where we take
⌘1 = 2 log |A| and ⌘2 = 1��p

T
.
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Bounding the constraint violation. By the dual update in (8), for any � 2
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We now add the above inequality into (23) and note V
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taking ⌘1 = 2 log |A| and ⌘2 = 1��p

T
.

E Proof of Theorem 2

We first characterize the effect of the compatible function approximation error on the convergence.
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Lemma 8. Let Assumption 1 and Assumption 2 hold for a policy class {⇡✓ | ✓ 2 ⇥}. Fix a feasible

comparison policy be ⇡, a state distribution ⇢, and T > 0. Define the induced state-action visitation
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Now, we obtain the first bound by taking ⌘1 = 1p
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and some simplification.
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which leads to the desired bound by taking ⌘1 = 1p
T

and ⌘2 = 1p
T

and some simplification.

In Lemma 8, the compatible function approximation error shows up as an additive term in the upper
bound for the optimality gap (25a) or the constraint violation (25b).

We now prove Theorem 2. It follows from the proof of Lemma 8 with an application of the inequality,
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where the last inequality is due to ⌫
(t)(s, a) � (1� �)⌫0(s, a).

F Sample-Based NPG-PD Algorithm with Function Approximation

We describe a sample-based NPG-PD algorithm with function approximation in Algorithm 1. We
note the computational complexity of Algorithm 1: each round has expected length 2/(1 � �) so
the expected number of total samples is 4KT/(1� �); the total number of gradient computations
r✓ log ⇡(t)(a | s) is 2KT ; the total number of scalar multiplies, divides, and additions is O(dKT +
KT/(1� �)).
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Algorithm 1 Sample-based NPG-PD Algorithm with Function Approximation
1: Initialization: Learning rates ⌘1 and ⌘2, SGD learning rate ↵, number of SGD iterations K, and

simulation access to CMDP(S,A, P, r, g, b, �, ⇢) under initial state-action distribution ⌫0.
2: for t = 0, . . . , T � 1 do
3: Initialize ✓

(0) = 0, �(0) = 0, w0 = 0.
4: for k = 0, 1, . . . ,K � 1 do
5: Draw (s, a) ⇠ ⌫

(t).
6: Execute policy ⇡

(t) starting from (s, a) with a termination probability 1� � and estimate,

bQ(t)
L (s, a) =

K0�1X

k=0

⇣
r(sk, ak) + �

(t)
g(sk, ak)

⌘
where s0 = s, a0 = a,K

0 ⇠ Geo(1��).

7: Start from s, execute policy ⇡
(t) with a termination probability 1� � and estimate,

bV (t)
L (s) =

K0�1X

k=0

⇣
r(sk, ak) + �

(t)
g(sk, ak)

⌘
where s0 = s,K

0 ⇠ Geo(1� �).

8: bA(t)
L (s, a) = bQ(t)

L (s, a)� bV (t)
L (s).

9: SGD update wk+1 = wk � ↵Gk, where

Gk = 2
⇣
wk ·r✓ log ⇡

(t)(a | s)� bA(t)
L (s, a)

⌘
r✓ log ⇡

(t)(a | s).

10: end for
11: Set bw(t) = 1

K

PK
k=1 wk.

12: Initialize bV (t)
g (⇢) = 0.

13: for k = 0, 1, . . . ,K � 1 do
14: Draw s ⇠ ⇢ and draw a ⇠ ⇡

(t)(· | s).
15: Execute policy ⇡

(t) starting from s with a termination probability 1� � and estimate,

bV (t)
g (s) =

K0�1X

k=0

g(sk, ak) where s0 = s, a0 = a,K
0 ⇠ Geo(1� �).

16: Update bV (t)
g (⇢) = bV (t)

g (⇢) + 1
K
bV (t)
g (s).

17: end for
18: Natural policy gradient primal-dual update

✓
(t+1) = ✓

(t) + ⌘1 bw(t)

�
(t+1) = P[0,1)

⇣
�
(t) � ⌘2

�bV (t)
g (⇢)� b

� ⌘
.

19: end for
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We provide several unbiased estimates that are useful in our convergence proof.
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where we apply the Monotone Convergence Theorem and the Dominated Convergence Theorem for
the third equality and the fifth equality to swap the expectation and the infinite sum, and in the fourth
equality we use EK0 [I{K 0 � 1 � k � 0}] = 1 � P (K 0

< k) = �
k since K

0 follows a geometric
distribution Geo(1� �).

By a similar agument as above,
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Therefore,

E
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We also provide a bound on the variance of bV (t)
g (s).
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h
bV (t)
g (s)

i
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⇣
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g (s)� V
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where the first inequality is due to 0  g(xk, ak)  1 and V
(t)
g (s) � 0 and the last equality is clear

from K
0 ⇠ Geo(1� �).

G Proof of Theorem 3

We split the proof into two parts. We state the roadmap here for readers’ convenience. In the first
part, we establish the following two bounds for the optimality gap and the constraint violation,
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and
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In the second part, we are seeking to control the error E
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Finally, we combine two parts to complete the proof by taking ⌘1 = 1p
T

and ⌘2 = 1p
T

and noting
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Let us begin with the first part. By Assumption 2, application of Taylor’s theorem to log ⇡(t)(a | s)
yields

log
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where ✓
(t+1) � ✓

(t) = ⌘1

1�� bw
(t). We unload d
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? and ⇢ are fixed. Therefore,
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where in the second equality we decompose bw(t) = bw(t)
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inequality we apply the performance difference lemma, the Jensen’s inequality, and k bw(t)k  cW .
Using notation of E⌫?

( bw(t); ✓(t),�(t)) and rearranging it yields

V
?
r (⇢)� V

(t)
r (⇢)

 1

1� �

✓
1

⌘1
Es⇠ d?

⇣
DKL(⇡

?(· | s) k⇡(t)(· | s))�DKL(⇡
?(· | s) k⇡(t+1)(· | s))

⌘◆

+
1

1� �

q
E⌫?( bw(t); ✓(t),�(t)) + �

⌘1

2(1� �)3
cW 2 � �

(t)
⇣
V

?
g (⇢)� V

(t)
g (⇢)

⌘

Therefore,

1

T

T�1X

t=0

⇣
V

?
r (⇢)� V

(t)
r (⇢)

⌘

 1

(1� �)⌘1T

T�1X

t=0

⇣
Es⇠ d?

⇣
DKL(⇡

?(· | s) k⇡(t)(· | s))�DKL(⇡
?(· | s) k⇡(t+1)(· | s))

⌘⌘

+
1

(1� �)T

T�1X

t=0

q
E⌫?( bw(t); ✓(t),�(t)) +

⌘1�
cW 2

2(1� �)
� 1

T

T�1X

t=0

�
(t)
⇣
V

?
g (⇢)� V

(t)
g (⇢)

⌘

 log |A|
(1� �)⌘1T

+
1

(1� �)T

T�1X

t=0

q
E⌫?( bw(t); ✓(t),�(t))

+
⌘1�

cW 2

2(1� �)3
� 1

T

T�1X

t=0

�
(t)
⇣
V

?
g (⇢)� V

(t)
g (⇢)

⌘

(30)

28



where in the last inequality we take telescoping sum of the first sum and drop a non-positive term.
Taking expectation over randomness in ✓
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By the dual update in (12),
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We now return to (31) and apply 1 + K+1
K  4 to obtain (27).
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On the other hand, by the dual update in (12), we have �(t+1) ��
(t) � �⌘2(bV (t)

g (⇢)� b). Therefore,

1

T

T�1X

t=0

(b � V
(t)
g (⇢)) 

"
1

T

T�1X

t=0

(b � bV (t)
g (⇢))

#

+

+
1

T

T�1X

t=0

⇣
bV (t)
g (⇢) � V

(t)
g (⇢)

⌘

 1

⌘2T

T�1X

t=0

⇣
�
(t+1) � �

(t)
⌘
+

1

T

T�1X

t=0

⇣
bV (t)
g (⇢) � V

(t)
g (⇢)

⌘

=
1

⌘2T
�
(T ) +

1

T

T�1X

t=0

⇣
bV (t)
g (⇢) � V

(t)
g (⇢)

⌘
.

By E
⇥bV (t)

g (⇢)
⇤
= V

(t)
g (⇢) (see Appendix F),

E
"
1

T

T�1X

t=0

(b � V
(t)
g (⇢))

#

+

 1

⌘2T
E
h
�
(T )
i

(33)

Also, by (32),
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where in the second equality we apply the strong duality in Lemma 1, the first and last inequalities are
due to the boundedness of |V ⇡?

✓
r (⇢)� V

?
r (⇢)|  1

1�� and |V (t)
g (⇢)� b|  1

1�� . In the above context,
we abuse notation V

?
r (⇢) a bit: V ?

r (⇢) is described by Lemma 1.
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which leads to the desired bound (28) via (33).
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, we analyze the SGD update in

line 9 of Algorithm 1. The SGD update performs minimizing the objective E
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(w; ✓(t),�(t)) with
an unbiased estimate of the gradient rwE
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where the last equality is due to the fact that: bA(t)
L (s, a) is an unbiased estimate of A(t)

L (s, a) in line 8
of Algorithm 1.

By the fast SGD result [5, Theorem 1] with ↵ = 1
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and Assumption 3,
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where � is an uniform bound on the minimum variance,

E(s,a)⇠ ⌫(t)


G

(t)
?

⇣
G

(t)
?

⌘>�
 �

2 r2
wE

⌫(t)

(w(t); ✓(t),�(t))

G
(t)
? =

⇣
w

(t) ·r✓ log ⇡
(t)(a | s)� bA(t)

L (s, a)
⌘
r✓ log ⇡

(t)(a | s).

We complete the second part by noting � < L⇡

��w(t)
��+ 1

1��  WL⇡ + 1
1�� .

H Sample-Based NPG-PD Algorithm with Softmax Parametrization

We describe a sample-based NPG-PD algorithm with softmax parametrization in Algorithm 2.
Regarding the computational complexity of Algorithm 2: each round has expected length 2/(1� �)
so the expected number of total samples is 2(2|S|+ |S||A|)KT/(1� �); the total number of scalar
multiplies, divides, and additions is O(|S||A|KT +KT/(1� �)).
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Algorithm 2 Sample-Based NPG-PD Algorithm with Softmax Parametrization
1: Initialization: Learning rates ⌘1 and ⌘2, number of rounds K, and simulation access to

CMDP(S,A, P, r, g, b, �, ⇢).
2: for t = 0, . . . , T � 1 do
3: Initialize ✓

(0) = 0, �(0) = 0, w0 = 0.
4: Initialize bV (t)

L (s) = 0 for all s 2 S and bQ(t)
L (s, a) = 0 for all (s, a) 2 S ⇥A.

5: for k = 0, 1, . . . ,K � 1 do
6: Starting from each s 2 S, execute policy ⇡

(t) with a termination probability 1 � � and
estimate,

bV (t)
L (s) =

K0�1X

k=0

⇣
r(sk, ak) + �

(t)
g(sk, ak)

⌘
where s0 = s,K

0 ⇠ Geo(1� �).

7: Starting from each (s, a) 2 S ⇥A, execute policy ⇡
(t) with a termination probability 1� �

and estimate,

bQ(t)
L (s, a) =

K0�1X

k=0

⇣
r(sk, ak) + �

(t)
g(sk, ak)

⌘
where s0 = s, a0 = a,K

0 ⇠ Geo(1��).

8: Update bV (t)
L (s) = bV (t)

L (s) + 1
K
bV (t)
L (s) for all s 2 S.

9: Update bQ(t)
L (s, a) = bQ(t)

L (s, a) + 1
K
bQ(t)
L (s, a) for all (s, a) 2 S ⇥A.

10: end for
11: Estimate bA(t)

L = bQ(t)
L � bV (t)

L .
12: Initialize bV (t)

g (⇢) = 0.
13: for k = 0, 1, . . . ,K � 1 do
14: Draw s ⇠ ⇢ and draw a ⇠ ⇡

(t)(· | s).
15: Execute policy ⇡

(t) starting from s with a termination probability 1� � and compute the
estimate,

bV (t)
g (s) =

K0�1X

k=0

g(sk, ak) where s0 = s, a0 = a,K
0 ⇠ Geo(1� �).

16: Update bV (t)
g (⇢) = bV (t)

g (⇢) + 1
K
bV (t)
g (s).

17: end for
18: Natural policy gradient primal-dual update

✓
(t+1) = ✓

(t) + ⌘1

1��
bA(t)
L

�
(t+1) = P[0,1/((1��)⇠)]

⇣
�
(t) � ⌘2

�bV (t)
g (⇢)� b

� ⌘
.

(34)

19: end for
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Similar to Appendix F, we have unbiased estimates,
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and a variance bound,
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.

I Proof of Theorem 4

The proof idea is similar to Theorem 1, we repeat it for readers’ convenience.

We highlight some different steps here. The proof is based on similar results as Lemma 6 and
Lemma 7 in which essentially we replace the population quantities by the empirical ones estimated
by Algorithm 2. It is noted that the trajectory samplings in Algorithm 2 are independent at different
times t and all estimates are unbiased. By Lemma 6 and Lemma 7,
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Bounding the optimality gap. By the dual update in (34),
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where the last inequality is due to the feasibility of the policy ⇡
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where in the second inequality we drop a non-positive term and use the fact (see Appendix F),
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where the first equality is due to line 16 of Algorithm 2; the last inequality is due to Var
⇥bV (t)

g (s)
⇤


1
(1��)2 (see Appendix F) and 0  V

(t)
g (s)  1

1�� .

To finish this part, we now return to (35) with ⌘1 = 2 log |A| and ⌘2 = 1��p
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Bounding the constraint violation. By the dual update in (34), for any � 2
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Similar to the proof of Theorem 1, there exists a policy ⇡
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According to Theorem 6 in Appendix C, we obtain
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J Experimental Results

In this section, we provide additional experimental results to support our convergence theory. Our
CMDP simulation is based on the shared MDP code [9]. We generate CMDPs with random transitions,
uniform rewards, and utilities in [0, 1]. We simulate our algorithms with random initializations. Given
T > 0, the total number of optimization iterations, our stepsizes in theorems become constants and
multiplying them with positive constants does not affect convergence rates.
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Figure 4: Convergence of the NPG-PD method (10). In this experiment, we have randomly generated
a CMDP with |S| = 20, |A| = 10, � = 0.8, and b = 3, and chosen: ⌘1 = ⌘2 = 0.1 and d = 150.

We show simulation results for algorithms with the general smooth parametrization. We consider a
class of linear softmax policies,

⇡✓(a | s) =
exp(✓ · �s,a)P

a0 2A exp(✓ · �s0,a0)

where �s,a 2 Rd is the feature map with k�s,ak  �. We compute r✓ log ⇡✓(a | s) = �s,a �
Ea0 ⇠⇡✓(· | s)[�s,a0 ] := e�s,a and the compatible function approximation error,

E
⌫(w; ✓,�) = Es,a⇠ ⌫

⇣
A

⇡✓,�
L (s, a)� w · e�s,a

⌘2�
.

In this experiment, we take d canonical bases in Rd as our feature maps. Since d < |S||A|, they can’t
capture the advantage function and will introduce function approximation errors. In Figure 4, we only
show the convergence of the reward value function to a stationary value that could be sub-optimal due
to the function approximation error. By contrast, the constraint violation converges to zero sublinearly.
It verifies Theorem 2 that the function approximation error does not dominate the constraint violation.

Last but not least, we show the objective and the constraint violation for running the sample-based
NPG-PD algorithm (10): Algorithm 1, using two different sample sizes. We see that both reward
value functions converge, and both constraint violations decrease to be negative. The large sample
size of K = 200 performs better, especially for the constraint violation. It confirms Theorem 3 that
the constraint violation is insusceptible to the function approximation error.
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Figure 5: Convergence of the sample-based NPG-PD algorithm (10): Algorithm 1, using different
sample sizes: K = 100 (– –) and K = 200 (—). In this experiment, we have randomly generated a
CMDP with |S| = 20, |A| = 10, � = 0.8, and b = 3. We have chosen parameters for Algorithm 1:
⌘1 = ⌘2 = 0.1, ↵ = 0.1, and d = 150.
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