A Supplementary Materials

A.1 Details of the Quantization Phase

For quantizing its dataset X;, client j € [N]| employs a scalar quantization function
¢ (Round(2'= - X;)), where the rounding operation

Round(x) = { Ed if x—|z] <05

|| +1 otherwise (3)

is applied element-wise to the elements = of matrix X; and [, is an integer parameter to control

the quantization loss. |xz] is the largest integer less than or equal to x, and function ¢ : Z — T,

is a mapping defined to represent a negative integer in the finite field by using two’s complement
representation,

T ifx>0

(b(x)_{p—kx ifx <0 (14)

To avoid a wrap-around which may lead to an overflow error, prime p should be large enough,
p > 2kt max{|x|} + 1. Its value also depends on the bitwidth of the machine as well as the
dimension of the dataset. For example, in a 64-bit implementation with the CIFAR-10 dataset whose
dimension is d = 3072, we select p = 226 — 5, which is the largest prime needed to avoid an
overflow on intermediate multiplications. In particular, in order to speed up the running time of
matrix-matrix multiplication, we do a modular operation after the inner product of vectors instead of
doing a modular operation per product of each element. To avoid an overflow on this, p should be
smaller than a threshold given by d(p — 1)? < 264 — 1. For ease of exposition, throughout the paper,
X = [X],..., X" refers to the quantized dataset.

A.2 Proof of Theorem/T]

First, we show that the minimum number of clients needed for our decoding operation to be successful,
i.e., the recovery threshold of COPML, is equal to (2r+1)(K +T — 1)+ 1. To do so, we demonstrate
in the following that the decoding process will be successful as long as N > (2r+1)(K+T —1)+1.
As described in Section 3] given the polynomial approximation of the sigmoid function in (), the
degree of h(z) in @) is at most (2r + 1)(K 4+ T — 1). The decoding process uses the computations
from the clients as evaluation points h(c; ) to interpolate the polynomial h(z). If at least deg(h(z))+1
evaluation results of h(«;) are available, then, all of the coefficients of h(z) can be evaluated. After
h(z) is recovered, the sub-gradient X, §(X; x w(®*)) can be decoded by computing h(3;) fori € [K],
from which the gradient X' g(X x W(t)) from (TI) can be computed. Hence, the recovery threshold
of COPMLis (2r +1)(K +T —1)+1,aslongas N > (2r +1)(K + T — 1) + 1, the protocol can
correctly decode the gradient using the local evaluations of the clients, and the decoding process will
be successful. Since the decoding operations are performed using a secure MPC protocol, throughout
the decoding process, the clients only learn a secret share of the gradient and not its actual value.
Next, we consider the update equation in (6) and prove its convergence to w*. As described in
Section [3] after decoding the gradient, the clients carry out a secure truncation protocol to multiply
X (§(X x w(®)) — y) with parameter L to update the model as in (€). The update equation from

m

(6) can then be represented by
1
wit ) = wl (=X T (§(X x w)) —y) +n®). (15)
m
= w—np® (16)

where n*) represents the quantization noise introduced by the secure multi-party truncation protocol

[6], and p(*) £ %XT(Q(X x w®)) —y) +n®. From [6], n*) has zero mean and bounded variance,

ie,E,on®] =0and E o [|n®|3] < % £ o2 where || - ||2 is the I norm and k; is the

truncation parameter described in Section 3]

Next, we show that p(*) is an unbiased estimator of the true gradient, VC(w(®)) = %XT(g(X X
=0, we

w(®)) — y), and its variance is bounded by o2 with sufficiently large r. From E, ) [n*)]
obtain

Eno [p?] = VO(w!) = %XT (G(X x W) — (X x w")). (17)
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From the Weierstrass approximation theorem [5]], for any e > 0, there exists a polynomial that
approximates the sigmoid arbitrarily well, i.e., |§(x) — g(z)| < € for all x in the constrained

interval. Hence, as there exists a polynomial making the norm of (T7) arbitrarily small, E, [p(Y)] =
VC(w®) and En [[[pY — Epo [PD][3] = Eqeo [[In® ]3] < 0.

Next, we consider the update equation in and prove its convergence to w*. From the L-Lipschitz
continuity of VC(w) (Theorem 2.1.5 of [29]]), we have

CwtHD)y <C(w)+(VC(w?), w(t“)—w(t))—kgﬂ w(tt _w(® H2

) Oy o0y L7 w2
<C(wW)—n(VC(w'"),p >+7HP I, (18)

where (, -, ) is the inner product. For a cross entropy loss C(w), the Lipschitz constant L is equal to
the largest eigenvalue of the Hessian V2C(w) for all w, and is given by L = %||X||3. By taking the

expectation with respect to the quantization noise n*) on both sides in (T8), we have

2
B [C(w( )] < Ow®) | VO )2 4 (| 7C(w ) 7 4+ %) (19)
L L 2 2
< O(w) = n(1 = F) VO ? + =57
2
< C(w®) = 2| VO(w)|?+ 2 20)
U no”
< O(w*)+(VC(w®), wt) —w*) — §|| VC(W(t))HQ—I—T (21
< O(W*) + (B [PV, W) = w*) = TE, 0 [p0)? + no? (22)
= C(w") + 10 + Eqo [ (P, w = w*) = T [p®) ]

1
=C(w*) +no? + %(II wlt) —w* |2 — By | wHD —w*)|?) (23)

where (T9) and 22) hold since E, ) [p®] = VO(w®) and E,, [||p® — VC(w®) 3] < o2, 20)
follows from Ly < 1, (ZI) follows from the convexity of C, and (23) follows from p®) =
_l(w(t+1) —wt),

n

By taking the expectation on both sides in (23) with respect to the joint distribution of all random
variables n(9), ..., n(/~1 where .J denotes the total number of iterations, we have

E[C(w!T)] - O(w*) < Qi(En wi) —w* |2 —E| w ) —w*)|?) + 902 (24)
n

Summing both sides of the inequality in 24) for¢ = 0,...,J — 1, we find that,
J-1 (0) _ ok |12
> (Elcw )] -c(w) < W= =W 24 o
2n
t=0
Finally, since C' is convex, we observe that,

J J—1
s[o(; o w)] o) < 5 3 (Blow )] o)
t=0 t=0
W(O)_W* 2
O

which completes the proof of convergence.

A.3 Details of the Multi-Party Computation (MPC) Implementation

We consider two well-known MPC protocols, the notable BGW protocol from [4]], and the more
recent, efficient MPC protocol from [3}[12]]. Both protocols allow the computation of any polynomial
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function in a privacy-preserving manner by untrusted parties. Computations are carried out over the
secret shares, and at the end, parties only learn a secret share of the actual result. Any collusions
between upto T = L%J out of N parties do not reveal information (in an information-theoretic
sense) about the input variables. The latter protocol is more efficient in terms of the communication
cost between the parties, which scales linearly with respect to the number of parties, whereas for the
former protocol this cost is quadratic. As a trade-off, it requires a considerable amount of offline
computations and higher storage cost for creating and secret sharing the random variables used in the

protocol.

For creating secret shares, we utilize Shamir’s T-out-of-/V secret sharing [33]]. This scheme embeds
a secret a in a degree T polynomial h(§) = a + vy, ..., vy where v;, i € [T)] are uniformly
random variables. Client i € [IN] then receives a secret share of a, denoted by h(i) = [a];. This
keeps a private against any collusions between up to any 7" parties. The specific computations are
then carried out as follows.

Addition. In order to perform a secure addition a + b, clients locally add their secret shares
[a); + [b];. The resulting value is a secret share of the original summation a + b. This step requires
no communication.

Multiplication-by-a-constant. For performing a secure multiplication ac where c is a publicly-
known constant, clients locally multiply their secret share [a]; with c. The resulting value is a secret
share of the desired multiplication ac. This step requires no communication.

Multiplication. For performing a secure multiplication ab, the two protocols differ in their execution.
In the BGW protocol, each client initially multiplies its secret shares [al;, [b]; locally to obtain [a]; [b];.
The clients will then be holding a secret share of ab, however, the corresponding polynomial now
has degree 27. This may in turn cause the degree of the polynomial to increase excessively as more
multiplication operations are evaluated. To alleviate this problem, in the next phase, clients carry
out a degree reduction step to create new shares corresponding to a polynomial of degree T'. The
communication overhead of this protocol is O(N?).

The protocol from [3]], on the other hand, leverages offline computations to speed up the communica-
tion phase. In particular, a random variable p is created offline and secret shared with the clients twice
using two random polynomials with degrees 1" and 27, respectively. The secret shares corresponding
to the degree T' polynomial are denoted by [p]r;, whereas the secret shares for the degree 27" polyno-
mial are denoted by [p]2r,; for clients ¢ € [N]. In the online phase, client i € [/V] locally computes
the multiplication [a];[b];, after which each client will be holding a secret share of the multiplication
ab. The resulting polynomial has degree 27". Then, each client locally computes [a];[b]; — [p]2r.i»
which corresponds to a secret share of ab — p embedded in a degree 27" polynomial. Clients then
broadcast their individual computations to others, after which each client computes ab — p. Note that
the privacy of the computation ab is still protected since clients do not know the actual value of ab,
but instead its masked version ab — p. Then, each client locally computes ab — p + [p]7,;. As aresult,
variable p cancels out, and clients obtain a secret share of the multiplication ab embedded in a degree
T polynomial. This protocol requires only O(N) broadcasts and therefore is more efficient than the
previous algorithm. On the other hand, it requires an offline computation phase and higher storage
overhead. For the details, we refer to [3} 2].

Remark 3. The secure MPC computations during the encoding, decoding, and model update phases
of COPML only use addition and multiplication-by-a-constant operations, instead of the expensive
multiplication operation, as {c; };c[n] and { By } xe[x+1) are publicly known constants for all clients.

A.4 Details of the Optimized Baseline Protocols

In a naive implementation of our multi-client problem setting, both baseline protocols would utilize
Shamir’s secret sharing scheme where the quantized dataset X = [X[,..., X \]T is secret shared
with N clients. To do so, both baselines would follow the same secret sharing process as in COPML,
where client j € [N] creates a degree 7' random polynomial ;(z) = X, +2Rj1 + ... + 2T Rjr
where Rj; for i € [T are i.i.d. uniformly distributed random matrices while selecting 7" = [ ¥ ].
By selecting [V distinct evaluation points Ay, ..., Ay from [, client j would generate and send
[X,]i = h;(\;) toclient i € [N]. As aresult, client ¢ € [N] would be assigned a secret share of the

entire dataset X, i.e, [X]; = [[X4]/,...,[Xn]]] " Client i would also obtain a secret share of the
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labels, [y];, and a secret share of the initial model, [w(®)];, where y = [y ,...,yA]" and w(©®) is
a randomly initialized model. Then, the clients would compute the gradient and update the model
from (/) within a secure MPC protocol. This guarantees privacy against L%j colluding workers,
but requires a computation load at each worker that is as large as processing the whole dataset at a

single worker, leading to slow training.

Hence, in order to provide a fair comparison with COPML, we optimize (speed up) the baseline
protocols by partitioning the clients into subgroups of size 27" + 1. Clients communicate a secret
share of their own datasets with the other clients in the same subgroup, instead of secret sharing it
with the entire set of clients. Each client in subgroup ¢ receives a secret share of a partitioned dataset

X,; € B¢ *" where X = [X] ---X /] and G is the number of subgroups. In other words, client
in subgroup 7 obtains a secret share [X;],. Then, subgroup ¢ € [G] computes the sub-gradient over
the partitioned dataset, X,;, within a secure MPC protocol. To provide the same privacy threshold
T = L%J as Case 2 of COPML in Section we set G = 3. This significantly reduces the total
training time of the two baseline protocols (compared to the naive MPC implementation where the
computation load at each client would be as high as training centrally), as the total amount of data

processed at each client is equal to one third of the size of the entire dataset X.

A.5 Algorithms

The overall procedure of COPML protocol is given in Algorithm [I]
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Algorithm 1 COPML

input Dataset (X,y) = (X1,y1),--.,(Xn,yn)) distributed over N clients.
output Model parameters w(),

1: forclientj =1,..., N do

2:  Secret share the individual dataset (X, y;) with clients ¢ € [N].

3: end for

4: Within a secure MPC protocol, initialize the model w(® randomly and secret share with clients i € [N].

// Client i receives a secret share [w'®]; of w'®).
5: Encode the dataset within a secure MPC protocol, using the secret shares [X;]; for j € [N], ¢ € [N].

// After this step, client i holds a secret share [X]; of each encoded dataset X for j € [N].
6: forclienti =1,..., N do B
Gather the secret shares [X;]; from clients 5 € [N].
8:  Recover the encoded dataset X; from the secret shares {[X;];};e[ni-
// At the end of this step, client © obtains the encoded dataset X
9: end for
10: Compute X T y within a secure MPC protocol using the secret shares [X;]; and [y;]; for j € [N], i € [N].
// At the end of this step, client © holds a secret share [XT vl of XTy.
11: for iterationt =0,...,J —1do
12:  Encode the model w'*) in a secure MPC protocol using the secret shares [w(t)]i.
// After this step, client i holds a secret share [V~v§-t>]¢ of the encoded model V~V§-t) forj € [N].
13:  forclienti =1,...,N do

14: Gather the secret shares [‘A’(’Z(-t)]j from clients j € [N].
15: Recover the encoded model w'") from the secret shares {[w'"];} FEIN]-
// At the end of this step, client © obtains the encoded model vat).
16: Locally compute f (X, w'") from (7) and secret share the result with clients j € [N].
// Client i sends a secret share [f (X, VNVEt))]]- of f(Xs, v~v£t>) to client j.
17 end for
18: forclienti =1,..., N do
19: Locally computes [f (X, w"))]; for k € [K] from (T0).
// After this step, client i knows a secret share [ (X, w™)]; of f(Xy, w®) for k € [K].
20: Locally aggregate the secret shares {[f(Xg, w)];}rex to compute [XT (X x w®)]; £

Zkg[K] [f (X, W(t))]i-
// At the end of this step, client © now has a secret share [XT g(X x w<t))}i of XT g(X % w(t)) =
ZkG[K] S (X, W<t))-
21: Locally compute [X T (§(X x w®) —y)]; 2 [XT §(X x w)]; — [XT yl,.
// Each client now has a secret share [X " (§(X x w®) —y)]; of X" (§(X x wP) —y).
22:  end for
23:  Update the model according to (6) within a secure MPC protocol using the secret shares XT(5(X x
w®) — y)]; and [w®]; for i € [N], and by carrying out the secure truncation operation.
// At the end of this step, client i holds a secret share of the updated model [w(t"'l)}i.
// Secure truncation is carried out jointly as it requires communication between the clients.
24: end for
25: forclientj =1,..., N do
26:  Collect the secret shares [w(”)]; from clients i € [N] and recover the final model w”).
27: end for
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