
A Proof of Theorem 1.2

LP Construction First, consider the following LP construction for the learning-augmented ski-
rental problem: We use γ to denote the robustness parameter and β the consistency parameter. We
assume without loss of generality that β < γ; otherwise, the consistency requirement is redundant.
Consider a infinite LP, with variables {pi} indicating the probability of buying at day i. First, we ask
that the pi’s define a probability distribution. That is, pi ≥ 0 and

∞∑

i=1

pi = 1 (probability distribution)

Second, to satisfy the consistency constraint, the algorithm must have expected cost within β ·OPT
when y = x. In this case, the ski season ends at i = y, so there is no additional cost afterwards.

y∑

i=1

(B + i− 1)pi + y

∞∑

i=y+1

pi ≤ βmin{B, y}. (consistency)

Third, each value of x gives a distinct constraint for robustness, where the left side is the expected
cost and the right side is γ ·OPT. When x ≤ B, OPT = x, so we have

x∑

i=1

(B + i− 1)pi + x

∞∑

i=x+1

pi ≤ γx ∀x ≤ B (A.1)

If x > B, then OPT = B. The robustness constraints are infinitely many, given by
x∑

i=1

(B + i− 1)pi + x

∞∑

i=x+1

pi ≤ γB ∀x > B (A.2)

We remark that for each pi, its coefficient is non-decreasing as we go down. We denote the robustness
constraint corresponding to x by C(x) and the entire (infinite) LP by P .

From now on, we focus on the case when y ≥ 2B − 1. In this case, the consistency constraint is
y∑

i=1

(B + i− 1)pi + y

∞∑

i=y+1

pi ≤ βB. (consistency’)

Reducing to a Finite LP We will show that P can be reduced to be a finite LP ofB+1 constraints
and y variables.

Lemma A.1. If y ≥ B, the robustness constraints between C(B) and C(y) are redundant.

Proof. Observe that these constraints are dominated by the constraint consistency’, since β ≤ γ and
their left sides are bounded by the left side of consistency’.

We start by identifying redundant variables in P .

Lemma A.2 (Redundant variables). If y ≥ 2B − 1 and P is feasible, then there exists a feasible
solution to P such that pi = 0 for all i ≥ y + 1.

Proof. Let p be a feasible solution to P . First, we argue that there exists a feasible solution p′ such
that p′y+2 = p′y+3 = · · · = 0. To eliminate py+2, consider p′ where p′y+2 = 0, p′y+1 = py+1 + py+2,
and p′i = pi for i /∈ {y + 1, y + 2}. Clearly, p′ still defines a probability distribution. We now check
p′ is feasible.

(i) Since y ≥ B, the consistency constraint is satisfied.

(ii) The robustness constraints from C(1) to C(B − 1) are satisfied, by the coefficients in these
constraints.
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(iii) By Lemma A.1, we focus on the robustness constraints from C(y + 1). First, the coefficient
of py+2 is greater than the coefficient of py+1 in the constraint C(i). for all i ≥ y + 2. Hence,
p′ satisfies these constraints. Then, note that the constraint C(y + 1) is dominated by the
constraint C(y + 2), and thus p′ satisfies it.

Applying this argument iteratively, we can eliminate all variables pi for i ≥ y + 2. Now it is easy to
observe that constraints C(j) for j ≥ y + 2 are redundant.

Finally, to eliminate py+1, consider p′y+1 = 0, p′y−B+1 = py−B+1 + py+1, and p′i = pi for i /∈
{y −B + 1, y + 1}. Observe that since y ≥ 2B − 1,

(i) in the consistency’ constraint and constraint C(y + 1), the coefficient of py+1 and py−B+1 are
both y;

(ii) in the constraints between C(1) and C(B − 1), the coefficient of py+1 and py−B+1 are both B.

It follows that all constraints are satisfied by p′.

Corollary A.3 (Redundant constraints). If y ≥ 2B−1, all robustness constraints in P are redundant
except those between C(1) and C(B − 1).

Proof. This follows directly from the definition of the robustness constraints and Lemma A.2.

Lemma A.4 (Tight constraints). If P is feasible, there exists a solution such that for all 1 < k < y,
if pk > 0, then the preceding robustness constraints C(k′) for 1 ≤ k′ < k are all tight.

Proof. Using the probability distribution constraint, we can rewrite each robustness constraint C(i)
as

(B − i)p1 + (B − i+ 1)p2 + · · ·+ (B − 1)pi ≤ γmin{B, i} − i. (A.3)
Let p be a feasible solution. First, we claim that when shifting probability mass from pk to pk−1, the
slack for all robustness constraints is non-decreasing, except for C(k − 1). Note that

(i) for k′ ≥ k, since the coefficient of pk−1 in C(k′) is less than that of pk, we strictly increase
the slack; and

(ii) for k′ < k−1, C(k′) has no dependence on either pk or pk−1, so the slack remains unchanged.

Second, we claim that if C(k−1) has non-zero slack, then pk > 0 or C(k) has non-zero slack. Indeed,
if pk = 0, then constraint C(k − 1) is stronger than constraint C(k). Since constraint C(k − 1) has
non-zero slack, constraint C(k) must also have non-zero slack.

Let s = (s1, s2, . . . , sy−1) be the vector of slacks for the robustness constraints C(i). The above
two claims together show that if a feasible solution is such that pk > 0, but one of the preceding
robustness constraints is not tight, then we can shift some probability mass so that the robustness
slack vector becomes lexicographically smaller. (Here, we consider the lexicographic ordering on
Ry−1.) Equivalently, if the robustness slack vector is lexicographically minimal, then pk > 0 implies
all of the preceding robustness constraints are tight. It thus suffices to show that a lexicographically
minimal robustness slack vector exists.

Let S be the set of robustness slack vectors that correspond to feasible solutions. Observe that S
is compact. The existence of a lexicographically minimal element in S then follows because any
compact subset of Ry−1 contains a lexicographically minimal element. To see this last point, note
that compactness implies there exists a element with minimum first coordinate. Now, restrict our
compact set to this minimum first coordinate and repeat this argument for the second coordinate, and
so on.

Finally, to prove our main theorem, we need the following technical lemma.
Lemma A.5. For all B > 1 and x ∈ [0, 1], the following inequality holds:

1

B
x−

(
1 +

1

B − 1

)−1((
1 +

1

B − 1

)x
− 1

)
≥ 0.
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Proof. The stated inequality is equivalent to

(
1 +

1

B − 1

)
1

B
x+ 1 ≥

(
1 +

1

B − 1

)x
.

Observe that the left-hand side is linear and that the right-hand side is convex. Since the two sides
are equal at x = 0 and x = 1, the desired inequality is true on the interval [0, 1] by Jensen’s
inequality.

Now we are ready to present the proof of the randomized lower bound.

Proof of Theorem 1.2. Fix a cost B. Given any value of robustness γ > 1, we give a lower bound
for the consistency β in the “hard” case y = 2B − 1. Assume for now that the LP with parameters γ
and β is feasible. We will derive constraints on β in terms of γ.

By Lemma A.2, we know that there exists a feasible solution p with py+1 = 0. By Lemma A.4,
there exists a k ≤ y such that pi > 0 for 1 ≤ i ≤ k and pi = 0 for all i > k. Moreover, the first
k − 1 constraints of the LP all have 0 slack. In fact, k ≤ B always: By our feasibility assumption, γ
must be at least the optimal competitive ratio c∗ = e/(e− 1) in the classic setting, since that setting
has no consistency constraint. In the classic setting, we can achieve the optimal competitiveness
with k = B and have the first k robustness constraints be tight [KMMO94]. Thus, with γ ≥ c∗, the
robustness constraints are relaxed, so we must also have k ≤ B. With these observations and the
constraint p1 + p2 + · · ·+ pk = 1, we can determine the value of k and the probabilities p1, . . . , pk.

It is not difficult to see via induction on k (e.g., using the reformulation of Equation (A.3)) that for
the first k − 1 constraints to each have 0 slack, we must have

pi =
γ − 1

B − 1

(
1 +

1

B − 1

)i−1

for each i between 1 and k − 1. From p1 + p2 + · · ·+ pk = 1, it follows that k must be the smallest
integer such that

k∑

i=1

γ − 1

B − 1

(
1 +

1

B − 1

)i−1

= (γ − 1)

((
1 +

1

B − 1

)k
− 1

)
≥ 1.

Rearranging the inequality now gives us

k =




log
(

1 + 1
γ−1

)

log
(

1 + 1
B−1

)



.

This choice of k, our definition of pi for 1 ≤ i ≤ k − 1, and the constraint
∑k
i=1 pi = 1 fully

determine a feasible solution.

By our assumption that the LP is feasible, this setting of pi values must also satisfy the consistency
constraint. That is,

k∑

i=1

(B + i− 1)pi = B +

k∑

i=1

(i− 1)pi ≤ βB. (A.4)

The remainder of this proof consists of computing the left-hand side of the above for our feasible
solution explicitly to obtain a lower bound for the consistency β.
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Applying our explicit formulas for pi for 1 ≤ i ≤ k− 1 and the fact pk = 1−∑k−1
i=1 pi, we compute

the sum
k∑

i=1

(i− 1)pi =

(
k−1∑

i=1

(i− 1)pi

)
+ (k − 1)

(
1−

k−1∑

i=1

pi

)

= (γ − 1)

(
B − (B − k + 1)

(
1 +

1

B − 1

)k−1
)

+ (k − 1)

(
1− (γ − 1)

((
1 +

1

B − 1

)k−1

− 1

))

= (k − 1)γ + (γ − 1)B

(
1−

(
1 +

1

B − 1

)k−1
)
.

It follows from Equation (A.4) that β is lower bounded by

β ≥ 1 +
1

B

k∑

i=1

(i− 1)pi

= 1 +
(k − 1)γ

B
+ (γ − 1)

(
1−

(
1 +

1

B − 1

)k−1
)
.

Now, define

∆k := k −
log
(

1 + 1
γ−1

)

log
(

1 + 1
B−1

) .

After some further computation, we obtain

β ≥ kγ

B
− γ

(
1− 1

B

)((
1 +

1

B − 1

)∆k

− 1

)

=
γ

B

log
(

1 + 1
γ−1

)

log
(

1 + 1
B−1

) + γ

(
∆k

B
−
(

1 +
1

B − 1

)−1
((

1 +
1

B − 1

)∆k

− 1

))
.

Lemma A.5 lets us bound the terms involving ∆k from below, and it follows that

β ≥ γ

B

log
(

1 + 1
γ−1

)

log
(

1 + 1
B−1

) .

To finish our proof of the lower bound, notice thatB log(1+1/(B−1))→ 1 from below asB →∞.
Hence, the lower bound on β approaches γ log(1 + 1/(γ − 1)) as B →∞.

B Proof of Theorem 3.2

Now we present our algorithmic result. Although our analysis deals with the case of 2 jobs, it is
convenient to describe the algorithm in the general case of n jobs. The algorithm starts by running
round robin for a while, then switches to a greedy strategy of processing jobs in the increasing order
of the predicted times. If at any point we know xi 6= yi for any job i, we switch to round robin
forever. We use OPTy =

∑
i iyi to denote the OPT under perfect predictions.

Two-Stage-Schedule(y1, y2, · · · , yn):
At any point, if a job finishes with processing time less or more than its prediction,

round robin forever.
Stage 1: Round robin for at most λn ·OPTy/

(
n
2

)
units of time.

Stage 2: Process jobs in predicted order
(staring from the unfinished job with the least predicted time).
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The intuition behind the algorithm is simple. On one hand, to ensure robustness, the algorithm
switches to round robin when any misprediction is noticed. On the other hand, we ask the algorithm
to be (1 +λ)-consistent. Suppose y1 < y2 < · · · < yn. If the predictions are perfect, then we expect
that a consistent algorithm would produce a schedule that finishes the jobs in the correct order, i.e.,
job 1 finishes first, job 2 second, and so on. In this case, the consistency requirement reduces to

∑

i>j

d(i, j) ≤ λOPTy, (B.1)

where and d(i, j) denotes the amount job i delays job j in this scenario. Observe that when no job is
completed, round robin increases each term in the summation at the same rate of 1/n. Thus, stage
1 of the algorithm would make the inequality (B.1) tight. Then as we can no longer disobey the
predictions in the ideal scenario, we switch to the greedy strategy in the second stage. Next, we
analyze the performance of the algorithm in the case of two jobs.

We now prove Theorem 3.2

Proof of Theorem 3.2. Let t = 2y1 + y2. To show consistency, assume x1 = y1, x2 = y2, so
OPT = t. In stage 1, the algorithm runs round robin for 2λt units of time. Observe that job 2 cannot
finish before job 1 in this stage: since λ < 1/3, job 2 can receive at most (2y1 + y2)/3 < y2 units
of processing time. Consider two cases.

(i) Suppose job 1 finishes in stage 1. Then since two jobs share the same rate,

y1 ≤ λt. (B.2)

Moreover, in this case. the algorithm runs round robin for 2y1 time and finishes job 2 in y2−y1

time. Thus, ALG = 3y1 + y2, and OPT = t. By (B.2), we have ALG ≤ (1 + λ) OPT.

(ii) Suppose job 1 does not finish in stage 1. Then both jobs have been processed for λt units of
time at the beginning of stage 2. In stage 2, the algorithm prioritizes job 1. Thus,

ALG = 4λt+ 2(y1 − λt) + (y2 − λt) = (1 + λ) OPT (B.3)

To show robustness, we consider mispredictions, and suppose without loss of generality y1 = 1.
Throughout, we let ε to denote an infinitesimal quantity. Notice that if any misprediction is found or
job 1 is finished in stage 1, the algorithm is equivalent of round robin and, therefore, achieves 4/3
competitive ratio that is better than 1 + 1/(1 + 6λ) for any λ ∈ (0, 1/3), so we are done. We do a
case-by-case analysis, assuming in stage 1 no misprediction is detected and both jobs are finished in
stage 2. Notice that under the assumptions, x1, x2 ≥ λt, so OPT ≥ 3λt.

(i) Suppose job 1 finishes no later than its prediction (x1 ≤ 1). We have ALG = λt+ 2x1 + x2.

(a) If x1 < x2, then OPT = 2x1 + x2. Since λt ≤ OPT/3, we have ALG/OPT ≤ 4/3.
(b) If x1 ≥ x2, then OPT = 2x2 +x1. Observe that setting x1 = y1 = y2 = 1, x2 = λt+ε

maximizes the competitive ratio, and this yields a ratio of 1 + 1/(1 + 6λ).

(ii) Suppose job 1 finishes later than its prediction (x1 > 1). In this case, the stage 2 starts off by
processing job 1 for y1 − λt unit of time then switching to round robin.

(a) If job 1 finishes no later than job 2, then we calculate that ALG = λt+ 3x1 + x2 − 1.
If x1 < x2, then OPT = 2x1 + x2, the competitive ratio is at most 4/3, where the
worst case is achieved at x1 = 1 + ε and we use λt ≤ OPT/3. If x1 ≥ x2, then
OPT = 2x2 +x1. The competitive ratio is bounded by 1 + 1/(1 + 6λ), where the worst
case is achieved when x1 = 1 + ε, x2 = λt+ 2ε, y2 = 1.

(b) If job 1 finishes later than job 2, then ALG = 1 + x1 + 3x2 − λt. Observe that in this
case, it is impossible that x2 > x1, since job 1 receives more processing than job 2
throughout the schedule. Assume x2 ≤ x1; then the competitive ratio is bounded by
1 + 1/(1 + 6λ) with the worst case being x2 = λt+ ε, x1 = 1.
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