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Abstract

Recent advances in image clustering typically focus on learning better deep repre-
sentations. In contrast, we present an orthogonal approach that does not rely on
abstract features but instead learns to predict transformations and performs cluster-
ing directly in pixel space. This learning process naturally fits in the gradient-based
training of K-means and Gaussian mixture model, without requiring any additional
loss or hyper-parameters. It leads us to two new deep transformation-invariant
clustering frameworks, which jointly learn prototypes and transformations. More
specifically, we use deep learning modules that enable us to resolve invariance to
spatial, color and morphological transformations. Our approach is conceptually
simple and comes with several advantages, including the possibility to easily adapt
the desired invariance to the task and a strong interpretability of both cluster cen-
ters and assignments to clusters. We demonstrate that our novel approach yields
competitive and highly promising results on standard image clustering bench-
marks. Finally, we showcase its robustness and the advantages of its improved
interpretability by visualizing clustering results over real photograph collections.

1 Introduction

Gathering collections of images on a topic of interest is getting easier every day: simple tools can
aggregate data from social media, web search, or specialized websites and filter it using hashtags,
GPS coordinates, or semantic labels. However, identifying visual trends in such image collections
remains difficult and usually involves manually organizing images or designing an ad hoc algorithm.
Our goal in this paper is to design a clustering method which can be applied to such image collections,
output a visual representation for each cluster and show how it relates to every associated image.

Directly comparing image pixels to decide if they belong to the same cluster leads to poor results
because they are strongly impacted by factors irrelevant to clustering, such as exact viewpoint or
lighting. Approaches to obtain clusters invariant to these transformations can be broadly classified
into two groups. A first set of methods extracts invariant features and performs clustering in feature
space. The features can be manually designed, but most state-of-the-art methods learn them directly
from data. This is challenging because images are high-dimensional and learning relevant invariances
thus requires huge amounts of data. For this reason, while recent approaches perform well on simple
datasets like MNIST, they still struggle with real images. Another limitation of these approaches is
that learned features are hard to interpret and visualize, making clustering results difficult to analyze.
A second set of approaches, following the seminal work of Frey and Jojic on transformation-invariant
clustering [11, 12, 13], uses explicit transformation models to align images before comparing them.
These approaches have several potential advantages: (i) they enable direct control of the invariances to
consider; (ii) because they do not need to discover invariances, they are potentially less data-hungry;
(iii) since images are explicitly aligned, clustering process and results can easily be visualized.
However, transformation-invariant approaches require solving a difficult joint optimization problem.
In practice, they are thus often limited to small datasets and simple transformations, such as affine
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(a) Classical versus Deep Transformation-Invariant clustering

(b) Deep transformation module Tfk

(c) Prototypes learned from unfiltered Instagram images associated to different hashtags

Figure 1: Overview. (a) Given a sample xi and prototypes c1 and c2, standard clustering such as
K-means assigns the sample to the closest prototype. Our DTI clustering first aligns prototypes to the
sample using a family of parametric transformations - here rotations - then picks the prototype whose
alignment yields the smallest distance. (b) We predict alignment with deep learning. Given an image
xi, each parameter predictor fk predicts parameters for a sequence of transformations - here affine
T aff
βaff

, morphological T mor
βmor

, and thin plate spline T tps
βtps

- to align prototype ck to xi. (c) Examples
of interpretable prototypes discovered from large images sets (15k each) associated to hashtags in
Instagram using our DTI clustering with 40 clusters. Each cluster contains from 200 to 800 images.

transformations, and to the best of our knowledge they have never been evaluated on large standard
image clustering datasets.

In this paper, we propose a deep transformation-invariant (DTI) framework that enables to perform
transformation-invariant clustering at scale and uses complex transformations. Our main insight is to
jointly learn deep alignment and clustering parameters with a single loss, relying on the gradient-based
adaptations of K-means [38] and GMM optimization [9]. Not only is predicting transformations
more computationally efficient than optimizing them, but it enables us to use complex color, thin
plate spline and morphological transformations without any specific regularization. Because it is
pixel-based, our deep transformation-invariant clustering is also easy to interpret: cluster centers and
image alignments can be visualized to understand assignments. Despite its apparent simplicity, we
demonstrate that our DTI clustering framework leads to results on par with the most recent feature
learning approaches on standard benchmarks. We also show it is capable of discovering meaningful
modes in real photograph collections, which we see as an important step to bridge the gap between
theoretically well-grounded clustering approaches and semi-automatic tools relying on hand-designed
features for exploring image collections, such as AverageExplorer [52] or ShadowDraw [32].

We first briefly discuss related works in Section 2. Section 3 then presents our DTI framework
(Fig. 1a). Section 4 introduces our deep transformation modules and architecture (Fig. 1b) and discuss
training details. Finally, Section 5 presents and analyzes our results (Fig. 1c).

Contributions. In this paper we present:
– a deep transformation-invariant clustering approach that jointly learns to cluster and align images,
– a deep image transformation module to learn spatial alignment, color modifications and for the

first time morphological transformations,
– an experimental evaluation showing that our approach is competitive on standard image clustering

benchmarks, improving over state-of-the-art on Fashion-MNIST and SVHN, and provides highly
interpretable qualitative results even on challenging web image collections.
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Code, data, models as well as more visual results are available on our project webpage1.

2 Related work

Most recent approaches to image clustering focus on learning deep image representations, or features,
on which clustering can be performed. Common strategies include autoencoders [48, 10, 25, 28],
contrastive approaches [49, 5, 44], GANs [6, 51, 41] and mutual information based strategies [22,
18, 24]. Especially related to our work is [28] which leverages the idea of capsule [20] to learn
equivariant image features, in a similar fashion of equivariant models [33, 45]. However, our method
aims at being invariant to transformations but not at learning a representation.
Another type of approach is to align images in pixel space using a relevant family of transformations,
such as translations, rotations, or affine transformations to obtain more meaningful pixel distances
before clustering them. Frey and Jojic first introduced transformation-invariant clustering [11, 12, 13]
by integrating pixel permutations as a discrete latent variable within an Expectation Maximization
(EM) [9] procedure for a mixture of Gaussians. Their approach was however limited to a finite set of
discrete transformations. Congealing generalized the idea to continuous parametric transformations,
and in particular affine transformations, initially by using entropy minimization [40, 30]. A later
version using least square costs [7, 8] demonstrated the relation of this approach to the classical
Lukas-Kanade image alignment algorithm [37]. In its classical version, congealing only enables to
align all dataset images together, but the idea was extended to clustering [36, 39, 34], for example
using a Bayesian model [39], or in a spectral clustering framework [34]. These works typically
formulate difficult joint optimization problems and solve them by alternating between clustering and
transformation optimization for each sample. They are thus limited to relatively small datasets and to
the best of our knowledge were never compared to modern deep approaches on large benchmarks.
Deep learning was recently used to scale the idea of congealing for global alignment of a single class
of images [1] or time series [46]. Both works build on the idea of Spatial Transformer Networks [23]
(STN) that spatial transformation are differentiable and can be learned by deep networks. We also
build upon STN, but go beyond single-class alignment to jointly perform clustering. Additionally, we
extend the idea to color and morphological transformations. We believe our work is the first to use
deep learning to perform clustering in pixel space by explicitly aligning images.

3 Deep Transformation-Invariant clustering

In this section, we first discuss a generic formulation of our deep transformation-invariant clustering
approach, then derive two algorithms based on K-means [38] and Gaussian mixture model [9].
Notation: In all the rest of the paper, we use the notation a1:n to refer to the set {a1, . . . , an}.

3.1 DTI framework

Contrary to most recent image clustering methods which rely on feature learning, we propose to
perform clustering in pixel space by making the clustering invariant to a family of transformations.
We considerN image samples x1:N and aim at grouping them inK clusters using a prototype method.
More specifically, each cluster k is defined by a prototype ck, which can also be seen as an image,
and prototypes are optimized to minimize a loss L which typically evaluates how well they represent
the samples. We further assume that L can be written as a sum of a loss l computed over each sample:

L(c1:K) =

N∑
i=1

l(xi, {c1, . . . , cK}). (1)

Once the problem is solved, each sample xi will be associated to the closest prototype.

Our key assumption is that in addition to the data, we have access to a group of parametric trans-
formations {Tβ , β ∈ B} to which we want to make the clustering invariant. For example, one can
consider β ∈ R6 and Tβ the 2D affine transformation parametrized by β. Other transformations are
discussed in Section 4.1. Instead of finding clusters by minimizing the loss of Equation 1, one can

1http://imagine.enpc.fr/~monniert/DTIClustering/
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minimize the following transformation-invariant loss:

LTI(c1:K) =

N∑
i=1

min
β1:K

l(xi, {Tβ1
(c1), . . . , TβK

(cK)}). (2)

In this equation, the minimum over β1:K is taken for each sample independently. This loss is invariant
to transformations of the prototypes (see proof in Appendix B). Also note there is not a single
optimum since the loss is the same if any prototype ck is replaced by Tβ(ck) for any β ∈ B. If
necessary, for example for visualization purposes, this ambiguity can easily be resolved by adding
a small regularization on the transformations. The optimization problem associated to LTI is of
course difficult. A natural approach, which we use as baseline (noted TI), is to alternatively minimize
over transformations and clustering parameters. We show that performing such optimization using a
gradient descent can already lead to improved results over standard clustering but is computationally
expensive.
We experimentally show it is faster and actually better to instead learn K (deep) predictors f1:K for
each prototype, which aim at associating to each sample xi the transformation parameters f1:K(xi)
minimizing the loss, i.e. to minimize the following loss:

LDTI(c1:K , f1:K) =

N∑
i=1

l(xi, {Tf1(xi)(c1), . . . , TfK(xi)(cK)}), (3)

where predictors f1:K are now shared for all samples. We found that using deep parameters predictors
not only enables more efficient training but also leads to better clustering results especially with more
complex transformations. Indeed, the structure and optimization of the predictors naturally regularize
the parameters for each sample, without requiring any specific regularization loss, especially in the
case of high numbers N of samples and transformation parameters.
In the next section we present concrete losses and algorithms. We then describe differentiable
modules for relevant transformations and discuss parameter predictor architecture as well as training
in Section 4.

3.2 Application to K-means and GMM

K-means. The goal of K-means algorithm [38] is to find a set of prototypes c1:K such that the
average Euclidean distance between each sample and the closest prototype is minimized. Following
the reasoning of Section 3.1, the loss optimized in K-means can be transformed into a transformation-
invariant loss:

LDTI K-means(c1:K , f1:K) =

N∑
i=1

min
k
‖xi − Tfk(xi)(ck)‖2. (4)

Following batch gradient-based trainings [3] of K-means, we can then simply jointly minimize
LDTI K-means over prototypes c1:K and deep transformation parameter predictors f1:K using a batch
gradient descent algorithm. In practice, we initialize prototypes c1:K with random samples and
predictors f1:K such that ∀k, ∀x, Tfk(x) = Id.

Gaussian mixture model. We now consider that data are observations of a mixture of K multi-
variate normal random variables X1:K , i.e. X =

∑
k δk,∆Xk where δ is the Kronecker function and

∆ ∈ {1, . . . ,K} is a random variable defined by P (∆ = k) = πk, with ∀k, πk > 0 and
∑
k πk = 1.

We write µk and Σk the mean and covariance of Xk and G( . ;µk,Σk) associated probability density
function. The transformation-invariant negative log-likelihood can then be written:

LDTI GMM(µ1:K ,Σ1:K , π1:K , f1:K) = −
N∑
i=1

log
( K∑
k=1

πkG
(
xi ; Tfk(xi)(µk), T ∗fk(xi)

(Σk)
))
, (5)

where T ∗ is slightly modified version of T . Indeed, T may include transformations that one can
apply to the covariance, such as spatial transformations, and other that would not make sense, such
as additive color transformations. We jointly minimize LDTI GMM over Gaussian parameters, mixing
probabilities, and deep transformation parameters f1:K using a batch gradient-based EM procedure
similar to [21, 15, 14] and detailed in Algorithm 1. In practice, we assume that pixels are independent
resulting in diagonal covariance matrices.

In such gradient-based procedures, two constraints have to be enforced, namely the positivity and
normalization of mixing probabilities πk and the non-negativeness of the diagonal covariance terms.
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Algorithm 1: Deep Transformation-Invariant Gaussian Mixture Model
Input: data X, number of clusters K, transformation T
Output: cluster assignations, Gaussian parameters µ1:K ,Σ1:K , deep predictors f1:K

Initialization: µ1:K with random samples, Σ1:K = 0.5, η1:K = 1 and ∀k,∀x, Tfk(x) = Id
while not converged do

i. sample a batch of data points x1:N

ii. compute mixing probabilities: π1:K = softmax(η1:K)
iii. compute per-sample Gaussian transformed parameters:

∀k, ∀i, µ̃ki = Tfk(xi)(µk) and Σ̃ki = T ∗fk(xi)
(Σk) + diag(σ2

min)

iv. compute responsibilities: ∀k, ∀i, γki = πkG(xi ;µ̃ki,Σ̃ki)∑
j πjG(xi ;µ̃ji,Σ̃ji)

(E-step)

v. minimize expected negative log-likelihood w.r.t to {µ1:K ,Σ1:K , η1:K , f1:K}:

E[LDTI GMM] = −
N∑
i=1

K∑
k=1

γki

(
log
(
G(xi ; µ̃ki, Σ̃ki)

)
+ log(πk)

)
(M-step)

end

For the mixing probabilities constraints, we adopt the approach used in [21] and [14] which optimize
mixing parameters ηk used to compute the probabilities πk using a softmax instead of directly
optimizing πk, which we write π1:K = softmax(η1:K). For the variance non-negativeness, we
introduce a fixed minimal variance value σ2

min which is added to the variances when evaluating
the probability density function. This approach is different from the one in [14] which instead use
clipping, because we found training with clipped values was harder. In practice, we take σmin = 0.25.

4 Learning image transformations

4.1 Architecture and transformation modules

We consider a set of prototypes c1:K we would like to transform to match a given sample x. To do so,
we propose to learn for each prototype ck, a separate deep predictor which predicts transformation
parameters β. We propose to model the family of transformations Tβ as a sequence of M parametric
transformations such that, writing β = (β1, . . . , βM ), Tβ = T MβM ◦ . . . ◦ T 1

β1 . In the following, we
describe the architecture of transformation parameter predictors f1:K , as well as each family of
parametric transformation modules we use. Figure 1b shows our learned transformation process on a
MNIST example.

Parameters prediction network. For all experiments, we use the same parameter predictor net-
work architecture composed of a shared ResNet [19] backbone truncated after the global average
pooling, followed by K ×M Multi-Layer Perceptrons (MLPs), one for each prototype and each
transformation module. For the ResNet backbone, we use ResNet-20 for images smaller than 64× 64
and ResNet-18 otherwise. Each MLP has the same architecture, with two hidden layers of 128 units.

Spatial transformer module. To model spatial transformations of the prototypes, we follow the
spatial transformers developed by Jaderberg et al. [23]. The key idea is to model spatial transforma-
tions as a differentiable image sampling of the input using a deformed sampling grid. We use affine
T aff
β , projective T proj

β and thin plate spline T tps
β [2] transformations which respectively correspond to

6, 8 and 16 (a 4x4 grid of control points) parameters.

Color transformation module. We model color transformation with a channel-wise diagonal
affine transformation on the full image, which we write T col

β . It has 2 parameters for greyscale
images and 6 parameters for colored images. We first used a full affine transformation with 12
parameters, however the network was able to hide several patterns in the different color channels of
a single prototype (Appendix C.4). Note that a similar transformation was theoretically introduced
in capsules [28], but with the different goal of obtaining a color-invariant feature representation.
Deep feature-based approaches often handle color images with a pre-processing step such as Sobel
filtering [4, 24, 28]. We believe the way we align colors of the prototypes to obtain color invariance
in pixel space is novel, and it enables us to directly work with colored images without using any
pre-processing or specific invariant features.
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Morphological transformation module. We introduce a new transformation module to learn
morphological operations [16] such as dilation and erosion. We consider a greyscale image x ∈
RD of size U × V = D, we write x[u, v] the value of the pixel (u, v) for u ∈ {1, . . . , U} and
v ∈ {1, . . . , V }. Given a 2D region A, the dilation of x by A, DA(x) ∈ RD, is defined by
DA(x)[u, v] = max(u′,v′)∈A x[u + u′, v + v′] and its erosion by A, EA(x) ∈ RD, is defined by
EA(x)[u, v] = min(u′,v′)∈A x[u + u′, v + v′]. Directly learning the region A which parametrizes
these transformations is challenging, we thus propose to learn parameters (α, a) for the following
soft version of these transformations:

T mor
(α,a)(x)[u, v] =

∑
(u′,v′)∈W x[u+ u′, v + v′] · a[u+ u′, v + v′] · eαx[u+u′,v+v′]∑

(u′,v′)∈W a[u+ u′, v + v′] · eαx[u+u′,v+v′]
, (6)

where W is a fixed set of 2D positions, α is a softmax (positive values) or softmin (negative values)
parameter and a is a set of parameters with values between 0 and 1 defined for every position
(u′, v′) ∈W . Parameters a can be interpreted as an image, or as a soft version of the region A used
for morphological operations. Note that if a[u′, v′] = 1{(u′,v′)∈A}, when α → +∞ (resp. −∞),
it successfully emulates DA (resp. EA). In practice, we use a grid of integer positions around the
origin of size 7 × 7 for W . Note that since morphological transformations do not form a group,
transformation-invariant denomination is slightly abusive.

4.2 Training

We found that two key elements were critical to obtain good results: empty cluster reassignment and
curriculum learning. We then discuss further implementation details and computational cost.

Empty cluster reassignment. Similar to [4], we adopt an empty cluster reassignment strategy
during our clustering optimization. We reinitialize both prototype and deep predictor of "tiny" clusters
using the parameters of the largest cluster with a small added noise. In practice, the size of balanced
clusters being N/K, we define "tiny" as less than 20% of N/K.

Curriculum learning. Learning to predict transformations is a hard task, especially when the
number of parameters is high. To ease learning, we thus adopt a curriculum learning strategy by
gradually adding more complex transformation modules to the training. Given a target sequence of
transformations to learn, we first train our model without any transformation - or equivalently with an
identity module - then iteratively add subsequent modules once convergence has been reached. We
found this is especially important when modeling local deformations with complex transformations
with many parameters, such as TPS and morphological transformations. Intuitively, prototypes should
first be coarsely aligned before attempting to refine the alignment with more complex transformations.

Implementation details. Both clustering parameters and parameter prediction networks are learned
jointly and end-to-end using Adam optimizer [27] with a 10−6 weight decay on the neural network
parameters. We sequentially add transformation modules at a constant learning rate of 0.001 then
divide the learning rate by 10 after convergence - corresponding to different numbers of epochs
depending on the dataset characteristics - and train for a few more epochs with the smaller learning
rate. We use a batch size of 64 for real photograph collections and 128 otherwise.

Computational cost. Training DTI K-means or DTI GMM on MNIST takes approximately 50
minutes on a single Nvidia GeForce RTX 2080 Ti GPU and full dataset inference takes 30 seconds.
We found it to be much faster than directly optimizing transformation parameters (TI clustering) for
which convergence took more than 10 hours of training.

5 Experiments

In this section, we first analyze our approach and compare it to state-of-the-art, then showcase its
interest for image collection analysis and visualization.

5.1 Analysis and comparisons

Similar to previous work on image clustering, we evaluate our approach with global classification
accuracy (ACC), where a cluster-to-class mapping is computed using the Hungarian algorithm [29],
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Table 1: Comparisons. We report ACC and NMI in % on standard clustering benchmarks. Symbols
mark methods that use data augmentation (O) and manually selected features as input (§ for pretrained
features from best VaDE run, † for GIST features, ‡ for Sobel filters) and are thus not directly
comparable. For SVHN, we also report our results with our Gaussian weighted loss (?). Eval column
refers to the aggregate used: best run (max), average (avg) or run with minimal loss (minLoss).

MNIST MNIST-test USPS F-MNIST FRGC SVHN

Method Runs Eval ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

Clustering on a learned feature
DEC [48, 50] 9 max 86.3 83.4 85.6 83.0 76.2 76.7 51.8 54.6 37.8 50.5 -
InfoGAN [6, 41] 5 max 89.0 86.0 - - - - 61.0 59.0 - - -
VaDE [25, 50] 10 max 94.5 87.6 - - 56.6 51.2 57.8 63.0 - - -
ClusterGAN [41] 5 max 95.0 89.0 - - - - 63.0 64.0 - - -
JULE [49] 3 avg 96.4 91.3 96.1 91.5 95.0 91.3 56.3 60.8 46.1 57.4 -
DEPICT [10] 5 avg 96.5 91.7 96.3 91.5 96.4 92.7 39.2 39.2 47.0 61.0 -
DSCDAN [50] 10 avg 97.8 94.1 98.0 94.6 86.9 85.7 66.2 64.5 - - -

Clustering on a learned feature with data augmentation and/or ad hoc data representation
SpectralNet [44] 5 avg 97.1§ 92.4§ - - - - - - - - -
IMSAT [22] 12 avg 98.4O - - - - - - - - - 57.3O†

ADC [18] 20 avg 98.7O - - - - - - - 43.7O - 38.6O

SCAE [28] 5 avg 98.7O - - - - - - - - - 55.3‡

IIC [24] 5 avg 98.4O - - - - - - - - - -
5 minLoss 99.2O - - - - - - - - - -

Clustering on pixel values
K-means [38] 10 avg 54.8 50.2 55.9 51.2 65.3 61.2 54.1 51.4 22.7 26.5 12.2
GMM [9] 10 avg 54.2 51.7 55.6 54.7 66.0 60.9 49.7 51.2 24.2 27.9 11.6
DTI K-means 10 avg 97.3 94.0 96.6 94.6 86.4 88.2 61.2 63.7 39.6 48.7 36.4 / 44.5?

10 minLoss 97.2 93.8 98.0 95.3 89.8 89.5 57.4 64.1 41.1 49.7 39.6 / 62.6?

DTI GMM 10 avg 95.9 93.2 97.8 94.7 84.5 87.2 59.6 62.2 40.1 48.9 36.7 / 57.4?

10 minLoss 97.1 93.7 98.0 95.1 87.3 89.0 68.2 66.3 41.6 51.1 39.5 / 63.3?

(a) Prototypes learned for different datasets

(b) Transformations predicted for all prototypes for 4 MNIST images

Figure 2: Qualitative results. (a) compares prototypes learned from GMM and our DTI GMM, (b)
shows transformed prototypes given query samples from MNIST and highlight the closest prototype.

and Normalized Mutual Information (NMI). Datasets and corresponding transformation modules we
used are described in Appendix A.

Comparison on standard benchmarks. In Table 1, we report our results on standard image
clustering benchmarks, i.e. digit datasets (MNIST [31], USPS [17]), a clothing dataset (Fashion-
MNIST [47]) and a face dataset (FRGC [43]). We also report results for SVHN [42] where concurrent
methods use pre-processing to remove color bias. In the table, we separate representation-based from
pixel-based methods and mark results using data augmentation or manually selected features as input.
Note that our results depend on initialization, we provide detailed statistics in Appendix C.1.
Our DTI clustering is fully unsupervised and does not require any data augmentation, ad hoc features,
nor any hyper-parameter while performing clustering directly in pixel space. We report average
performances and performances of the minimal loss run which we found to correlate well with high
performances (Appendix C.2). Because this non-trivial criterion allows to automatically select a run
in a fully unsupervised way, we argue it can be compared to average results from competing methods
which don’t provide such criterion.
First, DTI clustering achieves competitive results on all datasets, in particular improving state-of-
the-art by a significant margin on SVHN and Fashion-MNIST. For SVHN, we first found that the
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Table 2: Augmented and specific datasets. Clustering
accuracy (%) with standard deviation for methods ap-
plied on raw images (no pre-processing). We used 10
runs for our method and 5 for the baselines.
Method Eval MNIST-1k MNIST-color affNIST-test

VaDE [25] avg 49.6 (5.6) 11.9 (1.2) Div.
IMSAT [22] avg 67.9 (2.3) 10.6 (0.1) 18.2 (2.6)
IIC [24] avg 63.4 (0.4) 10.6 (0.0) 57.6 (0.0)

minLoss 63.2 10.6 57.6

DTI K-means avg 79.8 (6.9) 96.7 (0.1) 95.5 (3.3)
minLoss 90.5 96.8 97.0

DTI GMM avg 80.8 (7.2) 96.0 (0.2) 93.3 (5.9)
minLoss 87.1 95.8 97.0

Table 3: Ablation study on MNIST.
Clustering accuracy (%) over 10 runs.

Method Avg MinLoss

DTI clustering (aff-morpho-tps) 97.3 97.2
ordering: aff-tps-morpho 95.5 96.9
ordering: morpho-aff-tps 27.5 97.0
w/o morphological 94.8 95.8
w/o thin plate spline 90.0 82.5
w/o affine 85.1 96.8
affine only 90.1 90.5
w/o empty cluster reassignment 80.9 78.6
w/o curriculum learning 83.9 78.9

TI clustering (aff-morpho-tps, 1 run) 26.3 26.3
TI clustering (affine only) 73.0 73.1

prototypes quality was harmed by digits on the side of the image. To pay more attention to the center
digit, we weighted the clustering loss by a Gaussian weight (σ = 7). It led to better prototypes and
allowed us to improve over all concurrent methods by a large margin. Compared to representation-
based methods, our pixel-based clustering is highly interpretable. Figure 2a shows standard GMM
prototypes and our prototypes learned with DTI GMM which appear to be much sharper than standard
ones. This directly stems from the quality of the learned transformations, visualized in Figure 2b.
Our transformation modules can successfully align the prototype, adapt the thickness and apply local
elastic deformations. More alignment results are available on our project webpage.

Augmented and specific datasets. DTI clustering also works on small, colored and misaligned
datasets. In Table 2, we highlight these strengths on specifics datasets generated from MNIST:
MNIST-1k is a 1000 images subset, MNIST-color is obtained by randomly selecting a color for the
foreground and background and affNIST-test2 is the result of random affine transformations. We used
an online implementation3 for VaDE [25] and official ones for IMSAT [22] and IIC [24] to obtain
baselines. Our results show that the performances of DTI clustering is barely affected by spatial and
color transformations, while baseline performances drop on affNIST-test and are almost chance on
MNIST-color. Figure 2a shows the quality and interpretability of our cluster centers on affNIST-test
and MNIST-color. DTI clustering also seems more data-efficient than the baselines we tested.

Ablation on MNIST. In Table 3, we conduct an ablation study on MNIST of our full model trained
following Section 4.2 with affine, morphological and TPS transformations. We first explore the effect
of transformation modules. Their order is not crucial, as shown by similar minLoss performances,
but can greatly affect the stability of the training, as can be seen in the average results. Each module
contributes to the final performance, affine transformations being the most important. We then
validate our training strategy showing that both empty cluster reassignment and curriculum learning
for the different modules are necessary. Finally, we directly optimize the loss of Equation 2 (TI
clustering) by optimizing the transformation parameters for each sample at each iteration of the batch
clustering algorithm, without using our parameter predictors. With rich transformations which have
many parameters, such as TPS and morphological ones, this approach fails completely. Using only
affine transformations, we obtain results clearly superior to standard clustering, but worse than ours.

5.2 Application to web images

One of the main interest of our DTI clustering is that it allows to discover trends in real image
collections. All images are resized and center cropped to 128×128. The selection of the number of
clusters is a difficult problem and is discussed in Appendix C.3.
In Figure 1c, we show examples of prototypes discovered in very large unfiltered sets (15k each) of
Instagram images associated to different hashtags4 using DTI GMM applied with 40 clusters. While
many images are noise and are associated to prototypes which are not easily interpretable, we show
prototypes where iconic photos and poses can be clearly identified. To the best of our knowledge, we
believe we are the first to demonstrate this type of results from raw social network image collections.

2https://www.cs.toronto.edu/~tijmen/affNIST/
3https://github.com/GuHongyang/VaDE-pytorch
4https://github.com/arc298/instagram-scraper was used to scrape photographs
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(a) Full sets of prototypes discovered with GMM and DTI GMM

(b) Examples of cluster centers and aligned images with DTI GMM (20 clusters)

Figure 3: Qualitative results on real photographs. (a) Clustering results from photographs of
different locations in [35] (1,089 Sacre Coeur top-left, 1,688 Trevi fountain top-right, 2,625 Notre-
Dame bottom-left) and 980 Baroque portraits from [26] (bottom-right). (b) Clustering results from
1,892 Florence cathedral images from [35]. Top row shows learned prototypes while the three bottom
rows show examples of images from each cluster and aligned prototypes. These clusters contain
respectively 44, 154, 134, 64, 71, 133, 85 and 64 images. The left six examples are successful clusters
while the two right clusters are relative failure cases.

Comparable results in AverageExplorer [52], e.g. on Santa images, could be obtained using ad hoc
features and user interactions, while our results are produced fully automatically.
Figure 3 shows qualitative clustering results on MegaDepth [35] and WikiPaintings [26]. Similar to
our results on image clustering benchmarks, our learned prototypes are more relevant and accurate
than the ones obtained from standard clustering. Note that some of our prototypes are very sharp: they
typically correspond to sets of photographs between which we can accurately model deformations,
e.g. scenes that are mostly planar, with little perspective effects. On the contrary, more unique
photographs and photographs with strong 3D effects that we cannot model will be associated to
less interpretable and blurrier prototypes, such as the ones in the last two columns of Figure 3b. In
Figure 3b, in addition to the prototypes discovered, we show examples of images contained in each
cluster as well as the aligned prototype. Even for such complex images, the simple combination of our
color and spatial modules manages to model real image transformations like illumination variations
and viewpoint changes. More web image clustering results are shown on our project webpage.

6 Conclusion
We have introduced an efficient deep transformation-invariant clustering approach in raw input space.
Our key insight is the online optimization of a single clustering objective over clustering parameters
and deep image transformation modules. We demonstrate competitive results on standard image
clustering benchmarks, including improvements over state-of-the-art on SVHN and Fashion-MNIST.
We also demonstrate promising results for real photograph collection clustering and visualization.
Finally, note that our DTI clustering framework is not specific to images and can be extended to other
types of data as long as appropriate transformation modules are designed beforehand.
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Broader Impact

The impact of clustering mainly depends on the data it is applied on. For instance, adding structure in
user data can raise ethical concerns when users are assimilated to their cluster, and receive targeted
advertisement and newsfeed. However, this is not specific to our method and can be said of any
clustering algorithm. Also note that while our clustering can be applied for example to data from
social media, the visual interpretation of the clusters it returns via the cluster centers respects privacy
much better than showing specific examples from each cluster.

Because our method provides highly interpretable results, it might bring increased understanding
of clustering algorithm results for the broader public, which we think may be a significant positive
impact.
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