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Abstract

This paper introduces Deep Statistical Solvers (DSS), a new class of trainable
solvers for optimization problems, arising e.g., from system simulations. The
key idea is to learn a solver that generalizes to a given distribution of problem
instances. This is achieved by directly using as loss the objective function of
the problem, as opposed to most previous Machine Learning based approaches,
which mimic the solutions attained by an existing solver. Though both types of
approaches outperform classical solvers with respect to speed for a given accuracy,
a distinctive advantage of DSS is that they can be trained without a training
set of sample solutions. Focusing on use cases of systems of interacting and
interchangeable entities (e.g. molecular dynamics, power systems, discretized
PDEs), the proposed approach is instantiated within a class of Graph Neural
Networks. Under sufficient conditions, we prove that the corresponding set of
functions contains approximations to any arbitrary precision of the actual solution
of the optimization problem. The proposed approach is experimentally validated
on large linear problems, demonstrating super-generalisation properties; And on
AC power grid simulations, on which the predictions of the trained model have a
correlation higher than 99.99% with the outputs of the classical Newton-Raphson
method (known for its accuracy), while being 2 to 3 orders of magnitude faster.

1 Introduction

In many domains of physics and engineering, Deep Neural Networks (DNNs) have sped up sim-
ulations and optimizations by orders of magnitude, replacing some computational bricks based
on first principles with data-driven numerical models – see e.g., [1, 2, 3, 4]. However, in general,
such data-driven approaches consist in training a proxy in a supervised way, to imitate solutions
provided by some numerical solver. This is sometimes infeasible due to the high computational cost
of existing simulators (e.g., molecular dynamics, car crash simulations, computational fluid dynamics,
and power grid simulation). Furthermore, such approaches ignore problem-specific considerations
and may end up providing inconsistent solutions, failing to satisfy physical laws such as energy
conservation (which can only be a posteriori checked, see e.g. [4]). In order to bypass this weakness,
a growing body of work pushes towards an interplay between physics and Machine Learning [5, 6],
e.g., incorporating physical knowledge in the loss function during learning [7, 8].
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Another important property of natural or artificial systems is that of invariance, a fundamental concept
in science, allowing to generalize conclusions drawn from few observations, to whole invariance
classes. This work focuses on permutation-invariant problems, which appear in simulations of
complex systems of interacting and interchangeable entities [9] (e.g., molecular dynamics, power
grids, simulations of partial differential equations (PDEs) with finite elements). Invariance has made
its way in machine learning, as illustrated by the success of Convolutional Neural Networks (CNN)
[10, 11], and of Graph Neural Networks (GNN) [12, 13]. In particular, implementations of GNNs
successfully handle materials dynamics simulations [14], power systems [15], interacting particles
[16] and classical [17] or quantum [18] chemistry. However, all of these works pertain to the proxy

approach described above.

Our first contribution is to propose, at the interface of optimization and statistics, the Statistical
Solver Problem (SSP), a novel formulation for learning to solve a whole class of optimization and
system simulation problems. The resulting framework i) directly minimizes the global loss function
of the problems during training, thus not requiring any existing solution of the problems at hand,
and ii) directly incorporates permutation-invariance in the representation of the problems using a
GNN-based architecture, called Deep Statistical Solver (DSS). Our second contribution is to prove
that DSS satisfies some Universal Approximation property in the space of SSP solutions. The third
contribution is an experimental validation of the approach.

The outline of the paper is the following. Section 2 sets the background, and defines SSPs. Section
3 introduces Deep Statistical Solvers. Section 4 proves the Universal Approximation property for
permutation-invariant loss functions (and some additional hypotheses). Section 5 experimentally
validates the DSS approach, demonstrating its efficiency w.r.t. state-of-the-art solvers, and unveiling
some super-generalization capabilities. Section 6 concludes the paper.

2 Definitions and Problem Statement

This section introduces the context (notations and definitions) and the research goal of this work: The
basic problem is, given a network of interacting entities (referred to later as Interaction Graph), to
find a state of the network that minimizes a given loss function; From thereon, the main goal of this
work is to learn a parameterized mapping that accurately and quickly computes such minimizing
state for any Interaction Graph drawn from a given distribution.

2.1 Notations and Definitions

Notations Throughout this paper, for any n 2 N, [n] denotes the set {1, . . . , n}; ⌃n is the set of
permutations of [n]; for any � 2 ⌃n, any set ⌦ and any vector x = (xi)i2[n] 2 ⌦n, � ? x is the
vector (x��1(i))i2[n]; for any � 2 ⌃n and any matrix m = (mij)i,j2[n] 2 Mn(⌦) (square matrices
with elements in ⌦), � ?m is the matrix (m��1(i)��1(j))i,j2[n].

Figure 1: A sample Inter-
action Graph (2,A,B)

Interaction Graphs We call Interaction Graph a system of n 2 N
interacting entities, or nodes, defined as G = (n,A,B), where n is the
size of G (number of nodes), A = (Aij)i,j2[n];Aij 2 RdA ; dA � 1
represents the interactions between nodes, and B = (Bi)i2[n];Bi 2
RdB , dB � 1 are some local external inputs at each node. Let GdA,dB

be the set of all such Interaction Graphs and simply G when there is no
confusion. For any � 2 ⌃n and any Interaction Graph G = (n,A,B),
� ?G denotes the Interaction Graph (n,� ?A,� ?B).

Interaction Graphs can also be viewed as "doubly weighted" graphs, i.e., graphs with weights on
both the edges (weights Aij) and the nodes (weights Bi), considering that those weights are vectors.
For a given G, we will also consider the underlying undirected unweighted graph eG for which links
between nodes i and j exist iff either Aij or Aji is non-zero1. We will use the notion of neighborhood
induced by eG: j 2 N (i;G) iff i and j are neighbors in eG (and N ?(i;G) will denote N (i;G)\{i}).

States and Loss Functions Vectors U = (Ui)i2[n];Ui 2 RdU , dU � 1 represent states of Interaction
Graphs of size n, where Ui is the state of node i. UdU denotes the set of all such states (U when there

1A more rigorous definition of the actual underlying graph structure is deferred to Appendix A
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is no confusion). A loss function ` is a real-valued function defined on pairs (U,G), where U is a
state of G (i.e., of same size).

Permutation invariance and equivariance A loss function on Interaction Graph G of size n is
permutation-invariant if for any � 2 ⌃n, `(� ?U,� ?G) = `(U,G).
A function F from G to U , mapping an Interaction Graph G of size n on one of its possible states U
is permutation-equivariant if for any � 2 ⌃n, F(� ?G) = � ? F(G).

2.2 Problem Statement

The Optimization Problem In the remaining of the paper, ` is a loss function on Interaction Graphs
G 2 G that is both continuous and permutation-invariant. The elementary question of this work is to
solve the following optimization problem for a given Interaction Graph G:

U
?(G) = argmin

U2U
`(U,G) (1)

The Statistical Learning Goal We are not interested in solving problem (1) for just ONE Interaction
Graph, but in learning a parameterized solver, i.e., a mapping from G to U , which solves (1) for
MANY Interaction Graphs, namely all Interaction Graphs G sampled from a given distribution D
over G. In particular, D might cover Interaction Graphs of different sizes. Let us assume additionally
that D and ` are such that, for any G 2 supp(D) (the support of D) there is a unique minimizer
U
⇤(G) 2 U of problem (1). The goal of the present work is to learn a single solver that best

approximates the mapping G 7! U
⇤(G) for all G in supp(D). More precisely, assuming a family of

solvers Solver✓ parameterized by ✓ 2 ⇥ (Section 3 will introduce such a parameterized family of
solvers, based on Graph Neural Networks), the problem tackled in this paper can be formulated as a
Statistical Solver Problem (SSP):

SSP(G,D,U , `)
(

Given distribution D on space of Interaction Graphs G, space of states U ,
and loss function `, solve ✓

? = argmin
✓2⇥

EG⇠D [` (Solver✓(G),G)] (2)

Learning phase In practice, the expectation in (2) will be empirically computed using a finite number
of Interaction Graphs sampled from D, by directly minimizing ` (i.e., without the need for any U

?

solution of (1)). The result of this empirical minimization is a parameter b✓.

Inference The solver Solverb✓ can then be used, at inference time, to compute, for any G 2 supp(D),
an approximation of the solution U

?(G)

bU(G) = Solverb✓(G) (3)

Solving problem (1) has been replaced by a simple and fast inference of the learned model Solverb✓
(at the cost of a possibly expensive learning phase).

Figure 2: Proxy approach (a) vs.
DSS (b)

Discussion The SSP experimented with in Section 5.2
addresses the simulation of a Power Grid, a real-world
problem for which the benefits of using the proposed ap-
proach becomes clear. Previous work [19] used a "proxy"
approach, which consists in learning from known solutions
of the problem, provided by a classical solver. The training
phase is sketched on Figure 2.a. The drawback of such an
approach is the need to gather a huge number of training
examples (i.e., solutions of problem (1)), something that
is practically infeasible for complex problems: either such
solutions are too costly to obtain (e.g., in car crash simu-
lations), or there is no provably optimal solution (e.g., in
molecular dynamics simulations). In contrast, since the
proposed approach directly trains Solver✓ by minimizing
the loss ` (Figure 2.b), no such examples are needed.
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Figure 3: Graph Neural Network implementation of a DSS

3 Deep Statistical Solver Architecture

In this section, we introduce the class of Graph Neural Networks (GNNs) that will serve as DSSs.
The intuition behind this choice comes from the following property (proof in Appendix B.2):
Property 1. If the loss function ` is permutation-invariant and if for any G 2 supp(D) there exists a

unique minimizer U
⇤(G) of problem (1), then U

⇤
is permutation-equivariant.

Graph Neural Networks, introduced in [20], and further developed in [21, 22] (see also the recent
surveys [13, 23]), are a class of parameterized permutation-equivariant functions. Therefore, they
seem to be good candidates to build SSP solutions, since Property 1 states that the ideal solver U⇤ is
permutation-equivariant (this will be confirmed by Corollary 1).

Overall architecture There are many possible implementations of GNNs, but whatever the chosen
type, it is important to make room for information propagation throughout the whole network (see also
Section 4). Hence the choice of an iterative process that acts on a latent state H 2 Ud;Hi 2 Rd

, d � 1
for k iterations (d and k are hyperparameters). For a node i 2 [n], the latent state Hi can be seen as
an embedding of the actual state Ui.

The overall architecture is described in Figure 3. All latent states in H
0 are initialized to a zero vector.

The message passing step performs k updates on the latent state variable H using M
k
✓ , spreading

information using interaction coefficients A and external inputs B of G (eq. 5–8). After each update,
latent state H

k is decoded into a meaningful actual state bUk (eq. 9). The last state bUk is the actual
output of the algorithm bU. However, in order to robustify learning, all intermediate states bUk are
taken into account in the training loss through a discounted sum with hyperparameter � 2 [0, 1]:

Training Loss =
kX

k=1

�
k�k

`(bUk
,G) (4)

Message passing M
k
✓ For each node i, three different messages are computed, �k

!,✓,�
k
 ,✓,�

k
 ,✓,

corresponding to outgoing, ingoing and self-loop links, respectively using trainable mappings
�k
!,✓,�

k
 ,✓,�

k
 ,✓, as follows:

�
k
!,i =

X

j2N?(i;G)

�k
!,✓(H

k�1
i , Aij , H

k�1
j ) outgoing edges (5)

�
k
 ,i =

X

j2N?(i;G)

�k
 ,✓(H

k�1
i , Aji, H

k�1
j ) ingoing edges (6)

�
k
 ,i = �

k
 ,✓(H

k�1
i , Aii) self loop (7)

Latent states Hk
i are then computed using trainable mapping  k

✓ , in a ResNet-like fashion:

H
k = M

k
✓(H

k�1
,G) := (Hk

i )i2[n], with H
k
i = H

k�1
i + k

✓(H
k�1
i , Bi,�

k
!,i,�

k
 ,i,�

k
 ,i) (8)

Decoding The decoding step applies the same trainable mapping ⌅k
✓ to every node:

bUk = D
k
✓(H

k) = (⌅k
✓(H

k
i ))i2[n] (9)

Training All trainable blocks �k
!,✓,�

k
 ,✓,�

k
 ,✓ and  k

✓ for the message passing phase, and ⌅k
✓

for the decoding phase, are implemented as Neural Networks. They are all trained simultaneously,
backpropagating the gradient of the training loss of eq. (4) (see details in Section 5).
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Number of propagation steps Our current implementation choice is to consider different neural
network blocks at each propagation step. The underlying intuition is that the nature of information
exchange does not have to be the same at the beginning and at the end of the process. This comes
at the expense of a fixed amount of propagation steps k. However, future work will include the
investigation of a Recurrent Graph Neural Network architecture, drawing inspiration from [24]. This
would allow for an adaptive number of steps k, and a much lighter model.

Inference Complexity Assuming that each neural network block has a single hidden layer with
dimension d, that d � dA, dB , dU , and denoting by m the average neighborhood size, one inference
has computational complexity of order O(mnkd

3), scaling linearly with n. Furthermore, many
problems involve very local interactions, resulting in small m. However, one should keep in mind
that hyperparameters k and d should be chosen according to the charateristics of distribution D. If
we can compute the maximal diameter of any G 2 supp(D) (e.g., if D is a database of the history of
the Californian power grid), one should choose a larger value for k (see Corollary 1). Similarly, if
one is working with data that have very large dA and dB , one may want to choose a sufficiently large
value for d to let information flow properly.

Equivariance The proposed architecture defines permutation-equivariant DSS (see Appendix B.1).

4 Deep Statistical Solvers are Universal Approximators for SSPs Solutions

This Section proves, heavily relying on work by [25], a Universal Approximation Theorem for the
class of DSSs with Lipschitz activation function (e.g. ReLU) in the space of the solutions of SSPs.
The space of Interaction Graphs is a metric space for the distance

d(G,G
0) = kA�A

0k+ kB�B
0k if n = n

0 and +1, otherwise

Universal Approximation Property Given metric spaces X and Y , a set of continuous functions
H ⇢ {f : X ! Y} is said to satisfy the Universal Approximation Property (UAP) if it is dense in
the space of all continuous functions C(X ,Y) (with respect to the uniform metric).
Denote by Hdout

din
a set of neural networks from Rdin to Rdout , for which the UAP holds. It is known

since [26] that the set of neural networks with at least one hidden layer, an arbitrarily large amount of
hidden neurons, and an appropriate activation function, satisfies these conditions.

Hypothesis space Let k 2 N. We denote by Hk the set of graph neural networks defined in Section
3 such that k  k, d 2 N and for any k = 1, . . . , k, we consider all possible �k

!,✓,�
k
 ,✓ 2 Hd

dA+2d,
�k
 ,✓ 2 Hd

dA+d,  k
✓ 2 Hd

dB+4d and ⌅k
✓ 2 HdU

d .

Diameter of an Interaction Graph Let G = (n,A,B) 2 G, and let eG be its undirected and
unweighted graph structure, as defined in Section 2.1. We will write diam(G) for diam( eG), the
diameter of eG [27].

Hypotheses over distribution D We introduce the four following hypotheses over supp(D):
• Permutation-invariance. For any G 2 supp(D) and � 2 ⌃n, � ?G 2 supp(D);
• Compactness. supp(D) is a compact subset of G;
• Connectivity. For any G 2 supp(D), eG has only one connected component;
• Separability of external inputs. There exist � > 0 such that for any G = (n,A,B) 2

supp(D) and any i 6= j 2 [n], kBi �Bjk � �.

The compactness implies that there is an upper bound n over the size n of Interaction Graphs in
supp(D). Also, these hypotheses imply that there is a finite upper bound on the diameters of all Gs.
In the following, � will denote such upper bound. We denote by Ceq.(supp(D)) the set of continuous
and permutation-equivariant functions over supp(D).
Theorem 1. Let D be a distribution over G for which the above hypotheses hold.

Then if k � �+ 2, Hk
is dense in Ceq.(supp(D)).

Sketch of the proof (see Appendix B.3 for all details) Still following [25], we first prove a modified
version of the Stone-Weierstrass theorem for equivariant functions. This theorem guarantees that
a certain subalgebra of functions is dense in the set of continuous and permutation-equivariant
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functions if it separates non-isomorphic Interaction Graphs. Following the idea of [26], we extend the
hypothesis space to ensure closure under addition and multiplication. We then prove that the initial
hypothesis space is dense in this new subalgebra. Finally, we conclude the proof by showing that the
separability property mentioned above is satisfied by this newly-defined subalgebra.
Corollary 1. Let D be a distribution over G for which the above hypotheses hold. Let ` be a

continuous and permutation-invariant loss function such that for any G 2 supp(D), problem (1)

has a unique minimizer U
⇤(G), continuous w.r.t G. Then 8 ✏ > 0, 9 Solver✓ 2 H�+2

, such that

8G 2 supp(D), kSolver✓(G)�U
⇤(G)k  ✏

This corollary is an immediate consequence of Theorem 1 and ensures that there exists a DSS using
at most�+2 propagation updates that approximates with an arbitrary precision for all G 2 supp(D)
the actual solution of problem (1). This is particularly relevant when considering large Interaction
Graphs that have small diameters.

Discussion: This universal approximation theorem does not offer any guarantee of convergence
toward the ideal solver U⇤ – but there hardly exist such convergence guarantees in the field of
Deep Learning. However, this non-trivial result provides a solid theoretical ground to the proposed
approach by proving its consistency.

5 Experiments

This section investigates the behavior and performances of DSSs on two SSPs. The first one amounts
to solving linear systems, though the distribution of problems is generated from a discretized Poisson
PDE. The second is the (non-quadratic) AC power flow computation. With respect to the hypotheses
of the theoretical results in Section 4, the continuity and the permutation invariance conditions are
satisfied in both cases, while the uniqueness can only be proven for the linear system. However it is
very likely to hold for many problems.

In all cases, the dataset is split into training/validation/test sets. All free hyperparameters2 are tuned
by trial and errors using the validation set, and all results presented are results on the test set. We
also compare the DSS to the proxy approach: the architecture is strictly the same, but the loss function
used during training is the distance to the “ground truth” (provided by the LU or Newton-Raphson
methods). Training is performed using the Adam optimizer [28] with the standard hyperparameters of
TensorFlow 1.14 [29], running on an Nvidia GeForce RTX 2080 Ti. Gradient clipping is used to avoid
exploding gradient issues. In the following, all experiments were repeated three times, with the
same datasets and different random seeds (as reported in Tables 1 and 2). In all experiment and
for both the DSS and the proxy approaches, we only report the results of the worst of the three trained
models. Our code is in the supplementary materials3, and links to the datasets are in references.

The main metrics for our experiments are the Pearson correlation and the normalised RMSE (NRMSE)
with the output of the classical optimization method (i.e. LU in the linear case and Newton-Raphson
in the AC Power Flow problems). The NRMSE is computed by dividing the RMSE by the difference
of the highest and the lowest values (dividing by the mean for data centered around zero would make
no sense). The value of the loss function ` is computed over the whole test set: the 10th and 90th

percentiles as well as the median are reported.

5.1 Solving Linear Systems from a Discretized PDE

Problem, and goals of experiments The example SSP considered here comes from the Finite
Element Method applied to solve the 2D Poisson equation, one of the simplest and most studied PDE
in applied mathematics: the geometry of the domain of the equation is discretized into an unstructured
mesh, and computing the vector U of solution values at each node of the mesh amounts to solving
a linear system AU = B obtained by assembling local equations [30]. A and B encode both the
geometry of the problem and the boundary conditions.
For illustration purposes, the Poisson equation can be used to model a field of temperature. In Figure
4, the geometry (house profile) is shown in the Top Left. The result of the optimization is the field of

2Ranges of tested hyperparameters : d 2 [5, 20], k 2 [10, 40], hidden layers 2 [1, 2], ↵ 2 [1e-1, 1e-4] (see
Appendix E), non linearity 2 {tanh, leaky_ReLU}, lr 2 [1e-1, 1e-4], � 2 {0, 0.5, 0.9, 1}.

3code also available at https://github.com/bdonon/DeepStatisticalSolvers
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Figure 4: Intermediate losses and predictions - Top left: the structure graph eG (the mesh); Top
right: the LU solution; Bottom: evolution of the loss along the k = 30 updates for a trained DSS, at
inference time. The intermediate predictions bUk are displayed for several values of k.

Method DSS Proxy LU BGS (tol=1e-3)
Correlation w/ LU >99.99% >99.99% - -
NRMSE w/ LU 1.6e-3 1.1e-3 - -
Time per instance (ms)

⇤Inference time divided by batch size 1.8⇤ 1.8⇤ 2.4 2.3

Loss 10th percentile 3.9e-4 7.0e-3 4.5e-27 1.3e-3
Loss 50th percentile 1.2e-3 1.6e-2 6.1e-26 1.7e-2
Loss 90th percentile 4.1e-3 4.0e-2 6.3e-25 1.1e-1

Table 1: Solving specific linear systems – for similar accuracy, DSS is faster than the iterative BGS
thanks to GPU parallelism, while highly correlated with the "exact" solution as given by LU.

temperature everywhere in the house (shown in the Top Right).
This problem is easily set as an SSP in which each node i corresponds to a node of the mesh, all
parameters are scalars (dA = dB = dU = 1), and the loss function is the following:

`(U,G)=
P

i2[n](
P

j2[n] AijUj�Bi)2 (10)

It is clearly permutation-invariant and satisfies both the unicity of the solution and the continuity
conditions evoked in Corollary 1. Our goal here is of course not to solve the Poisson equation, nor is
it to propose a new competitive method to invert linear systems. As a matter of fact, the proposed
approach does not make use of the linearity of the problem. Our goal is actually twofold: i) validate
the DSS approach in high dimension (n ⇡ 500 nodes), and ii) analyze how DSS learns the distribution
D. Here, the distribution D is defined by the specific structure of linear systems that result from
the discretization of the Poisson equation. In particular, we will carefully study the generalization
capability of the learned model in terms of problem size, for similar problem structures.

Experimental conditions The dataset [31] consists of 96180/32060/32060 training/validation/test
examples from the distribution generated from the discretization of the Poisson equation: randomly
generated 2D geometries and random values for the second-hand function f and boundary condition
g are used to compute the As and Bs. Their number of nodes n are around 500 (max 599) (automatic
mesh generators do not allow a precise control of n).
The number of updates k is set to 30 (average diameter size for the considered meshes). Each NN
block has one hidden layer of dimension d = 10 and a leaky-ReLU non linearity; we have ↵ = 1e-3,
lr = 1e-2 and � = 0.9. The complete DSS has 49, 830 weights. Training is done for 280, 000
iterations (48h) with batch size 100.
Two baseline methods are considered [32], the direct LU decomposition, that could be considered
giving the "exact" solution for these sizes of matrices, and the iterative Biconjugate Gradient Stabilized
methods (BGS), with stopping tolerances of 10�3. These algorithms are run on an Intel Xeon
Silver 4108 CPU (1.80GHz) (GPU implementations were not available, they could decrease LU
computational cost by a factor 6 [33]).

Results Table 1 displays comparisons between a trained DSS and the baselines. First, these results
validate the approach, demonstrating that DSS can learn to solve 500 dimensional problems rather
accurately, and in line with the "exact" solutions as provided by the direct method LU (99.99%
correlation). Second, DSS is slighly but consistently faster than the iterative method BGS for similar
accuracy (a tunable parameter of BGS). Further work will explore how DSS scales up in much higher
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dimensions, in particular when LU becomes intractable. We observe similar results for the proxy
approach. Figure 4 illustrates, on a hand-made test example (the mesh is on the upper left corner),
how the trained DSS updates its predictions, at inference time, along the k updates. The flow of
information from the boundary to the center of the geometry is clearly visible.

But what did exactly the DSS learn? Next experiments are concerned with the super-generalization
capability of DSSs, looking at their results on test examples sampled from distributions departing
from the one used for learning.

Figure 5: Varying problem
size n: Correlation (DSS, LU)

Super-Generalization We now experimentally analyze how well a
trained model is able to generalize to a distribution D that is different
from the training distribution. The same data generation process
that was used to generate the training dataset (see above) is now
used with meshes of very different sizes, everything else being equal.
Whereas the training distribution only contains Interaction Graphs of
sizes around 500, out-of-distribution test examples have sizes from
100 and 250 (left of Figure 5) up to 750 and 1000 (right of Figure 5).
In all cases, the trained model is able to achieve a correlation with
the "true" LU solution as high as 99.99%. Interestingly, the trained
DSS achieves a higher correlation with the LU solutions for data
points with a lower number of nodes, while the correlation of the
proxy model decreases when n both increases and decreases. Further experiments with even larger
sizes are needed to reach the upper limit of such a super generalization. Nevertheless, thanks to the
specific structure dictated to the linear system by the Poisson equation, DSS was able to perform
some kind of zero-shot learning for problems of very different sizes.
Other experiments (see Appendix C) were performed by adding noise to A and B. The performance
of the trained model remains good for small noise, then smoothly degrades as the noise increases.

5.2 AC power flow experiments

Problem and goals of experiments The second SSP example is the AC power flow prediction. The
goal is to compute the steady-state electrical flows in a Power Grid, an essential part of real-time
operations. Knowing the amount of power that is being produced and consumed throughout the grid
(encoded into B, and assumed to be consistent, i.e., production equates consumption), and the way
power lines are interconnected, as well as their physical properties (encoded into A), the goal is
to compute the voltage defined at each electrical node Vi = |Vi|ej✓i (j denotes the imaginary unit),
which we encode in the states U. Kirchhoff’s law (energy conservation at every node) governs this
system, and its violation is directly used as loss function `. Moreover, some constraints over the states
U are here relaxed and included as an additional term of the loss (with factor �). One should also
keep in mind that the main goal is to predict power flows, and not the voltages per se: Both aspects
will be taken into account by measuring the correlation w.r.t |Vi|, ✓i, Pij (real part of power flow) and
Qij (imaginary part). This problem is highly non-linear, and a substantial overview is provided in
[34]. This set of complex equations can be converted into a SSP using A, B and U as defined above
(dA = 2, dB = 5, dU = 2), and loss function `:

`(U,G)=
P

i2[n](1�B
5
i )(�B1

i +U1
i

P
j2[n] A

1
ijU

1
j cos(U2

i �U
2
j�A

2
ij))

2

+
P

i2[n] B
3
i (�B2

i +U1
i

P
j2[n] A

1
ijU

1
j sin(U2

i �U
2
j�A

2
ij))

2
+�

P
i2[n](1�B

3
i )(U1

i �B
4
i )

2 (11)

More details about the conversion from classical power systems notations to this set of variables is
provided in Appendix D. This loss is not quadratic, as demonstrated by the presence of sinusoidal
terms. One can notice the use of binary variables B3

i and B
5
i . Since both A and B vary across the

dataset, the problem is largely non-linear with regards to the inputs.

Experimental conditions Experiments are conducted on two standard benchmarks from the Learning

to Run a Power Network competition [35]: IEEE case14 [36] (n = 14), and IEEE case118 [37] (n =
118). In order to increase the diversity in terms of grid topology (encoded in A), for each example,
one (resp. two) randomly chosen power lines are disconnected with probability 25% (resp. 25%).
For case14 (resp. case118), the dataset is split into 16064/2008/2008 (resp. 18432/2304/2304).

Each NN block has a single hidden layer of dimension d = 10 and a leaky-ReLU non linearity. For
case14 (resp. case118), k was set to 10 (resp. 30) ; we have ↵ = 1e-2, lr = 3e-3 and � = 0.9 (resp.
↵ = 3e-4, lr = 3e-3 and � = 0.9). The number of weights is 1, 722 for each of the k (M, D) blocks,
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Dataset IEEE 14 nodes IEEE 118 nodes
Method DSS Proxy NR DSS Proxy NR
Corr. w/ NR |Vi| 99.93% >99.99% - 99.79% >99.99% -

✓i 99.86% >99.99% - 81.31% >99.99% -
Pij >99.99% >99.99% - >99.99% >99.99% -
Qij >99.99% >99.99% - >99.99% >99.99% -

NRMSE w/ NR |Vi| 2.0e-3 4.9e-4 - 1.4e-3 1.2e-3 -
✓i 7.1e-3 1.7e-3 - 5.7e-2 4.5e-3 -
Pij 6.2e-4 2.6e-4 - 1.0e-3 3.9e-4 -
Qij 4.2e-4 2.0e-4 - 1.1e-4 1.7e-4 -

Time per instance (ms)
⇤Inference time divided by batch size 1e-2⇤ 1e-2⇤ 2e1 2e-1⇤ 2e-1⇤ 2e1

Loss 10th percentile 4.2e-6 2.3e-5 1.4e-12 1.3e-6 6.2e-6 2.9e-14
Loss 50th percentile 1.0e-5 4.0e-5 2.1e-12 1.7e-6 8.3e-6 4.2e-14
Loss 90th percentile 4.4e-5 1.2e-4 3.3e-12 2.5e-6 1.3e-5 6.4e-14

Table 2: Solving specific AC power flow– our trained DSS models are highly correlated with the
Newton-Raphson solutions, while being 2 to 3 orders of magnitude faster thanks to GPU parallelism.

hence 17, 220 (resp. 51, 660) in total. Training is done for 883, 000 (resp. 253000) iterations with
batch size 1, 000 (resp. 500), and lasted 48h.

State-of-the-art AC power flow computation uses the Newton-Raphson method, used as baseline here
([38] implementation, on an Intel i5 dual-core (2.3GHz)). To the best of our knowledge, no GPU
implementation was available, although recent work [39, 40] investigate such an avenue.

Results In both cases, correlations between power flows output by the trained DSSs and the Newton-
Raphson method are above 99.99% (both real Pij and imaginary Qij). The same can be said of
the proxy models. However, one can observe a less satisfactory correlation in terms of |Vi| and ✓i

for the DSSs while the proxies maintain a correlation higher than 99.99%. This can be explained
by the fact that the DSSs minimizes power mismatches while the proxies minimize the distance
to the Newton-Raphson output in terms of |Vi| and ✓i. However, this does not impact the quality
of the power flow prediction, and one should keep in mind that the DSSs learn without any labels,
contrarily to the proxies. Table 2 shows the huge acceleration of DSS (by two orders of magnitude)
over Newton-Raphson, at the cost of an important decrease in accuracy, although both methods output
very similar power flows (correlation higher than 99.99%).

6 Conclusions and Future Work

This paper proposes a novel paradigm that blends statistics and optimization, Statistical Solver
Problems. In the SSP framework, a single solver is trained to solve a family of problem instances
sampled from a given distribution of optimization problems, possibly arising from system simulations.
Such training is performed by directly minimizing the loss of the optimization problems at hand. In
particular, no existing solutions (obtained from costly simulations) are needed for training. The DSSs
proposed in this paper, as a particular embodiment of the new proposed framework, is a class of Graph
Neural Network, well suited to solving SSPs for which the loss function is permutation-invariant, and
for which we theoretically prove some universal approximation properties.

The effectiveness of DSSs are experimentally demonstrated on two problems. Even though experi-
ments on more complex problems are required, the proposed approach shows a good compromise
between accuracy and speed in dimensions up to 500 on these two sample problems: solving linear
systems, and the non-linear AC power flow. The accuracy on power flow computations matches that
of state-of-the-art approaches while speeding up calculations by 2 to 3 orders of magnitude. Our DSS
method could also be used as an initialization heuristic for classical optimization algorithms.

Future work will focus on incorporating discrete variables in the state space, and integrating con-
straints by casting them into a bilevel optimization problem (using two successive DSS that are
trained jointly). Other avenues for research concern further theoretical improvements to investigate
convergence properties of the DSS approach, in comparison to other solvers, as well as investigations
on the limitations of the approach.
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Broader Impact

This work introduces an original approach to solving permutation-invariant problems defined on a
graph. The proposed approach is agnostic w.r.t. the practical problem it is applied to. As such, no
direct poor societal consequences of this work are to be feared. However, and this is an issue that
goes beyond this particular work, it can be applied to critical industrial problems, as demonstrated
with the power grid experiments we use to illustrate and validate the approach in Section 5.2: in such
context, it is important to ensure by design (i.e., in the definition of the search space and the objective
function) that the proper constraints are applied to avoid detrimental solutions. Being able to validate
the obtained solution is a problem-specific issue, but validating the whole approach is the holy grail
of such work, and is by now out of reach.
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