
Appendix

A Lower Bound Results

We list all the results for the lower bound here.

A.1 The Lower Bound Value Iteration

Similar to upper bound, the general algorithm for lower bound iteratively finds the lower envelope of
the previous points estimation q

t,i
.

Q
t

= arg min
Q∈F

{
Rµ0,π

[Q], s.t. Q(xi) ≥ qt,i, ∀i ∈ [n]
}

q
t+1,i

= BπQ
t
(xi), ∀i ∈ [n].

(18)

For Lipschitz functions, this yields a simple closed form solution.

Proposition A.1. Suppose µ0,π is a full-support distribution over S ×A. Consider the optimization
in (18) with F = Fη in (8). We have

Q
t
(x) = max

j∈[n]
(q
t,j
− ηd(x, xj)),

q
t+1,i

= BπQ
t
(xi), ∀i ∈ [n].

(19)

A.2 Convergence Results

Similar to Theorem 3.2, we have a similar monotonic result for lower bound case.

Theorem A.2. Following the update in (11) starting from

q
0,i

=
1

1− γ
(
ri − γηEx′

i∼Tπ(·|xi)[d(xi, x
′
i)]
)
, (20)

we have
Q
t
� Q

t+1
� Qπ, ∀t = 0, 1, 2, . . . , (21)

where Qπ = arg minQ∈F{R[Q], s.t. Q(xi) ≥ BπQ(xi), ∀i ∈ [n]}. Therefore,

Rµ0,π [Q
t
] ≤ Rµ0,π [Q

t+1
] ≤ RπF ≤ Rπ,

and limt→∞Rµ0,π
[Q

t
] = RπF .

Similar to the linear convergence property of the upper bound case, we can establish a fast linear
convergence rate for the updates in (11).

Proposition A.3. Following the updates in (11), we have

RπF −Rµ0,π
[Q

t
] ≤ C γt

1− γ
,

with constant C := maxi∈[n] |q1,i − q0,i|.

B Proofs

We focus on the proofs for upper bounds, all the lower bound proofs follows similarly.

We establish the monotonic convergence of the iterative update in section 3.2. We start with the result
for general function spaces F and then apply it to the case of Lipschitz functions space, where F can
ensure that the optimization in (9) is solved by a properly defined upper envelope function.
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Definition B.1. Given a function space F on domain Ω and a set of data points (xi, fi)
n
i=1 ⊆ Ω×R,

we define the upper envelope function g : Ω→ R of data points (xi, fi)
n
i=1 on F to be

g(x) = ENVF ({xi, fi})(x) := sup
f∈F
{f(x) : s.t. f(xi) ≤ fi, ∀i ∈ [n]}, ∀x ∈ Ω.

We say that F is upper-self-contained if it is closed (under the infinity norm), and the upper envelope
function g : Ω → R is contained in F for any data points (xi, fi) that satisfies inff∈F{f(xi)} ≤
fi, ∀i ∈ [n].

Similarly, we define the lower envelope function g : Ω→ R of data points (xi, fi)
n
i=1 on F to be

g(x) = ENVF ({xi, fi})(x) := inf
f∈F
{f(x) : s.t. f(xi) ≥ fi, ∀i ∈ [n]}, ∀x ∈ Ω.

We say that F is lower-self-contained if it is closed (under the infinity norm), and the lower envelope
function g : Ω→ R is contained in F for any data points (xi, fi) that satisfies supf∈F{f(xi)} ≥
fi, ∀i ∈ [n].

Similar to contractive operator proof in value iteration, we also define the contractive property of
upper/lower envelope operator ENVF and ENVF .

Definition B.2. We say ENVF and ENVF are contractive if for two different sets of points data
{xi, pi}ni=1 and {xi, qi}ni=1, we have,

‖ENVF ({xi, pi}ni=1)− ENVF ({xi, qi}ni=1)‖∞ ≤ max
i∈[n]
|pi − pi|.,

and
‖ENVF ({xi, pi}ni=1)− ENVF ({xi, qi}ni=1)‖∞ ≤ max

i∈[n]
|pi − pi|.

The following lemmas provide key properties for of this special function class. If F is upper-self-
contained, then the optimization in (9) is solved by the upper envelop function defined above. And
similarly, if F is lower-self-contained, then the optimization in (18) is solved by the lower envelop
function defined above.

Lemma B.3. If F is upper-self-contained/lower-self-contained, then Qt(resp. Q
t
) in (9)(resp. (18))

is equal to upper(resp. lower) envelope function of data points (xi, qt,i(resp. q
t,i

)ni=1) almost
everywhere.

Proof. The upper envelope and lower envelope is inside the function space, and is maximized(resp.
minimized) for all data points. Therefore they are the solutions to equation (9) and (18) almost
everywhere, respectively.

In addition, the upper and lower envelope functions is monotonic w.r.t. the data labels it goes through.

Lemma B.4. In an upper-self-contained function space F , suppose we have two sets of data points
(xi, fi)

n
i=1 and (xi, gi)

n
i=1, and f and g are their upper envelope functions respectively, f and g are

their lower envelopes functions respectively, if fi ≥ gi, ∀i ∈ [n], then we have f � g, f � g.

Proof. This is directly from the definition,

f(x) = max
f∈F
{f(x) : s.t.f(xi) ≤ fi}

≥max
f∈F
{f(x) : s.t.f(xi) ≤ gi}

=g(x),

where the first inequality holds because the feasible region of constraints f(xi) ≤ fi is more general
than f(xi) ≤ gi when fi ≥ gi.
the proof for the lower envelope works similarly.
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Lemma B.5. For a bounded upper-self-contained function class F , if the upper envelope operator is
contractive, then the maximum solution Q

π
for the optimization framework equation (6) is the unique

solution of the following upper-envelope Bellman equation:

Qi =BπQ(xi), ∀i ∈ [n],

Q =ENV({xi, Qi}ni=1).
(22)

Proof. Existence

Suppose P is a optimum solution for (6), if P satisfies equation (22) then we are done. Otherwise
P satisfies P ∈ F and P (xi) ≤ BπP (xi), ∀i ∈ [n]. Consider q†i = BπP (xi), its corresponding
upper-envelope function Q† satisfies:

Q†(x) = max
Q∈F
{Q(x), s.t. Q(x) ≤ BπP (xi)} ≥ P (x).

Thus Q† � P . By Bellman inequality we have:

BπQ†(xi) ≥ BπP (xi) ≥ Q†(xi),

We have Q† is in F and also satisfies Bellman inequality. By repeating this process until it converge
to Q∞, we will eventually get Q∞(xi) satisfies equation (22) and Q∞ � P which means Q∞ is also
at least a optimal solution to optimization framework (6).

Uniqueness

Consider there are two functions Q1 and Q2 satisfy upper-envelope Bellman equation in (22).
Consider qki = BπQk(xi), ∀i ∈ [n], k ∈ {1, 2}, and let qk to denote the vector of [qk1 , q

k
2 , ..., q

k
n]>,

we have the infinity norm of q1 − q2 to be:

q1i − q2i =γPπ(Q1(xi)−Q2(xi))

=γEx′∼Tπ(·|xi)[Q
1(x′)−Q2(x′)]

=γEx′∼Tπ(·|xi)[max
P∈F
{P (x), s.t. P (xj) ≤ q1j ,∀j ∈ [n]} −max

P∈F
{P (x), s.t. P (xj) ≤ q2j ,∀j ∈ [n]}]

≤γ‖q1 − q2‖∞,

where the last inequality is from contractive property. This means ‖q1− q2‖∞ = 0, and since Q1, Q2

are there corresponding upper-envelope, we have Q1 = Q2.

Proposition 3.1 (and A.1) Suppose µ0,π is a full-support distribution over S × A. Consider the
optimization in (9) with F = Fη in (8). We have

Qt(x) = min
j∈[n]

(qt,j + ηd(x, xj)),

qt+1,i = BπQt(xi), ∀i ∈ [n]
(23)

Proof. Consider Q ∈ Fη , for upper bound case, we have:

Q(x) ≤ Q(xi) + ηd(x, xi) ≤ qt,i + ηd(x, xi), ∀i ∈ [n].

Therefore Q(x) ≤ mini∈[n]{qt,i + ηd(x, xi)}.

Consider the upper envelope function Qt which achieves Qt(x) = mini∈[n]{qt,i + ηd(x, xi)}.
By Lemma B.3 we have:

Qt = arg max
Q∈Fη

{R[Q], s.t. Q(xi) ≤ qt,i}.

Similarly we can prove for the lower bound case in Proposition A.1.
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B.1 Monotonic Convergence

It is well known that the Bellman operator is a contractive map when γ ∈ (0, 1), with Qπ as the
unique fixed point. Therefore, (Bπ)tQ converges to Qπ as t→∞ for any Q.

Another property of special importance in our work is the monotonicity of Bellman operator. For two
functions Q1 and Q2 on S × A, we say that Q1 � Q2 if Q1(s, a) ≥ Q2(s, a) for ∀(s, a) ∈ S ×A.
Then we have

Q1 � Q2 ⇒ BπQ1 � BπQ2.

Thus if we can establish Q � BπQ (which known as the Bellman inequality (Bertsekas, 2000)), we
have Q � BπQ � (Bπ)2Q � ... � (Bπ)∞Q = Qπ, which yields a sequence of increasingly tight
upper bounds of Qπ . We leverage a similar idea to prove the monotonicity of our proposed algorithm.

We are ready to present our main result of convergence, in which we show that update (9) monotoni-
cally improves the bound and converges to the optimal solution of (6), if F is upper-self-contained
and {qt,i} is initialized properly such that they decrease during the first iteration.

Theorem B.6. Assume F is upper-self-contained function set whose corresponding upper envelope
operator is contractive and our evaluate distribution µ0,π(s, a) = µ0(s) · π(a|s) is full support on
S ×A, e.g. µ0,π(x) > 0, ∀x. If we initialize the updates in (9) with q0,i, such that

q0,i ≥ q1,i, ∀i ∈ [n], (24)

then we have
Qt � Qt+1 � Q

π
, ∀t = 0, 1, 2, . . . , (25)

where Q
π

= arg maxQ∈F{R[Q], s.t. Q(xi) ≤ BπQ(xi), ∀i ∈ [n]}. Therefore,

R[Qt] ≥ R[Qt+1] ≥ RπF ≥ R
π,

and limt→∞R[Qt] = RπF .

Proof. We focus on upper bound case, lower bound proofs follow similarly. Since µ0,π is full support,
from lemma B.3 we can see that Qt+1 is the upper envelope function of data points (xi, qt+1,i).

Now we prove the theorem by induction on t for statement Qt � Qt+1.

1. Base case. t = 0. From Lemma B.4 we have:

Q0 � Q1.

2. Induction Step. SupposeQt−1 � Qt. Then qt,i = ri+γPπQt−1(xi) ≥ ri+γPπQt(xi) =
qt+1,i, from lemma B.4 we have:

Qt � Qt+1.

From the induction proof we can see that {Qt(x)} is a Cauchy sequence with a lower bound for
every data point x, we know it will finally converge to a function we denote as Q∞.

Q∞ ∈ F will satisfy the constraints Q∞(xi) = BπQ∞(xi), ∀i ∈ [n].

On the other hand, from Lemma B.5 we know that it is the QπF = Q∞ almost everywhere.

This leads to a monotone sequence of measures {R[Qt]}∞t=0 with a limit RπF .

A parallel result holds for the lower bound update (11), except that the initialization condition should
be q

0,i
≤ q

1,i
. See Appendix A for details.

Application to Lipschitz Function Space General convergence result can be easily applied to the
case of Lipschitz functions. We show that the Lipschitz ball Fη satisfies the upper-self-contained
condition, and provide a simple initialization method to ensure condition 24. In addition, we establish
a fast convergence rate for our algorithm.

15



Lemma B.7. i) The Lipschitz ball Fη = {f : Ld(f) ≤ η} is upper-self-contained whose envelope
operators are contractive.

ii) Following the update in (10) starting from

q0,i =
1

1− γ
(
ri + γηEx′

i∼Tπ(·|xi)[d(xi, x
′
i)]
)
, (26)

we have q0,i ≥ q1,i for ∀i ∈ [n].

Similarly, for the lower bound initializing the update in (11) with

q0,i =
1

1− γ
(
ri − γηEx′

i∼Tπ(·|xi)[d(xi, x
′
i)]
)
,

ensures q
0,i
≤ q

1,i
for ∀i ∈ [n].

Therefore, the results in theorem 3.2 hold.

Proof. i) Consider g(x) = maxf∈Fη{f(x) : f(xi) ≤ fi} for given data points (xi, fi), we can see
that:

g(x) = min
i∈[n]
{fi + ηd(x, xi)}

we can see that g(x) is η−Lipschitz continuous.

For the contraction property, from Proposition 3.1 the upper envelope operator can be written in the
following way:

ENVFη ({xi, fi}i∈[n])(x) = min
i∈[n]
{fi + ηd(x, xi)},

then we have:

ENVFη ({xi, fi}i∈[n])(x)− ENVFη ({xi, gi}i∈[n])(x)

= min
i∈[n]
{fi + ηd(x, xi)} − min

i∈[n]
{gi + ηd(x, xi)}

≤max
i∈[n]
{fi − gi},

which implies contraction.

ii) For q0,i = 1
1−γ

(
ri + γηEx′

i∼Tπ(·|xi)[d(xi, x
′
i)]
)
, we have:

q0,i =γq0,i + ri + γηEx′
i∼Tπ(·|xi)[d(xi, x

′
i)]

=ri + γEx′
i∼Tπ(·|xi)[q0,i + ηd(xi, x

′
i)]

≥ri + γEx′
i∼Tπ(·|xi)[min

j∈[n]
{q0,j + ηd(xj , x

′
i)}]

=q1,i.

Similarly we have q
0,i
≤ q

1,i
.

From Theorem B.6 and Lemma B.7 we can immediate get Theorem 3.2. Similarly we can prove the
lower bound case.

B.2 Linear Convergence

We are ready to prove the linear convergence result for Proposition 3.4 which follow the similar idea
of proving linear convergence of value iteration.

Proposition 3.3 Following the updates in (10), we have

Rµ0,π [Qt]−RπF ≤ C
γt

1− γ
,

with constant C := maxi∈[n] |q1,i − q0,i|.

16



Proof. Consider ‖qt+1 − qt‖∞, where qt = [qt,1, . . . , qt,n]>, we have:

‖qt+1 − qt‖∞ = max
i
{qt+1,i − qt,i}

=γmax
i

Ex′
i∼Tπ(·|xi)

[
min
j∈[n]
{qt,j + ηd(x′i, xj)} − min

k∈[n]
{qt−1,k + ηd(x′i, xk)}

]
≤γmax

i
Ex′

i∼Tπ(·|xi)

[
max
j∈[n]
{qt,j − qt−1,j + (ηd(x′i, xj)− ηd(x′i, xj))}

]
=γ‖qt − qt−1‖∞.

Therefore we have ‖qt+1 − qt‖∞ ≤ γt‖q1 − q0‖∞, this leads to:

‖qt − q‖∞ =‖qt − q∞‖∞

≤
∞∑
i=t

‖qi+1 − qi‖∞

≤
∞∑
i=t

γi‖q1 − q0‖∞

=
γt

1− γ
‖q1 − q0‖∞.

To conclude we have:

Rµ0,π [Qt]−RπF =Ex∼µ0,π [Qt(x)−Qπ(x)]

=Ex∼µ0,π
[min
j∈[n]
{qt,j + ηd(x, xj)} − min

k∈[n]
{qk + ηd(x, xk)}]

≤‖qt − q‖∞

=
γt

1− γ
‖q1 − q0‖∞.

B.3 Tightness of Lipschitz-Based Bounds

Theorem 3.4 Let F = Fη be Lipschitz function class with Lipschitz constant η. Suppose X =
S × A is a compact and bounded domain equipped with a distance d : X × X → R. For a set of
data points X = {xi}ni=1, we define its covering radius to be

εX = sup
x∈X

min
i
d(x, xi).

We have
RπF −R

π
F ≤

2η

1− γ
εX ,

where η is the Lipschitz constant and γ the discount factor.

Proof. Consider ‖q − q‖∞, where q = [q1, q2, ..., qn]> and q = [q
1
, q

2
, ..., q

n
]> as the vector of

upper and lower functions Q,Q at point x1, x2, ..., xn.

Since ri = qi − γPπQ(xi) for all Q satisfies the finite points Bellman equation (see more details in
Lemma B.5), we have:

qi − qi =γPπ(Q(xi)−Q(xi))

=γEx′
i∼Tπ(·|xi)

[
Q(x′i)−Q(x′i)

]
≤γEx′

i∼Tπ(·|xi)

[
min
j
{qj − qj + 2ηd(x′i, xj)}

]
≤γ‖q − q‖∞ + 2ηγEx′

i∼Tπ(·|xi)

[
min
j
d(x′i, xj)

]
.
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Let εn = supx∈X mini{d(x, xi)}, which is the epsilon ball radius given centers {xi}ni=1, typically
ε ≈ O(n−

1
d ). We have:

‖q − q‖∞ = max
i
|qi − qi|

≤γ‖q − q‖∞ + 2ηγmax
i

Ex′
i∼Tπ(·|xi)

[
min
j
d(x′i, xj)

]
≤γ‖q − q‖∞ + 2ηγ sup

x∈X
min
j
d(x, xj)

=γ‖q − q‖∞ + 2ηγεn.

Thus we have:
‖q − q‖∞ ≤

2ηγ

1− γ
εn

Consider ‖Q−Q‖∞, we have:

‖Q−Q‖∞ = sup
x∈X
|Q(x)−Q(x)|

≤ sup
x∈X
|min

j
{qj − qj + 2ηd(x, xj)}|

≤‖q − q‖∞ + 2η sup
x∈X

min
j
{d(x, xj)}

≤ 2ηγ

1− γ
εn + 2ηεn

=
2η

1− γ
εn.

Therefore we have:

RπF −R
π
F =Ex∼µ0,π

[Q(x)−Q(x)]

≤ 2η

1− γ
εn

B.4 Additional Proofs

Proposition 4.1 Follow equation (14) with initialization follows (12), let Qt to be the upper
envelope function of data points {xi, qt,i}ni=1, we have a similar monotonic result as theorem 3.2:

Qt � Qt+1 � Q
π
, ∀t = 0, 1, 2, . . . ,

Proof. The proof is the same as Theorem B.6, once we see that we gradually qi but they will always
stay ahead the upper bound Qπ(xi), but the convergence is the same as the original algorithm.

Proof of Theorem 4.2 Let 〈S × A, dx〉 be a metric space for state action pair x and 〈S, ds〉 be a
metric space for state s. Suppose dx is separable so that dx(x1, x2) = ds(s1, s2) if a1 = a2. If the
reward function r and the transition T are both Lipschitz in the sense that

r(x1)− r(x2) ≤ ‖r‖Lipdx(x1, x2)

ds(T (x1),T (x2)) ≤ ‖T ‖Lipdx(x1, x2), ∀x1, x2.
We can prove that if γ‖T ‖Lip < 1, we have

‖Qπ‖Lip ≤
‖r‖Lip

1− γ‖T ‖Lip
, (27)

when π is a constant policy. Furthermore, for optimal policy π∗ with value function Q∗, we have:

‖Q∗‖Lip ≤
‖r‖Lip

1− γ‖T ‖Lip
, (28)
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Proof. Suppose ai = arg maxa{Qπ(T i(x1), a) − Qπ(T i(x2), a)}, where T 1(xj) = T (xj) and
T i(xj) = T (T i−1(x), ai−1), ∀j ∈ {1, 2} is defined recursively.

If π is a constant policy where π(a|s1) = π(a|s2) = π(a), ∀a, s1, s2, we can actually write
Qπ(x)−Qπ(x2) as:

Qπ(x1)−Qπ(x2) =(r(x1)− r(x2)) + γ

∫
a

(π(a|T (x1))Qπ(T (x1), a)− π(a|T (x2))Qπ(T (x2), a)) da

=(r(x1)− r(x2)) + γ

∫
a

π(a) (Qπ(T (x1), a)−Qπ(T (x2), a)) da

≤(r(x1)− r(x2)) + γmax
a

(Qπ(T (x1), a)−Qπ(T (x2), a))

=(r(x1)− r(x2)) + γ (Qπ(T (x1), a1)−Qπ(T (x2), a1)) .

And similarly we have

Qπ(T i−1(x1), ai−1)−Qπ(T i−1(x2), ai−1) ≤ r(T i−1(x1), ai−1)−r((T i−1(x2), ai−1))+γ
(
Qπ(T i(x1), ai)−Qπ(T i(x2), ai)

)
.

Therefore we have:

Qπ(x1)−Qπ(x2) ≤(r(x1)− r(x2)) +
∞∑
i=1

γi(r(T i(x1), ai)− r(T i(x2), ai))

≤λrdx(x1, x2) +

∞∑
i=1

γi(r(T i(x1), ai)− r(T i(x2), ai)) //according to definition of max operator over ai

≤λrdx(x1, x2) +

∞∑
i=1

γiλrdx([T i(x1), ai], [T
i(x2), ai]) //Lipschitz of reward function

=λrdx(x1, x2) +

∞∑
i=1

γiλrds(T
i(x1),T i(x2)) //by the assumption dx(x1, x2) = ds(s1, s2) if a1 = a2

≤λr

(
dx(x1, x2) +

∞∑
i=1

γiλiT dx(x1, x2)

)

=
λr

1− γλT
dx(x, x̄).

The last inequality can be proved inductively by

ds(T
i(x1),T i(x2)) ≤λT dx([T i−1(x1), ai−1], [T i−1(x2), ai−1])

=λT ds(T
i−1(x1),T i−1(x2)

≤...
≤λi−1T ds(T (x1),T (x2))

≤λiT dx(x1, x2).

For Q∗ case we can have the similar derivation where at the beginning of the proof we have:

Q∗(x1)−Q∗(x2) =(r(x1)− r(x2)) + γ(max
a
{Qπ(T (x1), a)} −max

a
{Qπ(T (x2), a)})

≤(r(x1)− r(x2)) + γmax
a

(Qπ(T (x1), a)−Qπ(T (x2), a))

C More Discussions on Lipschitz Norm

We show the non-identifiable results of upper bound of Lipschitz norm by constructing a set of
possible Q functions that are consistent with the data but with an unbounded increasing Lipschitz
norm.
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We first show that if our function set provides at least two different solutions, we have a nontrivial
solution in null space.

Lemma C.1 (Null Space of Finite Bellman Constraints). There is a non-zero Lipschitz continual
function G with ‖G‖d,Lip ≤ 2η such that:

G(xi) = γPπG(xi), ∀i ∈ [n] ,

once the solution in Fη is not unique.

Proof. Suppose Q1, Q2 ∈ Fη satisfies all the finite Bellman constraints. Consider G = Q1 −Q2,
we have ‖G‖d,Lip ≤ 2η and

G(xi) = Q1(xi)−Q2(xi) = γPπ(Q1 −Q2)(xi) = γPπG(xi).

Using the nontrivial solution in null space we can construct arbitrarily large Lipschitz norm solution
of Q that are consistent with data.

Theorem C.2 (Non-identifiable of Upper Bound of Lipschitz Function). If there is more than one
Lipschitz functions satisfies finite Bellman constraints, For all η we can always find Q satisfies
Bellman constraint and ‖Q‖d,Lip ≥ η.

Proof. By using G in Lemma C.1 we can construct a set of Qλ satisfies finite samples Bellman
equation in (4).

Qλ = Qπ + λG.

where if we pick λ ≥ (η + ‖Qπ‖d,Lip)/‖G‖d,Lip we have:

‖Qλ‖d,Lip ≥ (η + ‖Qπ‖d,Lip)− ‖Qπ‖d,Lip = η.

and Qλ satisfies finite samples Bellman constraints:

Qλ(xi) = Qπ(xi) + λG(xi) = ri + γPπ(Qπ(xi) + λG(xi)) = BπQλ(xi).

D Experimental Settings

Comparison Results using Thomas BoundsThomas et al. (2015b) We compare our method
with lower bound estimation from Thomas et al. (2015b), whose bound leverage a sophisticated
concentration bound by importance sampling estimators. Their method is based on the unbiased
importance sampling (Precup et al., 2000) estimator ofRπ:

R̂πIS := R(τ)︸ ︷︷ ︸
return

T∏
t=1

π(at|st)
π0(at|st)︸ ︷︷ ︸

importance weight

,

where τ is the trajectory and R(τ) is the normalized and discounted average reward of a trajectory.
They obtain a high confidence lower bounds for R̂πIS by leveraging the concentration inequality with
an adjust threshold parameter specified by user.

Number of Trajectories 2 4 6 10 20 30
Thomas Relative Lower Bound -8.61e-03 -2.87e-03 -1.72e-03 -9.56e-04 -4.53e-04 -2.97e-04

Our Relative Lower Bound -0.131 0.343 0.536 0.698 0.805 0.850

Table 1: Comparison with Thomas Lower Bound Thomas et al. (2015b), close to 1 is better.

We empirically evaluate the method on Pendulum environment, where we use the same default settings
as we conduct experiments for our algorithms. Table 1 shows the results compared to our lower
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Figure 4: Landscape of upper and lower bound of V π with different number of samples.

bound. We pick the best result choosing the threshold number from {0.001, 0.01, 0.1, 1.0, 10.0} and
we set the confidence level of Thomas lower bound to be 95%. All the numbers are the relative
reward that divided by the ground truth.

We can see that Thomas’ lower bound is not sensitive to small number of samples, which is almost
near 0. This is mainly because the importance ratio between the target policy π(a|s) and the behavior
policy π0(a|s) for each trajectory sample goes to 0 due to the curse of horizon (we use horizon length
= 100 here) , which makes IS based estimator not a proper method for long (or infinite) horizon
problems. As a consequence, concentration confidence bounds based on IS estimators could be
potentially loose in such problems (The number of trajectories used in Thomas et al. (2015b) can be
n = 107 if they want to get a tight lower bound).

Synthetic Environment with A Known Value Function The transition of this environment is a
one dimension linear function:

T (s, a) = 0.8s− 0.4a− 0.1,

and the target policy we use is

π(s, ξ) = 1.5s− 0.1 + ξ, ξ ∼ N (0, σ2),

where Gaussian variance σ = e−5. And the historical data is pre-collected by a behavior policy π0
similar to π but with a larger variance.

The predefined q-function is Qπ(s, a) = f(s) + f(a− π
2 ) where f(x) =

√
x2 + x sin(x) + 1. For

distance metric we use Euclidean distance d(x, y) = ‖x− y‖2. Under this distance metric, we can
calculate the exact Lipschitz constant:

Ld(Q
π) = sup

s,a
lim
ε→0

Qπ(s, a)−Qπ(s+
√
2
2 ε, a+

√
2
2 ε))

ε

=2 sup
s

lim
ε→0

f(s)− f(s+
√
2
2 ε)

ε

=2

Figure 4 shows a full landscape of upper and lower bounds of state value function V π under different
number of samples, similar to Figure 2(e).

Pendulum Environment We learn a feature map Φ for Qπ by a two hidden layers neural
network [f1, f2, f3], where the input layer is state action pair x0 = x, the first hidden layer
is x1 = f1(x) = RELU(W>1 x + b1) with 100 hidden dimension matrix W1, b1. We set
x2 = f2(x0, x1) = [x0,RELU(W>2 x1 + b2)]> as feature layer, where we let the concatenate
the input layer and a relu of linear layer for the hidden layer as our feature. We add the input layer
to our feature layer to ensure that our distance function d(x0, x̄0) = ‖x2 − x̄2‖ is a true distance
function (not a semi-distance one because x2 = x̄2 requires x = x̄). And finally the last layer is a
linear layer with output dimension 1 as the output of q-function. Thus our approximate q-function
can be represented as

Q(x) = W>3 Φ(x) + b3,
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where Φ(x) = f2(x, f1(x)).

We apply fitted value evaluation algorithm Munos & Szepesvári (2008); Le et al. (2019) to use
off-policy data to pre-train a Qπ , then we use the feature layer x2 = Φ(x) as our feature, and set the
Lipschitz constant approximately 2 times the `2 norm of the last linear layer parameter W3 as our
default parameter.

HIV simulator We follow exactly the same settings as Liu et al. (2018b).
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