
A Appendix

A.1 Analysis of CRR in the tabular setting

In this section, we show that in the tabular setting, CRR is safe and improves upon the behavior policy
defined by the dataset. In addition, we show that as the dataset grows, the policies learned by CRR
perform sensibly in the true underlying environment.

We assume that there is an underlying Markov Decision Process (MDP) (S, A, PM, r, �). For
simplicity, We assume finite state and action spaces and a deterministic reward function r : S ⇥A!
R.

Consider a dataset of the format B = {(si,ai, s0i)}i. We assume the dataset is coherent (see [10]),
meaning that if (si,ai, s0i) 2 B, then (s0i,a

0
i, s

00
i ) 2 B for some a0i, s

00
i unless s0i is a terminal state.

Given the original MDP and data B we define the associated empirical MDP MB as in Section 4.1
of [10]: The empirical MDP shares the same action space (A), and state space (S) along with an
additional terminal state sterm. MB follows an empirical state transition probabilities:

PB(s0|s,a) =
N(s,a, s0)P
s̄ N(s,a, s̄)

where N(s,a, s0) is the count of the appearance of s,a, s0 in the dataset. In the case whereP
s̄ N(s,a, s̄) = 0, we set PB(sterm|s,a) = 1 and set r(s,a) to an arbitrary value. Assume

that (s,a) ⇠ B, we define an empirical policy distribution

µB(a|s) =
N(a, s)P
ā N(ā, s)

,

where N(a, s) =
P

s̄ N(a, s, s̄). If
P

ā N(ā, s) = 0, then let µB(·|s) be uniform. We also define

dB(s) =
P

a,s0 N(s,a,s0))

|B| .

Given MB and a policy ⇡, we define the associated value functions

Q
⇡
B(s,a) = Est+i+1⇠PB(·|st+i,at+i),at+i⇠⇡(·|st+i)

 1X

i=0

�
i
r(st+i,at+i)

��� st = s,at = a

�
,

and V
⇡
B (s) = Ea⇠⇡(·|s)Q

⇡
B(s,a).

Given Q
⇡i
B , we consider the following CRR objectives in the tabular setting:

Tab. CRR exp: ⇡i+1  arg max
⇡

Es⇠dB

"
X

a

Q
⇡i
B (s,a)⇡(a|s)

#

subject to: KL

⇣
⇡(·|s)||µB(·|s)

⌘
 ✏ 8s (6)

Tab. CRR binary: ⇡i+1  arg max
⇡

Es⇠dB

X

a
[Q

⇡i
B (s,a)�V ⇡i (s)]µB(a|s) log ⇡(a|s)

�
. (7)

Notice that the Tabular CRR exp objective looks different from the learning rule defined by Eqn. 4.
However, it is easy to show that (using the KKT conditions)

⇡i+1(a|s) =

exp

✓
Q

⇡i
B (s,a)�V ⇡i (s)

�(s)

◆
µB(a|s)

Z⇡i+1(s)
, (8)

where �(s) is a state dependent factor and Z
⇡i+1(s) the normalization constant. This equation is in a

much more familiar form albeit with a state dependent �(s).

With the tabular CRR objectives defined, we introduce the CRR algorithms in the tabular setting as
presented in Algorithm 2.

To illustrate why CRR is safe is the offline setting, we first show that policies trained via CRR (in the
MB) would not try actions not present in the dataset.

12



Algorithm 2: Tabular Critic Regularized Regression
Input: Empirical MDP MB, and empirical policy µB
Start with ⇡0 = µB
for i 2 {1, · · · ,1} do

Evaluate Q
⇡i
B in the empirical MDP

Compute ⇡i+1 according to Equation (6) or (7)
end

Proposition 1. supp ⇡i(·|s) ✓ supp µB(·|s) 8i � 1, s 2 B for Tabular CRR exp (binary)
objectives.

Proof. We show the correctness of the statement only for the tabular CRR exp objective to avoid
redundancy. Following Eqn. 8, we see that whenever µB(a|s) = 0, we have ⇡i+1(a|s) = 0.

In addition to being safe, we show that each iteration of CRR improves performance.
Proposition 2. (Policy improvement) When using the Tabular CRR binary objective, Q

⇡i+1

B (s,a) �
Q

⇡i
B (s,a) 8s,a .

Proof. Define

qi+1(a|s) =
[Q

⇡i
B (s,a)�V ⇡i (s)]µB(a|s)

Z⇡i+1(s)

where Z
⇡i+1(s) is the partition function. Then it is easy to see that

arg max
⇡

Es⇠dB

X

a
[Q

⇡i
B (s,a)�V ⇡i (s)]µB(a|s) log ⇡(a|s)

�

= arg max
⇡

Es⇠dB


KL

⇣
qi+1(·|s)||⇡(·|s)

⌘�
.

Therefore we have

⇡i+1(a|s) =
[Q

⇡i
B (s,a)�V ⇡i (s)]µB(a|s)

Z⇡i+1(s)
.

From the above equation, it is easy to see that 8a 2 supp ⇡i+1(·|s), Q
⇡i
B (s,a) � V

⇡i(s). ThereforeP
a ⇡i+1(a|s)Q⇡i

B (s,a) � V
⇡i(s) =

P
a ⇡i(a|s)Q⇡i

B (s,a).

Q
⇡i
B (s,a)

= E

r(st,at) + �

X
⇡i(at+1|st+1)Q

⇡i
B (st,at)

���st = s,at = a

�

 E

r(st,at) + �

X
⇡i+1(at+1|st+1)Q

⇡i
B (st,at)

���st = s,at = a

�

· · ·

 E⇡i+1

 1X

k=0

�
k
r(st+k,at+k)

���st = s,at = a

�

= Q
⇡i+1

B (s,a).

Proposition 3. (Policy improvement) When using the Tabular CRR exp objective, Q
⇡i+1

B (s,a) �
Q

⇡i
B (s,a) 8s,a .
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Proof. We have that KL(⇡i(·|s)||µB(·|s))  ✏ 8s. Since

⇡
i+1 = arg max

⇡
Es⇠dB

"
X

a

Q
⇡i
B (s,a)⇡(a|s)

#
s.t. KL(⇡(·|s)||µB(·|s))  ✏ 8s,

we know that
P

a Q
⇡i
B (s,a)⇡i+1(a|s) �

P
a Q

⇡i
B (s,a)⇡i(a|s) 8s.

It is easy to show that
Q

⇡i
B (s,a)

= E

r(st,at) + �

X
⇡i(at+1|st+1)Q

⇡i
B (st,at)

���st = s,at = a

�

 E

r(st,at) + �

X
⇡i+1(at+1|st+1)Q

⇡i
B (st,at)

���st = s,at = a

�

· · ·

 E⇡i+1

 1X

k=0

�
k
r(st+k,at+k)

���st = s,at = a

�

= Q
⇡i+1

B (s,a).

Finally we show that the difference in Q values for a given policy ⇡ between the ground truth MDP
and the empirical MDP reduces as |B| increases. This allows us to conclude that the policies learned
in the empirical MDP MB is also a sensible policy in the original MDP.
Proposition 4. Consider

✏MDP (s,a) = Q
⇡(s,a)�Q

⇡
B(s,a).

Define sets defined as S(s,a) = {(s̄, ā, s̄0) 2 B | s̄ = s, ā = a}. If as |B| ! 1, S(s,a) = ; or
|S(s,a)|!1, and s̄0 is an i.i.d sample of P (·|ā, s̄) 8 (s̄, ā, s̄0) 2 B, then

as |B|!1, sup
s2supp dB

a2supp ⇡(·|s)

✏MDP (s,a)! 0.

Proof. From Lemma 1 in [10], we have
✏MDP (s,a)

=
X

s0

�
PM(s0|s,a)� PB(s0|s,a)

�✓
r + �V

⇡
B (s0)

◆
+

�

X

s0

�
PM(s0|s,a)� PB(s0|s,a)

�X

a0

⇡(a0|s0)✏MDP (s0,a0) +

�

X

s0

PB(s0|s,a)
X

a0

⇡(a0|s0)✏MDP (s0,a0)

Since B is coherent, we have
✏MDP (s,a)


X

s0

�
PM(s0|s,a)� PB(s0|s,a)

�✓
r + �V

⇡(s0)

◆
+

� sup
s2supp dB

a2supp ⇡(·|s)

✏MDP (s,a)

for all s 2 supp dB,a 2 supp ⇡(·|s). Taking the supremum on both sides:
sup

s2supp dB
a2supp ⇡(·|s)

✏MDP (s,a)

 sup
s2supp dB

a2supp ⇡(·|s)

X

s0

�
PM(s0|s,a)� PB(s0|s,a)

�✓
r + �V

⇡(s0)

◆

+� sup
s2supp dB

a2supp ⇡(·|s)

✏MDP (s0,a0).
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Rearranging the terms:

sup
s2supp dB

a2supp ⇡(·|s)

✏MDP (s,a)

 sup
s2supp dB

a2supp ⇡(·|s)

1

1� �

X

s0

�
PM(s0|s,a)� PB(s0|s,a)

�✓
r + �V

⇡(s0)

◆
.

Let Rmax = 1
1�� maxs,a |r(s,a)|, we than have by Hölder’s inequality

sup
s2supp dB

a2supp ⇡(·|s)

✏MDP (s,a)  sup
s2supp dB

a2supp ⇡(·|s)

Rmax

1� �

X

s0

��PM(s0|s,a)� PB(s0|s,a)
��.

since |S(s,a)| ! 1 as |B| ! 1 for all s 2 supp dB a 2 supp ⇡(·|s), we have
sup

s2supp dB
a2supp ⇡(·|s)

P
s0

��PM(s0|s,a)� PB(s0|s,a)
��! 0 by Theorem 1 of [11].

A.2 Evaluation protocol

To compute the performance of each agent, as reported in the Tables 2, 3,5, 6 and 7, we adopt the
following procedure. We run each agent with three independent seeds. Agent snapshots are made
every 50000 learner steps. For every agent / environment / seed combination, we evaluate all its
saved snapshots by running each for 300 episodes in the environment and record the mean episodic
reward of the best snapshot as an agent’s performance for the seed. The performance of an agent
in an environment is thus calculated as the mean performance across its seeds, and error bars the
standard deviation of the means.

A.3 Effects of using K-step returns

In this section, we evaluate the effect of using K-step returns compared to our proposed method of
estimating advantages. As discussed in Sec. 3 using K-step returns can hurt the agent’s performance
since the transitions stored in the dataset are likely to be generated by very different policies than the
current one. As a result, K-step returns may not reflect the actual returns of the current policy being
evaluated and therefore introduce a bias. To test this hypothesis, we evaluate CRR’s (using the binary
max rule) performance while estimating the advantage by

k�1X

i=0

�
i
rt+i + �

k 1

m

mX

j=1

Q✓(st+k, ãj
t+k)� 1

m

mX

j=1

Q✓(st, ã
j
t )

where ãj
t+k ⇠ ⇡(st+k), and ãj

t ⇠ ⇡(st). This objective is similar to the ones used in [27, 7].

As shown in Fig. 5, when choosing k = 5, we indeed observe an degradation in performance. This
confirms that, with a large enough k, K-step returns produce a bias that compromises learning.

A.4 Hyper-parameters

In this section, we describe the hyper-parameters of algorithms used.

A.4.1 BCQ

For BCQ, we mostly follow the original network architecture as well as hyper-parameter settings in
our implementation. Please refer to [10] for more details. We only changed the batch size to be 1024
to stay compatible with CRR.

A.4.2 CRR

For CRR training we use: target network update period 100; 21 atoms on a grid from 0 to 100
for the distributional critic. We use � = 1 for Eqn. (4) and for CWP resampling. We swept �
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over [0.1, 0.4, 0.7, 1, 1, 3] on few selected environments and did not find it to affect the results too
much and therefore kept the natural setting of � = 1. For all experiments, we use 2 separate Adam
optimizers [16] for actor and critic learning respectively. The learning rates are set to 10�4. For
sequence datasets, we use the batch size of 128 and for non-sequence datasets 1024. To compute the
advantage estimates (see Table 1), we set m = 4.

For the descriptions of the network architecture, please see Figure 3. On the manipulation suite,
two camera observations are provided in each time step. In these environments, we duplicate the
entire lower stack of the network before the concatenation with proprioceptive (action) features to
accommodate the extra pixel observation.

A.4.3 D4PG

For both the actor and critic, we use the Adam optimizer [16] with the learning rate of 1e� 4; target
network update period 100; 51 atoms on a grid from -150 to 150 for the distributional critic. We use
D4PG implemented in Acme [14], following their network architectures and hyper-parameters. We
used batch size 1024 for experiments on the manipulation suite and 256 for the rest of experiments.
We experimented with CRR’s network and hyper-paramters for D4PG, but the performance is inferior.

A.4.4 BC

Our BC implementation shares of its hyper-parameters with CRR whenever applicable. Most hyper-
parameters, however, do not apply to BC. Our BC implementation shares the same policy network
structure with CRR.

A.4.5 ABM

For ABM training we use mostly the same hyperparameters as CRR. ABM uses an additional prior
policy network to train which we also use an Adam optimizer with learning rate 10�4. To compute
the advantage estimates for ABM, we set use 20 samples as per the original paper. For ABM specific
hyper-parameters, the please see Table 4.

Our ABM implementation shares the same network architecture with CRR with the exception of its
policy head being Gaussian. For the descriptions of the network architecture, please see Figure 3.

A.5 Value over-estimation

In section 4.3, we mention that the relative value of actions in the dataset compared to that of
the policy tends to increase due to value overestimation (for actions present in the dataset). We
hypothesize that this is due to the following effect. As the CRR policy gets better, the value of the

Figure 5: Evaluating the effect of K-step returns (K = 5 in this case). In offline RL, K-step returns could be
detrimental as it introduces a bias. Here we see that using K-step returns hurts policy performance.
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Table 4: ABM specific hyper-parameters.

Hyper-parameters values

Number of actions sampled per state 20
✏ 0.1
✏µ 5⇥ 10�3

✏⌃ 1⇥ 10�5

Figure 6: Here we compare the percentage of accepted actions under the binary max rule versus agents’
performance measured by episodic return. Surprisingly, the two quantities are positively correlated suggesting
that the values of some actions in the dataset are overestimated compared to that of the policy.

bootstrap target (in critic learning) increases. As a result, the Q values for actions in the dataset, even
that of suboptimal actions, also increase. As a result some of the suboptimal actions would have
values higher than the value of the current policy.

We demonstrate this effect by comparing the percentage of actions copied using the binary max
rule versus the agents’ performance measured in terms of episodic return. In these experiments,
we evaluate the agents’ performance between 200000 and 600000 learner steps. We do not include
datapoints corresponding to fewer than 2000000 learner steps in this analysis since early in learning
the critic may not be reliable. We, in addition, measure how the percentage of actions copied by the
binary max rule in the same learner steps range.

Intuitively, as the agent’s performance improves, we would expect the dataset to contain fewer actions
that outperform the agent’s policy. Thus, the fraction of actions included in the policy update in
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Figure 7: CWP ablation on selected environments. In these environments, we find CWP to mostly help and
when it does not, CWP also do not hurt policy performance.

Eqn. 3 should go down. We do observe the opposite (as shown in Figure 6), however: the number of
actions that are included in the policy update increases as agent performance improves. This supports
our theory that the value of some actions from the datasets are overestimated compared to the value
of the policy.

Due to the relative overestimation of the datasets’ actions’ values, CRR could clone sub-optimal
actions leading to degradation in performance. The binary max rule, by being optimistic about the
policy’s state-value, copies fewer sub-optimal actions and thereby increases CRR’s performance on
some datasets.
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Figure 8: Control suite policy noise ablation.

A.6 Effect of noise when running the policy.

As mentioned in Section 4.2, we turn off the noise of component Gaussian distributions when
evaluating policies. In Figure 8 and 9, we compare the effect of turning off the noise versus not. When
it comes to environments of low and moderate action dimensionality, having no noise is beneficial,
but often its effect is not significant. For examples, see results for cartple swingup, walker stand,
cheetah run in Figure 8.

For some environments the effect of noise is pronounced. This is clearly visible in Fig. 9 for
instance. For the humanoid environments in the locomotion suite, the task is terminated when the
humanoid falls. This makes it hard to recover from mistakes and may put policies with a high-level
of stochasticity at a disadvantage. Overall, turning off the noise rarely adversely affect the agents’
performance.
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Figure 9: Locomotion policy noise ablation.

A.7 CWP Ablation

In this section we ablate the effect of CWP. Notice, when using CWP, we also turn off the component
Gaussian distributions’ noise as described in the previous section. As we use mixture of Gaussians
policies, CWP essentially chooses between the mean actions of the component Gaussians.

For the full list of results, please refer to Tables 5, 6, and 7. In Figure 7, we pick a few representative
environments to illustrate CWP’s effect. As shown in the results, CWP generally helps with its effect
especially pronounced when the policies’ performance is less than ideal. When CWP does not help,
it also does not lower policy performance. CWP, however, does require more computation. We
therefore recommend CWP whenever it is not too expensive to execute.

A.8 Full results table

Finally, we present all agents’s performance in Tables 5, 6, and 7.
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