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Abstract

Exponential bounds on the estimation error are given for the plug-in estimator of
weighted areas under the ROC curve. The bounds hold for single score functions
and uniformly over classes of functions, whose complexity can be controlled
by Gaussian or Rademacher averages. The results justify learning algorithms
which select score functions to maximize the empirical partial area under the curve
(pAUC). They also illustrate the use of some recent advances in the theory of
nonlinear empirical processes.

1 Introduction

Using the area under the ROC curve (the AUC) to evaluate score functions has a long history in
medical screening and bioinformatics ([9],[10]). In the last decades several algorithms have been
developed to learn score functions which maximize the AUC ([7], [25]). In some cases, however,
different regions of the false positive range may not be equally relevant to assess the quality of the
score and should therefore be weighted differently, say with some nonconstant weight function W . In
melanoma detection, for example, false negatives have disastrous consequences for a patient, while a
certain number of false positives is tolerable. A good scoring function should then have very large
values on the right hand side of the ROC plot. Such considerations have created interest in a partial
area under the ROC curve (the pAUC), which only measures the area between two specified false
positive rates, so that W is a step function ([27], [16], [19]). Several algorithms have been designed
with the goal of maximizing the pAUC over classes of scoring functions ([21], [22], [20], [23]).

Any measurement or optimization of the AUC or pAUC must rely on a finite number of observations,
which raises the questions of estimation and generalization. These problems are well understood for
the AUC ([2], [6], [24]), where W is constant, but for more general weight functions estimation may
be difficult to impossible. In Proposition 1 below we will show that the bias of its plug-in estimator
may be bounded away from zero even in the limit of an infinite sample.

Our first contribution shows that these problems are absent if the weight function W is Lipschitz
continuous. Theorem 2 shows that then the weighted AUC can be estimated at rate n−1/2 by its
plug-in estimator, where n is the sample size. Theorem 3 shows that the Lipschitz-weighted AUC can
be uniformly estimated over a class of score functions at rate n−1/2 if the Gaussian complexity of the
class increases as n1/2, which is standard for most function classes in machine learning. This result
also implies a statistical performance guarantee for algorithms maximizing the empirical pAUC as in
[22] or [20].

Even if W is Lipschitz the weighted AUC remains a nonlinear statistical functional of challenging
complexity. Our second contribution is Theorem 7, which provides a general method to control the
estimation errors of any statistical functional, which satisfies certain Lipschitz conditions with respect
to the total-variation, Wasserstein or Kolmogorov metrics. The verification of these conditions for the
weighted AUC then provides the proofs of Theorem 2 and Theorem 3.
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1.1 Related work

The pAUC estimator is a special case of an L-estimator (see [26]). Asymptotic results for L-estimators
have been known for a long time. Helmers [11] gave Berry-Esseen type rates of normal approximation
for smoothened L-statistics. Finite sample bounds for special distributions are shown in [3]. The
asymptotics of different estimators for the pAUC are considered in [8]. More recent asymptotic
results for the pAUC are given in [28] and [1]. [14] announces a uniform bound of order n−1/4 for
left-partial areas. We do not know of any finite sample bounds comparable to Theorem 2 or uniform
bounds of order n−1/2 comparable to Theorem 3 below.

1.2 Notation

With 1S we denote the indicator function of a set S and with H := 1(0,∞) the Heaviside function.
P (X ) is the set of non-negative measures and P1 (X ) ⊂ P (X ) is the set of probability measures
on a measurable space X respectively. For λ ∈ [0, 1] and µ, ν ∈ P (X ) we write λ (µ, ν) for the
convex combination λ (µ, ν) = λµ + (1− λ) ν. If x ∈ X then δx ∈ P1 (X ) is the unit mass at
x. If µ ∈ P1 (X ) and X = (X1, ..., Xn) ∼ µn is an iid sample of size n the empirical measure is
µ̂ (X) = 1

n

∑n
i=1 δXi ∈ P1 (X ). If X is unambiguous we write µ̂ = µ̂ (X).

YX is the set of functions f : X → Y , for f ∈ YX and µ ∈ P (X ) the push-forward f#µ ∈ P (Y)
is defined f#µ (A) = µ

(
f−1 (A)

)
, A ⊆ Y . For f ∈ RX ‖f‖∞ = supx∈X |f (x)| and if (X , d) is a

metric space then ‖f‖Lip = supx 6=y∈X |f (x)− f (y)| /d (x, y).

For µ ∈ P1 (X × {0, 1}) (random labeled data) µ0 and µ1 ∈ P (X ) are defined µ0 (A) =
µ (A× {0}) and µ1 (A) = µ (A× {1}) for A ⊆ X , and µ (0) = µ (X × {0}) and µ (1) =
µ (X × {1}) denote the relative frequencies of the two labels.

A summary of notation in tabular form is given in the supplement.

2 Weighted areas under the ROC-curve

Underlying the concept of the ROC-curve is the joint random occurrence of scores X in some
open, bounded interval I ⊆ R and binary labels Y ∈ {0, 1}. We assume (X,Y ) ∼ µ for some
law µ ∈ P1 (I × {0, 1}), with corresponding un-normalized measures µ0, µ1 ∈ P (I) and scalar
frequencies µ (0) and µ (1).

Any threshold t ∈ I on a score x induces a second labeling H (x− t) alternative to y. The second
labeling is considered correct iff it coincides with y. Correspondingly the true positive rate and false
positive rate are the functions tpr, fpr : I → [0, 1] defined respectively as

tpr (t) =
µ1 (t,∞)

µ (1)
and fpr (t) =

µ0 (t,∞)

µ (0)
.

If we assume that µ0 has a positive density, then fpr has a unique inverse, and the ROC-curve can be
defined as the function roc : [0, 1]→ [0, 1]

roc (u) = tpr
(
fpr−1 (u)

)
.

The ROC-curve gives the true positive rate corresponding to a specified false positive rate. Knowledge
of the ROC-curve allows us to adjust the classification threshold according to respective cost estimates
for false positives and false negatives This accounts for the great importance of ROC-curves in
practice.

Let W : [0, 1]→ R+ be some specified weight function and consider the quantity∫
[0,1]

roc (u)W (1− u) du.

With the change of variables u = fpr (t) this is seen to be equal to

fW,` (µ) =
1

µ (1)µ (0)

∫
I2
` (t′ − t)W

(
µ0 (−∞, t]
µ (0)

)
dµ1 (t′) dµ0 (t) , (1)
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as long as ` is the Heaviside function , ` = H (see supplement). Other choices of ` : R → [0, 1]
replacing or approximating H will play a role when we want to learn scoring functions to optimize
properties of the ROC-curve, but ` will generally be assumed nondecreasing. The equation (1) makes
sense even when fpr is not uniquely invertible, and it will serve as our definition of the statistical
functional fW,` : P1 (I×{0, 1})→ R+ in the sequel. Note that fW,` is monotonic in W and `, and
that its range lies in [0, ‖W‖∞].

An important special case is the "area under the curve" (AUC) obtained if W ≡ 1.

f1,H (µ) =

∫
[0,1]

roc (u) du =
1

µ (1)µ (0)

∫
I2
H (t′ − t) dµ1 (t′) dµ0 (t) .

f1,H (µ) is the probability that t′ > t if t′ and t are drawn independently from the positive and the
negative conditional distributions. The AUC has been widely used to measure the quality of score
functions and its statistical properties have been thoroughly analyzed from different perspectives ([7],
[2], [6]).

If the respective costs of false negatives and false positives are very different, different regions of
the false positive range are not equally relevant to measure the quality of the score. This leads to the
consideration of a weighted or partial AUC where W is nonconstant and assigns different weights
to different false positive rates. In the simplest case W it is a step function, such as 1[a,b] with
0 ≤ a < b ≤ 1, but W may also be chosen to approximate the value of the ROC-curve itself at a
given point.

2.1 Estimation

The measure µ, and with it the ROC-curve itself, are mathematical idealizations, accessible
only through observations. We assume that we have access to an iid sample (X,Y) =
((X1, Y1) , ..., (Xn, Yn)) ∼ µn of labeled data. This defines the empirical measure µ̂ = µ̂ (X,Y) ∈
P1 (I×{0, 1}) and corresponding empirical variants µ̂0,µ̂1 as well as the empirical rates µ̂ (0) and
µ̂ (1). We will study the estimation of fW,` (µ) by the plug-in estimator

fW,` (µ̂) =
1

µ̂ (1) µ̂ (0)

∫
I2
` (t′ − t)W

(
µ̂0 (−∞, t]
µ̂ (0)

)
dµ̂1 (t′) dµ̂0 (t)

=
1

|S1| |S0|
∑
i∈S1

∑
j∈S0

` (Xi −Xj)W

(
|{k ∈ S0 : Xk ≤ Xj}|

|S0|

)
,

where S1 = {i : Yi = 1} and S0 = {i : Yi = 0}.
The dependence of the weight function on the order statistic of µ̂0/µ̂ (0) causes problems which are
absent in the estimation of the AUC as in [2]. If W has a discontinuity then the value of the functional
depends discontinuously on the underlying law in the weak topology, and random fluctuations can
make estimation impossible, even if the factor 1/ (µ̂ (1) µ̂ (0)) is bounded. The supplement gives
proof of the following proposition, which shows that for discontinuous W the bias of the plug-in
estimator may be bounded away from zero even in the limit of infinite sample sizes.

Proposition 1 For W = 1[1/2,1] there exists a bounded, open interval I and µ ∈ P1 (I×{0, 1})
such that for every even n and X ∼ µn

lim
n→∞

EX∼µn [fW,H (µ̂ (X))] = 1/4 < 1/2 = fW,H (µ) .

To resolve this problem one might assume some regularity of µ, but since we wish to estimate a
property of an unknown distribution from observations, we prefer to assume that the weight function
W is Lipschitz.

We still need to exclude the case that one of the observed label frequencies µ̂ (0) and µ̂ (1) is too
small relative to the sample size. For δ > 0 we define the event

Aδ =

{
min {µ̂ (0) , µ̂ (1)} >

√
2 ln (4/δ)

n

}
. (2)

We then have the following result.
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Theorem 2 Suppose W : R→ [0,∞) satisfies ‖W‖∞ , ‖W‖Lip <∞, that ` : I → [0, 1] is nonde-
creasing and µ ∈ P1 ( I×{0, 1}). Then for any δ > 0 we have with probability at least 1 − δ in
(X,Y) ∼ µn that Aδ implies

|fW,` (µ̂ (X,Y))− fW,` (µ)| ≤
‖W‖Lip + 9 ‖W‖∞
min {µ̂ (0) , µ̂ (1)}2

√
2 ln (4/δ)

n
.

Remarks:

1. For any event B the statement "with probability at least 1− δ it holds that Aδ implies B" means
Pr {Aδ ∩Bc} < δ, where Bc is the complement of B, so if we observe Aδ the bound holds with
high probability.

2. Since fW,H is monotonic in W the bound implies one-sided bounds for discontinuous weight
functions, such as the step functions defining the pAUC. If Ŵ ≤WLip ≤W where Ŵ and W are
discontinuous and WLip is Lipschitz, then with high probability fW,H (µ) ≥ fŴ ,H (µ̂)−O (1/

√
n).

Upper estimates and sandwich estimates may be constructed similarly.

3. As in the previous remark an approximation to the value of roc at some u ∈ [0, 1] can be estimated
with plug-in estimators fŴn,H

(µ̂), if the weight functions Ŵn are Lipschitz and, if regarded as
probability densities, converge weakly to the unit mass δ1−u.

2.2 Uniform bounds

Now let X be some space of instances and let µ ∈ P1 (X×{0, 1}) be a law for labeled instances.
Suppose that H ⊆ IX is a class of candidate scoring functions h : X → I. For every h ∈ H
define h̄ : X×{0, 1} → I×{0, 1} by h̄ (x, y) = (h (x) , y). Given a sample (X,Y) ∼ µn, we
would like to find h ∈ H so as to (approximately) maximize the value of fW,H

(
h̄#µ

)
, where h̄#µ is

push-forward of µ under h̄.

The strategy is to pick an h which (approximately) maximizes a regularized empirical surrogate
fW ′,`

(
h̄#µ̂ (X,Y)

)
, where W ′ and ` are Lipschitz lower bounds of W and H respectively. The

situation mirrors that of support vector machines, where one minimizes the hinge-loss as Lipschitz
upper bound of the 0-1-loss.

Since the chosen score function h depends on (X,Y) , it becomes a random variable, and a justifica-
tion of the method is given by a high probability bound on

sup
h∈H

fW ′,`

(
h̄#µ̂

)
− fW,H

(
h̄#µ

)
≤ sup
h∈H

fW ′,`

(
h̄#µ̂

)
− fW ′,`

(
h̄#µ

)
,

where the inequality follows from fW ′,` ≤ fW,H . We can bound the right hand side.

Theorem 3 Suppose W : R→ [0,∞) satisfies ‖W‖∞ , ‖W‖Lip <∞, that ` : I → [0, 1] is nonde-
creasing and ‖`‖Lip <∞ , that H ⊆ IX and that µ ∈ P1 (X×{0, 1}). Let Aδ be as in (2). Then
for any δ > 0 we have with probability at least 1− δ in (X,Y) ∼ µn that Aδ implies

sup
h∈H

∣∣fW,` (h̄#µ)− fW,` (h̄#µ̂)∣∣
≤

8
√

2π ‖`‖Lip
(
‖W‖∞ + ‖W‖Lip

)
µ̂ (0)

2
µ̂ (1)

G (H)

n
+
‖W‖Lip + 10 ‖W‖∞
min {µ̂ (0) , µ̂ (1)}2

√
4 ln (16n/δ)

n
.

where G (H) is the expected Gaussian complexity G (H) = EXEγ suph∈H
∑n
i=1 γih (Xi) , with

independent standard normal variables γ1, ..., γn .

Remarks.

1. Again we must observe Aδ for the bound to hold with high probability.

2. The use of Rademacher and Gaussian complexities has become a standard in learning theory,
and there is a large body of literature giving bounds ([4], [15], [13], [12]), which can be substituted
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above. These bounds apply to many different function classes, such as multi-layer neural networks or
bounded sets of linear functionals in a reproducing-kernel-Hilbert space. Typically the bounds on the
Gaussian complexity are of O

(√
n ln (n)

)
making the above bound O

(√
ln (n) /n

)
.

3. Existing algorithms of [22] or [20] optimize the pAUC for discontinuous weight functions Ŵ and
practitioners may wish guarantees for discontinuous weight functions W . The next corollary, which
directly follows from the monotonicity of fW,` in W and `, shows that we can give such guarantees

of O
(√

ln (n) /n
)

, whenever a Lipschitz weight function WLip can be jammed between Ŵ and W .
This can be regarded as a statistical guarantee for the algorithms of [22] and [20].

Corollary 4 Let Ŵ ,WLip,W : [0, 1] → [0,∞), Ŵ ≤ WLip ≤ W and ‖WLip‖Lip < ∞. Then
with probability at least 1− δ in (X,Y) ∼ µn we have that Aδ implies

∀h ∈ H, fW,H
((
h̄#µ

))
≥ fŴ ,`

(
h̄#µ̂

)
−B (n,WLip,H, µ̂, δ) ,

where B (n,WLip,H, µ̂, δ) is the bound in Theorem 3.

3 Proofs

In this section we outline the proofs. Several technical details are given in the supplementary material.

3.1 Conditioning on the empirical label frequencies

The appearance of the true label frequencies µ (0) and µ (1) in the various denominators in the
definition (1) of fW,` is a nuisance. But if the weight function is Lipschitz, we can approximate the
estimation difference for fW,` by the estimation difference of another functional gW,`,c, which is
independent of the label frequencies and defined for c > 0 as

gW,`,c (µ) :=

∫
I

∫
I
` (t′ − t) dµ1 (t′)W

(
µ0 (−∞, t]

c

)
dµ0 (t) .

In situations, where W, ` and c are unambiguously fixed, we will simply write g for gW,`,c.

Lemma 5 Let δ ∈ (0, 1) and Aδ as in (2). Then with probability at least 1− δ/2 it holds that Aδ
implies both µ (0) ≥ µ̂ (0) /2 and

|fW,` (µ̂)− fW,` (µ)| ≤
∣∣gW,`,µ(0) (µ̂)− gW,`,µ(0) (µ)

∣∣
µ̂ (0) µ̂ (1)

+
‖W‖Lip + 8 ‖W‖∞
min {µ̂ (0) , µ̂ (1)}2

√
2 ln (4/δ)

n
.

The proof, a straightforward application of Hoeffdings inequality, is given in the supplement. If
W is Lipschitz and µ̂ (0) and µ̂ (1) and n are reasonably large, the lemma allows us to bound the
estimation error for fW,` in terms of the estimation error of the functional gW,`,c, for which we have
the following result.

Proposition 6 (i) For δ > 0 with probability at least 1− δ

|gW,`,c (µ)− gW,`,c (µ̂)| ≤ ‖W‖∞

√
2 ln (2/δ)

n
. (3)

(ii) Under the conditions of Theorem 3 we have with probability at least 1− δ in (X,Y) ∼ µn that

sup
h∈H

∣∣EgW,`,c (h̄#µ̂)− gW,`,c (h̄#µ̂ (X,Y)
)∣∣

≤
4
√

2π ‖`‖Lip
(

2 ‖W‖∞ + c−1 ‖W‖Lip
)

n
G (H) + 2 ‖W‖∞

√
ln (2/δ)

n
.
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The proof of this proposition is not easy, but it easily implies Theorem 2 and Theorem 3.

Proof. (Theorem 2) A union bound of the inequalities in (i) and Lemma 5 together with some
algebraic simplifications.

Proof. (Theorem 3) Set δ = n−1/2 in (3) and take the expectation inside the absolute value. Using
0 ≤ gW,`,c ≤ ‖W‖∞ this gives for every µ (and every h̄#µ) the bias bound

|gW,`,c (µ)− EgW,`,c (µ̂)| ≤ ‖W‖∞

(√
2 ln (2

√
n)

n
+

√
1

n

)
≤ 2 ‖W‖∞

√
ln (4n)

n
.

Combine this with (ii), set c = µ (0) and simplify to obtain

sup
h∈H

∣∣gW,`,µ(0) (h̄#µ)− gW,`,µ(0) (h̄#µ̂ (X,Y)
)∣∣

≤
4
√

2π ‖`‖Lip
(

2 ‖W‖∞ + µ (0)
−1 ‖W‖Lip

)
n

G (H) + 2 ‖W‖∞

√
2 ln (8n/δ)

n
.

Now assume Aδ and combine with Lemma 5 in a union bound, using also µ (0) ≥ µ̂ (0) /2, and
simplify to obtain the conclusion.

3.2 Plug-in estimators for Lipschitz functionals

To establish Proposition 6 we will give a general method to prove high probability bounds on the
estimation and uniform estimation error for Lipschitz functionals on P1 (U) with U ⊆ R.

For any µ, ν ∈ P (R) we define the metrics

dTV (µ, ν) = |µ− ν| (R)

d1 (µ, ν) =

∫
R
|µ ((−∞, t])− ν ((−∞, t])| dt

d∞ (µ, ν) = sup
t∈R
|µ ((−∞, t])− ν ((−∞, t])| .

If µ, ν ∈ P1 (R) then dTV is the total variation metric, d1 is the 1-Wasserstein metric and d∞ is the
Kolmogorov metric. All these metrics have the convexity property

d (λ (µ, ν) , λ (µ′, ν′)) ≤ λd (µ, µ′) + (1− λ) d (ν, ν′) (4)

for any λ ∈ [0, 1] and µ, µ′, ν, ν′ ∈ P1 (R).

Theorem 7 Let U ⊆ R and f : P1 (U)→ R and let δ > 0. Consider the following conditions on f

(a) ∀µ, ν ∈ P1 (U), f (µ)− f (ν) ≤ L∞d∞ (µ, ν) .

(b) ∀µ, ν ∈ P1 (U), f (µ)− f (ν) ≤ L1d1 (µ, ν) .

(c) ∀ λ ∈ [0, 1] and ∀µ, µ′, ν, ν′ ∈ P1 (U) we have

g (λ (µ, ν))− g (λ (µ, ν′))− g (λ (µ′, ν)) + g (λ (µ′, ν′)) ≤ (1− λ)λL2d1 (ν, ν′) dTV (µ, µ′) .

Then

(i) Suppose f satisfies (a). Let µ ∈ P1 (U) and µ̂ = µ̂ (X) with X ∼ µn. Then with probability at
least 1− δ

|f (µ)− f (µ̂)| ≤ L∞

√
ln (2/δ)

2n
.

(ii) Suppose f satisfies (a),(b) and (c). Let H ⊆ UX , µ ∈ P1 (X ) and µ̂ = µ̂ (X) with X ∼ µn.
Then with probability at least 1− δ

sup
h∈H

f (h#µ̂)− Ef (h#µ̂) ≤
√

8π (L1 + L2)

n
G (H) + L∞

√
ln (1/δ)

n
.
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The proof uses two nontrivial auxiliary results. For (i) we need the following version of the Dvoretzky-
Kiefer-Wolfowitz theorem as sharpened by Massart [17].

Theorem 8 If µ is a probability measure on the real line and µ̂ is the empirical measure for X ∼ µn
then for t > 0

Pr {d∞ (µ, µ̂) > t} ≤ 2e−2nt
2

.

For part (ii) we use a result about nonlinear empirical processes [18], for which we need some
additional notation. For x ∈ Xn and h ∈ UX we write h (x) = (h (x1) , ..., h (xn)) ∈ Un. For
k ∈ {1, ..., n} and y, y′ ∈ U we define the partial difference operator for functions f : Un → R by

Dk
y,y′f (x) = f (x1, ..., xk−1, y, xk, ..., xn)− f (x1, ..., xk−1, y

′, xk, ..., xn) .

Theorem 9 (see [18]) Let X = (X1, ..., Xn) be a vector of independent random variables with
values X and X′ iid to X. Let U ⊆ R, H ⊆ UX and f : Un → R. Then for any δ ∈ (0, 1), with
probability at least 1− δ,

sup
h∈H

f (h (X))− E [f (h (X′))] ≤
√

2π (2ML (f) + JL (f)) G (H) +M (f)
√
n ln (1/δ),

where the three seminorms M,JL and ML are defined as

M (f) = max
k

sup
x∈Un,y,y′∈U

Dk
y,y′f (x)

ML (f) = max
k

sup
x∈Un,y,y′∈U,y 6=y′

Dk
y,y′f (x)

|y − y′|

JL = n max
k,l:k 6=l

sup
x∈Un,z,z′,y,y′∈U,y 6=y′

Dk
y,y′D

l
z,z′f (x)

|y − y′|
.

Proof. (of Theorem 7) (i) If (a) holds then by Theorem 8

Pr {|g (µ)− g (µ̂)| > t} ≤ Pr

{
d∞ (µ, µ̂) >

t

L∞

}
≤ 2 exp

(
−2nt2

L2
∞

)
.

Set the right hand side to δ and solve t for the conclusion.

(ii) Suppose (a),(b) and (c) hold. We will use Theorem 9 and bound the seminorms for f (µ̂). Fix
x ∈ Un and k ∈ {1, ..., n} and set µ̂k = 1

n−1
∑
i:i 6=k δxk .

Dk
y,y′f (µ̂) = f

(
n− 1

n
µ̂k +

1

n
δy

)
− f

(
n− 1

n
µ̂k +

1

n
δy′

)
≤ L∞d∞

(
n− 1

n
µ̂k +

1

n
δy,

n− 1

n
µ̂k +

1

n
δy′

)
≤ L∞

n
d∞ (δy, δy′) ≤

L∞
n
,

where the first inequality follows from (a), the second from convexity d∞ (see (4)) and the last
from d∞ (δy, δy′) ≤ 1. In the same way (b) gives Dk

y,y′f (µ̂) ≤ L1 |y − y′| /n, since d1 (δy, δy′) =

|y − y′|. This gives M (f) ≤ L∞/n and ML (f) ≤ L1/n.

To bound JL (f) let l 6= k and write µ̂kl = 1
n−2

∑
i:i/∈{k,l} δxk , µ̂k,z = n−2

n−1 µ̂kl + 1
n−1δz and

µ̂k,z′ = n−2
n−1 µ̂kl + 1

n−1δz′ . Then

Dk
y,y′D

l
z,z′g (x)

= f

(
n− 1

n
µ̂k,z +

1

n
δy

)
− f

(
n− 1

n
µ̂k,z +

1

n
δy′

)
− f

(
n− 1

n
µ̂k,z′ +

1

n
δy

)
+ f

(
n− 1

n
µ̂k,z′ +

1

n
δy′

)
≤ n− 1

n2
L12dTV (µ̂k,z, µ̂k,z′) d1 (y, y′) ≤ L2

n2
dTV (δz, δz′) d1 (y, y′) ≤ 2L2

n2
|y − y′| .

The first inequality follows from (c), the second from convexity of dTV (see (4)) and the last from
dTV (δz, δz′) ≤ 2. This gives JL (f) ≤ 2L2/n. Substitution in the conclusion of Theorem 9
completes the proof.

7



3.3 Proof of Proposition 6

To apply Theorem 7 we need to control the Lipschitz properties of gW,`,c. We do so at first with
respect to the unnormalized measures µ0 and µ1.

Proposition 10 Fix W, ` and c. The functional g = gW,`,c satisfies ∀µ, µ′, ν, ν′ ∈ P1 (I×{0, 1})
(a) g (ν)− g (ν′) ≤ ‖W‖∞ (d∞ (ν0, ν

′
0) + d∞ (ν1, ν

′
1))

(b) if ` is Lipschitz then g (ν)− g (ν′) ≤ ‖W‖∞ ‖`‖Lip (d1 (ν0, ν
′
0) + d1 (ν1, ν

′
1))

(c) if W and ` are Lipschitz then

g (λ (µ, ν))− g (λ (µ, ν′))− g (λ (µ′, ν)) + g (λ (µ′, ν′))

≤ (1− λ)λ ‖`‖Lip

(
1

c
‖W‖Lip + ‖W‖∞

)
(d1 (ν1, ν

′
1) + d1 (ν0, ν

′
0)) dTV (µ, µ′) .

The proof is given in the supplement. We then eliminate the labels and replace the disconnected space
I × {0, 1} by a subset of the real line. Let a = sup I and b = sup I − inf I. We map I × {0} to
(−b, 0) in ascending order of I, and we map I × {1} to (0, b) in descending order of I.

More formally we define the bijection τ : (x, y) ∈ I ×{0, 1} 7→ (2y − 1) (a− x) ∈ (−b, 0)∪ (0, b).
The push-forward µ 7→ τ#µ is then a bijection between P1 (I × {0, 1}) and P1 ((−b, 0) ∪ (0, b))

with inverse τ−1# . Then for A ⊂ I we have µ0 (A) = µ (A× {0}) = τ#µ (A− a) and µ1 (A) =

τ#µ (a−A) . The supplement gives proof of the following lemma.

Lemma 11 For µ, ν ∈ P1 (I × {0, 1}) we have

(i) dTV (µ0, ν0) + dTV (µ1, ν1) = dTV (µ, ν) = dTV (τ#µ, τ#ν)

(ii) d∞ (µ0, ν0) + d∞ (µ1, ν1) ≤ 2d∞ (τ#µ, τ#ν)

(iii) d1 (µ0, ν0) + d1 (µ1, ν1) ≤ 2d1 (τ#µ, τ#ν)

Since gW,`,c (µ) = gW,`,c ◦ τ−1# (τ#µ), we can shift perspective to the functional gW,`,c ◦ τ−1# on
P1 ((−b, 0) ∪ (0, b)). Proposition 10 and Lemma 11 show that the functional µ 7→ gW,`,c ◦ τ−1# (µ)

satisfies the Lipschitz condition (a) of Theorem 7 withL∞ = 2 ‖W‖∞ d∞ (µ, ν) and, if ` is Lipschitz,
also (b) with L1 = ‖W‖∞ ‖`‖Lip and (c) with

L2 = 2 ‖`‖Lip

(
1

c
‖W‖Lip + ‖W‖∞

)
.

In Theorem 7 we then replace U by (−b, 0) ∪ (0, b), f by gW,`,c ◦ τ−1# , X by (X×{0, 1}),H by the
class of functions H′ = {(x, y) 7→ τ (h (x) , y) : h ∈ H}, and we substitute the constants L∞, L1

and L2 by the values given above. Theorem 7 then gives us parts (i) and (ii) of Proposition 6, since
by symmetry of the standard normal distribution

G (H′) = EXEγ sup
h∈H

n∑
i=1

γi (2Yi − 1) (a− h (Xi)) = G (H) .

4 Conclusion

In a nonparametric setting the estimation of partial areas under the ROC-curve by plug-in estimators
was shown to be impossible. It is nevertheless possible to give error bounds for Lipschitz weight
functions and uniform bounds which provide some justification for existing algorithms optimizing
the pAUC. The method to control the uniform estimation errors for nonlinear statistical functionals in
terms of Lipschitz conditions appears promising in a more general context.
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Appendix

For the convenience of the reader we restate results which appear in the main part of the paper.

A Proof of the formula (1) for the pAUC

Lemma 12 We have ∫
[0,1]

roc (u)W (1− u) du = fW,H (µ) .

Proof. With u = fpr (t) = µ0(t,∞)
µ(0) we get∫

[0,1]

roc (u)W (1− u) du

=

∫
[0,1]

tpr
(
fpr−1 (u)

)
W (1− u) du

=
1

µ (0)

∫
R
tpr (t)W

(
µ0 (−∞, t]
µ (0)

)
dµ0 (t)

=
1

µ (0)µ (1)

∫
R

∫
R
H (t′ − t) dµ1 (t′)W

(
µ ((−∞, t] , 0)

µ (0)

)
dµ0 (t)

= fW,H (µ) ,

since

tpr (t) =
µ1 (t,∞)

µ (1)
=

1

µ (1)

∫
R
H (t′ − t) dµ1 (t′) .

B Proof of the lower bound on the bias, Proposition 1

Proposition 1 For W = 1[1/2,1] there exists a bounded, open interval I and µ ∈ P1 (I×{0, 1})
such that for every even n and X ∼ µn

lim
n→∞

EX∼µn [fW,H (µ̂ (X))] = 1/4 < 1/2 = fW,H (µ) .

Proof. (of Proposition 1) Let I be any bounded open interval containing [0, 1] and consider members
of P1 (I×{0, 1}) supported on the set {(0, 0) , (1/2, 1) , (1, 0)}. Every such probability measure is
of the form

µs,r := s
(
rδ(0,0) + (1− r) δ(1,0)

)
+ (1− s) δ(1/2,1)

with r, s ∈ (0, 1). Substitution in the definition (1) gives f1[1/2,1],H (µs,r) = r1[1/2,1] (r).

Now let the underlying law µ be µ = µ1/2,1/2. Then f1[1/2,1],H (µ) = 1/2 but the empirical measure
is µ̂ = µŜ,R̂, where Ŝ and R̂ can be generated by trials of a fair coin and have binomial distributions

concentrated around 1/2. As the sample size n goes to infinity Pr
{
R̂ < 1/2

}
→ 1/2 and for every

ε > 0 we, Pr
{∣∣∣R̂− 1/2

∣∣∣ > ε
}
→ 0. It follows that

lim
n→∞

E
[
fW,H

(
µŜ,R̂

)]
= lim
n→∞

E
[
R̂ 1[1/2,1]

(
R̂
)]

= 1/4 < 1/2 = f1[1/2,1],H (µ) .
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C Proof of Lemma 5

Lemma 5 Let δ ∈ (0, 1) and Aδ as in (2). Then with probability at least 1− δ/2 it holds that Aδ
implies both µ (0) ≥ µ̂ (0) /2 and

|fW,` (µ̂)− fW,` (µ)| ≤
∣∣gW,`,µ(0) (µ̂)− gW,`,µ(0) (µ)

∣∣
µ̂ (0) µ̂ (1)

+
‖W‖Lip + 8 ‖W‖∞
min {µ̂ (0) , µ̂ (1)}2

√
2 ln (4/δ)

n
.

Proof. We have fW,` (µ) = gW,`,µ(0) (µ) / (µ (0)µ (1)) . Thus

|fW,` (µ̂)− fW,` (µ)|

=

∣∣∣∣(gW,`,µ(0) (µ̂)

µ̂ (0) µ̂ (1)
−
gW,`,µ(0) (µ)

µ̂ (0) µ̂ (1)

)
+

(
fW (µ̂)−

gW,`,µ(0) (µ̂)

µ̂ (0) µ̂ (1)

)
+

(
gW,`,µ(0) (µ)

µ̂ (0) µ̂ (1)
−
gW,`,µ(0) (µ)

µ (0)µ (1)

)∣∣∣∣
≤
∣∣gW,`,µ(0) (µ̂)− gW,`,µ(0) (µ)

∣∣
µ̂ (0) µ̂ (1)

+ ‖W‖Lip

∣∣∣∣ 1

µ̂ (0)
− 1

µ (0)

∣∣∣∣
+ ‖W‖∞

∣∣∣∣ 1

µ̂ (0) µ̂ (1)
− 1

µ (0)µ (1)

∣∣∣∣
≤
∣∣gW,`,µ(0) (µ̂)− gW,`,µ(0) (µ)

∣∣
µ̂ (0) µ̂ (1)

+
‖W‖Lip
µ̂ (0)µ (0)

|µ̂ (0)− µ (0)|

+

(
‖W‖∞

µ̂ (0) µ̂ (1)µ (0)µ (1)
|µ̂ (0) µ̂ (1)− µ (0)µ (1)|

)
Hoeffdings inequality [5] implies with probability at least 1− δ/2 that

|µ̂ (1)− µ (1)| = |µ̂ (0)− µ (0)| ≤
√

ln (4/δ)

2n
,

so under Aδ we have µ (0) ≥ µ̂ (0) /2 and µ (1) ≥ µ̂ (1) /2, and substitution above gives

|fW,` (µ̂)− fW,` (µ)|

≤
∣∣gW,`,µ(0) (µ̂)− gW,`,µ(0) (µ)

∣∣
µ̂ (0) µ̂ (1)

(
‖W‖Lip
µ̂ (0)

2 +
8 ‖W‖∞

min {µ̂ (0) , µ̂ (1)}2

)√
2 ln (4/δ)

n

D Proof of the Lipschitz bound, Proposition 10

For the proof of this proposition we need some preliminary definitions and lemmata. We define

K (t) :=

∫ t

0

W
(u
c

)
du, Fµ (t) := µ0 (−∞, t] and φµ (t) :=

∫
R
` (t− t′) dµ1 (t′) ,

so g = gW,`,c can be written as a Riemann-Stieltjes Integral

gW,`,c (µ) =

∫
R
φµ (t) dK (Fµ (t)) . (5)

Lemma 6 Let µ, ν, ρ ∈ P1 (I × {0, 1}) and ` and W be bounded. Then
|φρ (t) (K (Fµ (t))−K (Fν (t)))| → 0 as t→ ±∞. Furthermore∫

R
φρ (t) (dK (Fµ (t))− dK (Fν (t))) = −

∫
R
φ′ρ (t) (K (Fµ (t))−K (Fν (t))) . (6)
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Proof.

|φρ (t) (K (Fµ (t))−K (Fν (t)))| =

∣∣∣∣∣φρ (t)

∫ Fµ(t)

Fν(t)

W
(u
c

)
du

∣∣∣∣∣
≤ ‖`‖∞ ‖W‖∞ |Fµ (t)− Fν (t)| → 0

as t→ ±∞. The identity follows from integration by parts.

Lemma 7 For µ, µ′ ∈ P1 (I × {0, 1})
(i) ‖φµ − φµ′‖∞ ≤ d∞ (µ1, µ

′
1)

If ` is Lipschitz, then all of the following hold

(ii) ‖φµ − φµ′‖∞ ≤ ‖`‖Lip d1 (µ1, µ
′
1)

(iii)
∥∥φ′µ − φ′µ′

∥∥
∞ ≤ ‖`‖Lip dTV (µ1, µ

′
1)

(iv)
∥∥φ′µ − φ′µ′

∥∥
1
≤ dTV (µ1, µ

′
1)

(v)
∥∥φ′µ∥∥∞ ≤ ‖`‖Lip

(vi)
∥∥φ′µ∥∥1 ≤ 1

Proof. (i) Recall that ` is assumed to be non-decreasing with `n : R → [0, 1]. Approximate `
pointwise from below by non-decreasing, differentiable functions `n : R → [0, 1] , n ∈ N. By
dominated convergence and integration by parts

|φµ (t)− φµ′ (t)| = lim
n→∞

∣∣∣∣∫
R
`n (t′ − t) d (µ1 − µ′1) (t′)

∣∣∣∣
= lim

n→∞

∣∣∣∣∫
R
`′n (t′ − t) (F (µ1, t

′)− F (µ′1, t
′)) dt′

∣∣∣∣
≤ d∞ (µ, µ′) lim

n→∞

∫
R
|`′n (t′ − t)| dt′ = d∞ (µ, µ′) lim

n→∞

∫
R
`′n (t′ − t) dt′

≤ d∞ (µ, µ′) .

by the assumed properties of `.

If ` is Lipschitz, then ` is absolutely continuous and its derivative `′ exists almost everywhere and
‖`‖Lip = ‖`′‖∞. (ii)

|φµ (t)− φµ′ (t)| ≤
∣∣∣∣∫

R
` (t′ − t) d (µ1 − µ′1) (t′)

∣∣∣∣
=

∣∣∣∣∫
R
`′ (t′ − t) (F (µ1, t

′)− F (µ′1, t
′)) dt′

∣∣∣∣
≤ ‖`′‖∞ d1 (µ1, µ

′
1)

(iii) ∣∣φ′µ (t)− φ′µ′ (t)
∣∣ =

∣∣∣∣∫
R
`′ (t′ − t) d (µ1 − µ′1) (t′)

∣∣∣∣ ≤ ‖`′‖∞ dTV (µ1, µ
′
1)

(iv) ∫ ∣∣φ′µ (t)− φ′µ′ (t)
∣∣ dt =

∫
R

∣∣∣∣∫
R
`′ (t′ − t) d (µ1 − µ′1) (t′)

∣∣∣∣ dt
≤

∫
R

∫
R
|`′ (t′ − t)| d (|µ1 − µ′1|) (t′) dt

=

∫
R

(∫
R
`′ (t− t′) dt

)
d (|µ1 − µ′1|) (t′)

=

∫
R
d (|µ1 − µ′1|) (t′) = dTV (µ1, µ

′
1) .
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The proofs of (v) and (vi) are similar to those of (iii) and (iv).

Now we can prove Proposition 10.

Proposition 10 Fix W, ` and c. The functional g = gW,`,c satisfies ∀µ, µ′, ν, ν′ ∈ P1 (I×{0, 1})
(a) g (ν)− g (ν′) ≤ ‖W‖∞ (d∞ (ν0, ν

′
0) + d∞ (ν1, ν

′
1))

(b) if ` is Lipschitz then

g (ν)− g (ν′) ≤ ‖W‖∞ ‖`‖Lip (d1 (ν0, ν
′
0) + d1 (ν1, ν

′
1))

(c) if W and ` are Lipschitz then

g (λ (µ, ν))− g (λ (µ, ν′))− g (λ (µ′, ν)) + g (λ (µ′, ν′))

≤ (1− λ)λ ‖`‖Lip

(
1

c
‖W‖Lip + ‖W‖∞

)
(d1 (v1, v

′
1) + d1 (ν0, ν

′
0)) dTV (µ, µ′) .

Proof. From (5) we have

g (µ)− g (ν) =

∫
R

(φµ (t)− φν (t)) dK (Fµ (t)) +

∫
R
φν,n (t) (dK (Fµ (t))− dK (Fν (t))) .

Proof of (a). Approximate ` as in the proof of Lemma 7 (i) and let

φν,n (t) =

∫
R
`n (t− t′) dµ1 (t′) .

Using dominated convergence, the integration by parts formula (6) and Lemma 7 (i)

g (µ)− g (ν)

=

∫
R

(φµ (t)− φν (t))W

(
Fµ (t)

c

)
dµ0 (t)− lim

n→∞

∫
R
φ′ν,n (t) (K (Fµ (t))−K (Fν (t))) dt

≤ ‖W‖∞

(
‖φµ (.)− φν (.)‖∞ + lim

n→∞

∫
R
φ′ν,n (t) |Fµ (t)− Fν (t)| dt

)
≤ ‖W‖∞

(
d∞ (µ1, ν1) + d∞ (µ0, ν0) lim

n→∞

∫
R
φ′ν,n (t) dt

)
≤ ‖W‖∞ (d∞ (µ1, ν1) + d∞ (µ0, ν0)) .

Proof of (b). Now ` is Lipschitz and we can write similar to the above

g (µ)− g (ν) ≤ ‖W‖∞

(
‖φµ (.)− φν (.)‖∞ +

∫
R
φ′ν (t) |Fµ (t)− Fν (t)| dt

)
≤ ‖W‖∞ ‖`‖Lip d1 (µ1, ν1) + d1 (µ0, ν0) ,

where we used Lemma 7 (ii) and (v).

Proof of (c). We write the second difference as

g (λ (µ, ν))− g (λ (µ, ν′))− g (λ (µ′, ν))− g (λ (µ′, ν′))

=

∫
R

(
φλ(µ,ν) (t)− φλ(µ,ν′) (t)− φλ(µ′,ν) (t) + φλ(µ′,ν′) (t)

)
dK

(
Fλ(µ,ν) (t)

)
+

∫
R

(
φλ(µ′,ν) (t)− φλ(µ′,ν′) (t)

) (
dK

(
Fλ(µ,ν) (t)

)
− dK

(
Fλ(µ′,ν) (t)

))
+

∫
R

(
φλ(µ,ν′) (t)− φλ(µ′,ν′) (t)

) (
dK

(
Fλ(µ,ν) (t)

)
− dK

(
Fλ(µ,ν′) (t)

))
+

∫
R
φλ(µ′,ν′) (t)

(
dK

(
Fλ(µ,ν) (t)

)
− dK

(
Fλ(µ,ν′) (t)

)
− dK

(
Fλ(µ′,ν) (t)

)
+ dK

(
Fλ(µ′,ν′) (t)

))
= A+B + C +D.
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We bound the four terms in turn. The term A simply vanishes, because φµ is affine in µ. To bound B
first note that for any t

K
(
Fλ(µ′,ν) (t)

)
−K

(
Fλ(µ,ν) (t)

)
=

∫ Fλ(µ′,ν)(t)

Fλ(µ,ν)(t)

W
(u
c

)
du =

∫ (1−λ)Fµ′ (t)

(1−λ)Fµ(t)
W
(u
c
− λFν (t)

)
du

≤ (1− λ) ‖W‖∞ |Fµ′ (t)− Fµ (t)| .
Using integration by parts and Lemma 7 (iii)

B =

∫
R

(
φ′λ(µ′,ν) (t)− φ′λ(µ′,ν′) (t)

) (
K
(
Fλ(µ′,ν) (t)

)
−K

(
Fλ(µ,ν) (t)

))
dt

≤ (1− λ) ‖W‖∞
∫
R

∣∣∣φ′λ(µ′,ν) (t)− φ′λ(µ′,ν′) (t)
∣∣∣ |Fµ′ (t)− Fµ (t)| dt

≤ (1− λ)λ ‖`′‖∞ ‖W‖∞ d1 (µ0, µ
′
0) dTV (ν1, ν

′
1)

The term C is bounded using Lemma 7 (ii) as

C =

∫
R

(
φλ(µ,ν′) (t)− φλ(µ′,ν′) (t)

) (
dK

(
Fλ(µ,ν) (t)

)
− dK

(
Fλ(µ,ν′) (t)

))
≤

∥∥φλ(µ,ν′) (.)− φλ(µ′,ν′) (.)
∥∥
∞

(∫
R

∣∣∣∣W (
Fλ(µ,ν) (t)

c

)
−W

(
Fλ(µ,ν′) (t)

c

)∣∣∣∣ dµ0 (t)

+

∫
R
W

(
Fλ(µ,ν′) (t)

c

)
|dν0 (t)− dν′0 (t)|

)
≤ (1− λ)λ ‖`′‖∞

(∥∥∥∥Wc
∥∥∥∥
Lip

+ ‖W‖∞

)
d1 (µ1, µ

′
1) dTV (ν0, ν

′
0) .

Finally we again use integration by parts to bound D.

D =

∫
R
φ′λ(µ′,ν′) (t)

(
K
(
Fλ(µ,ν) (t)

)
−K

(
Fλ(µ,ν′) (t)

)
−K

(
Fλ(µ′,ν) (t)

)
+K

(
Fλ(µ′,ν′) (t)

))
dt

=

∫
R
φ′λ(µ′,ν′) (t)

(∫ Fλ(µ,ν)(t)

Fλ(µ,ν′)(t)

W
(u
c

)
du−

∫ Fλ(µ′,ν)(t)

Fλ(µ′,ν′)(t)

W
(u
c

)
du

)
dt

=

∫
R
φ′λ(µ′,ν′) (t)

(∫ Fλν(t)

Fλν′ (t)

(
W

(
u− (1− λ)Fµ (t)

c

)
−W

(
u− (1− λ)Fµ′ (t)

c

))
du

)
dt

≤ (1− λ)λ

∥∥∥∥Wc
∥∥∥∥
Lip

∫
R

∣∣∣φ′λ(µ′,ν′) (t)
∣∣∣ |Fν (t)− Fν′ (t)| |Fµ (t)− Fµ′ (t)| dt

≤ (1− λ)λ ‖`′‖∞

∥∥∥∥Wc
∥∥∥∥
Lip

∫
R
|Fν (t)− Fν′ (t)| |Fµ (t)− Fµ′ (t)| dt

≤ (1− λ)λ ‖`′‖∞

∥∥∥∥Wc
∥∥∥∥
Lip

d1 (µ0, µ
′
0) dTV (ν0, ν

′
0) ,

where we used Lemma 7 (v) in the second inequality. Adding the bounds and using dTV (νi, ν
′
i) ≤

dTV (ν, ν′), we get

A+B+C+D ≤ (1− λ)λ ‖`′‖∞

(∥∥∥∥Wc
∥∥∥∥
Lip

+ ‖W‖∞

)
(d1 (µ0, µ

′
0) + d1 (µ1, µ

′
1)) dTV (ν, ν′)

E Proof of Lemma 11

Lemma 11 ] For µ, ν ∈ P1 (I × {0, 1}) we have

(i) dTV (µ0, ν0) + dTV (µ1, ν1) = dTV (µ, ν) = dTV (τ#µ, τ#ν)

(ii) d∞ (µ0, ν0) + d∞ (µ1, ν1) ≤ 2d∞ (τ#µ, τ#ν)

(iii) d1 (µ0, ν0) + d1 (µ1, ν1) ≤ 2d1 (τ#µ, τ#ν)
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Proof. (i) is obvious from the definitions of µi, νi and τ#µ, τ#ν.

(ii)

d∞ (µ0, ν0) + d∞ (µ1, ν1)

= sup
t∈I
|µ0 (−∞, t]− ν0 (−∞, t]|+ sup

t∈I
|µ1 (−∞, t]− ν1 (−∞, t]|

= sup
t∈I
|τ#µ (−∞, t− a]− τ#ν (−∞, t− a]|+ sup

t∈I
|τ#µ [a− t,∞)− τ#ν [a− t,∞)|

≤ sup
t∈R
|τ#µ (−∞, t]− τ#ν (−∞, t]|+ sup

t∈R
|τ#µ [t,∞)− τ#ν [t,∞)|

≤ 2d∞ (τ#µ, τ#ν) .

(iii)

2d1 (τ#µ, τ#ν)

=

∫ ∞
−∞
|τ#µ (−∞, t]− τ#ν (−∞, t]| dt+

∫ ∞
−∞
|τ#µ [t,∞)− τ#ν [t,∞)| dt

≥
∫ 0

−∞
|τ#µ (−∞, t]− τ#ν (−∞, t]| dt+

∫ ∞
0

|τ#µ [t,∞)− τ#ν [t,∞)| dt

=

∫
I
|τ#µ (−∞, t− a]− τ#ν (−∞, t− a]| dt+

∫
I
|τ#µ [a− t,∞)− τ#ν [a− t,∞)| dt

=

∫
I
||µ0 (−∞, t]− ν0 (−∞, t]|| dt+

∫
I
|µ1 (−∞, t]− ν1 (−∞, t]| dt

= d1 (µ0, ν0) + d1 (µ1, ν1)
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F Table of notation

Notation Definition Section
Aδ Conditioning event 2.1
dTV (µ, ν) Total variation distance for µ, ν ∈ P1 (X ) 3.2
d1 (µ, ν) 1-Wasserstein distance for µ, ν ∈ P1 (R) 3.2
d∞ (µ, ν) Kolmogorov distance for µ, ν ∈ P1 (R) 3.2
Dk
y,y′ Partial difference operator 3.2

δx Unit mass at x 1.2
fpr False positive rate 2
f#µ Pushforward of measure µ under f 1.2
fW,` Weighted area und ROC curve 2
gW,`,c Functional independent of label frequancies 3.1
G (H) Gaussian complexity 2.2
H Heaviside function 1(0,∞) 1.2
H Class of scoring functions 2.2
h̄ h̄ (x, y) = (h (x) , y) for h ∈ h̄ 2.2
` Loss function 2
µ0 µ0 (A) = µ (A× {0}) for µ ∈ P1 (X×{0, 1}) 1.2
µ1 µ1 (A) = µ (A× {1}) for µ ∈ P1 (X×{0, 1}) 1.2
µ̂ (X) Empirical measure for sample X 1.2
P (X ) Nonnegative measures on X 1.2
P1 (X ) Probability measures on X 1.2
roc ROC-curve 2
tpr True positive rate 2
τ Bijection I × {0, 1} → (−b, 0) ∪ (0, b) 3.3
W Weight function 2
‖.‖∞ Supremum norm 1.2
‖.‖Lip Lipschitz seminorm 1.2
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