
Supplementary Material For
Fourier Features Let Networks Learn High

Frequency Functions in Low Dimensional Domains

Anonymous Author(s)
Affiliation
Address
email

Contents1

1 Further experiments 22

1.1 Optimizing validation error through the NTK linear dynamics . . . . . . . . . . . 23

1.2 Feature sparsity and network depth . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Gradient descent does not optimize Fourier features . . . . . . . . . . . . . . . . . 35

1.4 Visualizing underfitting and overfitting in 2D . . . . . . . . . . . . . . . . . . . . 46

1.5 Failures of positional encoding (axis-aligned bias) . . . . . . . . . . . . . . . . . . 47

2 Additional details for main text figures 58

2.1 Main text Figure 3 (effect of feature mapping on convergence speed) . . . . . . . . 59

2.2 Main text Figure 4 (different random feature distributions in 1D) . . . . . . . . . . 510

3 Stationary kernels 611

4 Indirect supervision through a linear map 712

5 Task details 813

5.1 2D image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814

5.2 3D shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915

5.3 2D CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016

5.4 3D MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017

5.5 3D inverse rendering for view synthesis . . . . . . . . . . . . . . . . . . . . . . . 1018

6 Additional results figures 1219

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.



1 Further experiments20

1.1 Optimizing validation error through the NTK linear dynamics21

Using Eqn. 3 in the main paper, we can predict what error a trained network will achieve on a set of22

testing points. Since this equation depends on the composed NTK, we can directly relate predicted23

test set loss to the Fourier feature mapping parameters a and b for a validation set of signals yval:24

Lopt =
∥∥∥u(t) − yval

∥∥∥2

2
≈
∥∥∥KvalK

−1
(
I− e−ηKt

)
y − yval

∥∥∥2

2
, (1)

where Kval is the composed NTK evaluated between points in a validation dataset Xval and training25

dataset X, and η and t are the learning rate and number of iterations that will be used when training26

the actual network.27

In Figure 1, we show the results of minimizing Eqn. 1 by gradient descent on aj values (with fixed28

corresponding “densely sampled” bj = j) for validation sets sampled from three different 1/fα29

noise families. Note that gradient descent on this theoretical loss approximation produces aj values30

which are able to perform as well as the best “power law” aj values for each respective signal class31

(compared dashed lines versus × markers in Figure 1b). As mentioned in the main text, we find that32

this optimization strategy is only viable for small 1D regression problems. In our multidimensional33

tasks, using densely sampled bj values is not tractable due to memory constraints. In addition, the34

theoretical approximation only holds when training the network using SGD, and in practice we train35

using the Adam optimizer [8].36
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Figure 1: The Fourier feature mappings can be optimized for better performance on a class of target
signals by using the linearized network approximation. Here we consider target signals sampled
from three different power law distributions. In (a) we show the spectrum for composed kernels
corresponding to different optimized feature mappings, where the feature mappings are initialized
to match the “Power∞” distribution. In (b) we take an alternative approach where we sweep over
"power law" settings for our Fourier features. We find that tuning this simple parameterization is able
to perform on par with the optimized feature maps.

1.2 Feature sparsity and network depth37

In our experiments, we observe that deeper networks need fewer Fourier features than shallow38

networks. As the depth of the MLP increases, we observe that a sparser set of frequencies can achieve39

similar performance; Figure 2 illustrates this effect in the context of 2D image regression.40

Again drawing on NTK theory, we understand this tradeoff as an effect of frequency “spreading,” as41

illustrated in Figure 3. A Fourier featurization consists of only discrete frequencies, but when com-42

posed with the NTK, the influence of each discrete frequency “spreads” over its local neighborhood43

in the final spectrum. We find that the “spread” around each frequency feature increases for deeper44

networks. For an MLP to learn all of the frequency components in the target signal, its corresponding45

composed NTK must contain adequate power across the frequency support of the target signal. This46

is accomplished either by including more frequencies in the Fourier features or by spreading those47

frequencies through sufficient NTK depth.48
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Figure 2: In a 2D image regression task (ex-
plained in Section 5.1) we find that shallower net-
works require more Fourier features than deeper
networks. This is explained by the frequency
spreading effect shown in Figure 3. In this ex-
periment we use the Natural image dataset and
a Gaussian mapping. All of the network layers
have 256 channels, and the networks are trained
using an Adam [8] optimizer with a learning rate
of 10−3.
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(a) NTK Fourier spectrum with basic mapping
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(b) NTK Fourier spectrum with basic mapping and an additional frequency
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Figure 3: Each frequency included in a Fourier embedding is “spread” by the NTK, with deeper
NTKs causing more frequency spreading. We posit that this frequency spreading is what enables an
MLP with a sparse set of Fourier features to faithfully reconstruct a complex signal, which would be
poorly reconstructed by either sparse Fourier feature regression or a plain coordinate-based MLP.

1.3 Gradient descent does not optimize Fourier features49

One may wonder if the Fourier feature mapping parameters aj and bj can be optimized alongside50

network weights using gradient descent, which may circumvent the need for careful initialization.51

We performed an experiment in which the aj ,bj values are treated as trainable variables (along with52

the weights of the network) and optimize all variables with Adam to minimize training loss. Figure 453

shows that jointly optimizing these parameters does not improve performance compared to leaving54

them fixed.55
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Figure 4: “Training” the Fourier feature mapping parameters aj and bj along with the network
weights using Adam does not improve performance, as the bj values do not deviate significantly
from their initial values. We show that this holds when bj are initialized at three different scales of
Gaussian Fourier features in the case of the 2D image task (aj are always initialized as 1).
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1.4 Visualizing underfitting and overfitting in 2D56

Figure 4 in the main text shows (in a 1D setting) that as the scale of the Fourier feature sampling57

distribution increases, the trained network’s error traces out a curve that starts in an underfitting regime58

(only low frequencies are learned) and ends in an overfitting regime (the learned function includes59

high-frequency detail not present in the training data). In Figure 5, we show analogous behavior for60

2D image regression, demonstrating that the same phenomenon holds in a multidimensional problem.61

In Figure 6, we show how changing the scale for Gaussian Fourier features qualitatively affects the62

final result in the 2D image regression task.63
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(a) Test error for 2D image task
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Figure 5: An alternate version of Figure 4 from the main text where the underlying signal is a 2D
image (see 2D image task details in Section 5.1) instead of 1D signal. This multi-dimensional case
exhibits the same behavior as was seen in the 1D case: we see the same underfitting/overfitting pattern
for four different isotropic Fourier feature distributions, and the distribution shape matters less than
the scale of sampled bi values.
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Figure 6: A visualization of the 2D image regression task with different Gaussian scales (correspond-
ing to points along the curve shown in Figure 5). Low values of σ underfit, resulting in oversmoothed
interpolation, and large values of σ overfit, resulting in noisy interpolation. We find that σ = 10
performs best for our Natural image dataset.

1.5 Failures of positional encoding (axis-aligned bias)64

Here we present a simple experiment to directly showcase the benefits of using an isotropic frequency65

distribution, such as Gaussian RFF, compared to the axis-aligned “positional encoding” used in prior66

work [13, 16]. As discussed in the main paper, the positional encoding mapping only uses on-axis67

frequencies. This approach is well-suited to data that has more frequency content along the coordinate68

axes, but is not as effective for more natural signals.69

In Figure 7, we conduct a simple 2D image experiment where we train a coordinate-based MLP (270

layers, 256 channels) to fit target 2D sinusoid images (512× 512 resolution). We sample 64 such71

2D sinusoid images (regularly-sampled in polar coordinates, with 16 angles and 4 radii) and train a72

2D coordinate-based MLP to fit each, using the same setup as the 2D image experiments described73

in Section 5.1. The isotropic Gaussian RFF mapping performs well across all angles, while the74

positional encoding mapping performs worse for frequencies that are not axis-aligned.75
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Figure 7: We train a coordinate-based MLP to fit target 2D images consisting of simple sinusoids
at different frequencies and angles. The positional encoding mapping performs well at on-axis
angles and performs worse on off-axis angles, while the Gaussian RFF mapping performs similarly
well across all angles (results are averaged over radii). Error bars are plotted over runs with dif-
ferent randomly-sampled frequencies for the Gaussian RFF mapping, while positional encoding is
deterministic.

2 Additional details for main text figures76

2.1 Main text Figure 3 (effect of feature mapping on convergence speed)77

In Figure 8, we present an alternate version of Figure 3 from the main text showing a denser sampling78

of p values to better visualize the effect of changing Fourier feature falloff on the resulting trained79

network. Again, the feature mapping used here is aj = 1/jp, bj = j for j = 1, . . . , n/2.80
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Figure 8: An extension of Figure 3 from the main paper, showing more values of p. In (c) we see that
mappings with more gradual frequency falloff (lower p) converge significantly faster in mid and high
frequencies, resulting in faster overall training convergence (d). In (b) we see that p = 1 achieves a
lower test error than the other mappings.

2.2 Main text Figure 4 (different random feature distributions in 1D)81

Exact details for the sampling distributions used to generate bj values for Figure 4 in the main82

text are shown in Table 1. In Figure 9, we present an alternate version showing both train and test83

performance, emphasizing the underfitting/overfitting regimes created by manipulating the scale of84

the Fourier features.85

Uniform log distribution We include the Uniform log distribution because it is the random equiva-86

lent of the “positional encoding” sometimes used in prior work. One observation is that the sampling87
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for uniform-log variables (X ′ = σXul where X ∼ U [0, 1)) corresponds to the following CDF:88

P (X ′ ≤ x) =
log x

log σul
, for x ∈ [1, σul) , (2)

which has the following PDF:89

p(x) =
d

dx
P (X ′ ≤ x) =

1

x log σul
. (3)

This shows that the randomized equivalent of positional encoding is sampling from a distribution90

proportional to a 1/f falloff power law.91

Name Sampled bj values
Gaussian σgX for X ∼ N (0, 1)
Uniform σuX for X ∼ U [0, 1)
Uniform log σXul for X ∼ U [0, 1)
Laplacian σlX for X ∼ Laplace(0, 1)
Positional Enc. 2σpX for X ∈ linspace(0, 1) (deterministic)

Table 1: Different distributions used for sampling frequencies, where σ is each distribution’s “scale”.
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Figure 9: An alternate version of Figure 4 from the main text showing both training error and test
error for a variety of different Fourier feature sampling distributions. Adding training error to the
plot clearly distinguishes between the underfitting regime with low frequency bi (where train and test
error are similar) versus the overfitting regime with high frequency bi (where the test error increases
but training error approaches machine precision).

3 Stationary kernels92

One of the primary benefits of our Fourier feature mapping is that it results in a stationary composed93

NTK function. In this section, we offer some intuition for why stationarity is desirable for our94

low-dimensional graphics and imaging problems.95

First, let us consider the implications of using an MLP applied directly to a low-dimensional input96

(without any Fourier feature mapping). In this setting, the NTK is a function of the dot product97

between its inputs and of their norms [2, 3, 4, 7]. This makes the NTK rotation-invariant, but not98

translation-invariant. For our graphics and imaging applications, we want to be able to model an99

object or scene equally well regardless of its location, so translation-invariance or stationarity is100

a crucial property. We can then add approximate rotation invariance back by using an isotropic101

frequency sampling distribution.102

This aligns with standard practice in signal processing, in which k(u,v) = h̃(u−v) = h̃(v−u) (e.g.103

the Gaussian or radial basis function kernel, or the sinc reconstruction filter kernel). This Euclidean104

notion of similarity based on difference vectors is better suited to the low-dimensional regime, in105

which we expect (and can afford) dense and nearly uniform sampling. Regression with a stationary106

kernel corresponds to reconstruction with a convolution filter: new predictions are sums of training107

points, weighted by a function of Euclidean distance.108

One of the most important features of our sinusoidal input mapping is that it translates between these109

two regimes. If u,v ∈ Rd for small d, γ is our Fourier feature embedding function, and k is a dot110

6



product kernel function, then k(γ(u), γ(v)) = h(γ(u)Tγ(v)) = h̃(u− v). In words, our sinusoidal111

input mapping transforms a dot product kernel into a stationary one, making it better suited to the112

low-dimensional regime.113

This effect is illustrated in a simple 1D example in Figure 10, which shows that the benefits of a114

stationary composed NTK indeed appear in the MLP setting with a basic Fourier featurization (using115

a single frequency). We train MLPs with and without this basic Fourier embedding to learn a set of116

shifted 1D Gaussian probability density functions. The plain MLP successfully fits a zero-centered117

function but struggles to fit shifted functions, while the MLP with basic Fourier embedding exhibits118

stationary behavior, with good performance regardless of shifts.119
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Figure 10: A plain coordinate-based MLP can learn a centered function (in this case a Gaussian
density) but struggles to model shifts of the same function. Adding a basic Fourier embedding
(with a single frequency) enables the MLP to fit the target function equally well regardless of shifts.
The NTK corresponding to the plain MLP is based on dot products between inputs, whereas the
NTK corresponding to the NTK with Fourier embedding is based on Euclidean distances between
inputs, making it shift-invariant. In this experiment we train an MLP (4 layers, 256 channels, ReLU
activation) for 500 iterations using the Adam [8] optimizer with a learning rate of 10−4. We report
mean and standard deviation performance over 20 random network initializations.

4 Indirect supervision through a linear map120

In some of the tasks we explore in this work, such as image regression or 3D shape regression,121

optimization is performed by minimizing a loss between the output of a network and a directly122

observed quantity, such as the color of a pixel or the occupancy of a voxel. But in many graphics123

and imaging applications of interest, measurements are indirect, and the loss must be computed on124

the output of a network after it has been processed by some physical forward model. In NeRF [13],125

measurements are taken by sampling and compositing along rays in each viewing direction. In MRI,126

measurements are taken along various curves through the frequency domain. In CT, measurements127

are integral projections of the subject at various angles, which correspond to measuring lines through128

the origin in the frequency domain. Although the measurement transformation for NeRF is nonlinear129

(in density, although it is linear in color), those for both CT and MRI are linear. In this section,130

we extend the linearized training dynamics of Lee et al. [9] to the setting of training through a131

linear operator denoted by a matrix A. This allows us to modify Eqn. 3 to incorporate A, thereby132

demonstrating that the conclusions drawn in this work for the “direct” regression case also apply to133

the “indirect” case.134

Our derivation closely follows Lee et al. [9], and begins by replacing the neural network f with its135

linearization around the initial parameters θ0:136

f lin
t (x) , f0(x) +∇θf0(x)|θ=θ0ωt , (4)

where ωt , θt − θ0 denotes the change in network parameters since initialization and t denotes time137

in continuous-time gradient flow dynamics. Then [9] describes the dynamics of gradient flow:138

ḟ lin
t (x) = −ηΘ̂0(x,X)∇f lin

t (X)L , (5)

where Θ̂t(·, ·) = ∇θft(·)∇θft(·)T is the NTK matrix at time t (Θ̂t is shorthand for Θ̂t(X,X))139

and L is the training loss. At this point, we depart slightly from the analysis of [9]: instead of140
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L =
∑

(x,y)∈D `(f
lin
t (x), y) we have L = 1

2

∥∥A(f lin
t (X)− y)

∥∥2

2
, where y denotes the vector of141

training labels. The gradient of the loss is then142

∇f lin
t (X)L = ∇f lin

t (X)

1

2

∥∥A (f lin
t (X)− y

)∥∥2

2
(6)

= ATA
(
f lin
t (X)− y

)
. (7)

Substituting this into the gradient flow dynamics of Eqn. 5 gives us:143

ḟ lin
t (x) = −ηΘ̂0(x,X)ATA

(
f lin
t (X)− y

)
, (8)

with corresponding solution:144

f lin
t (X) =

(
I− e−ηΘ̂0A

TAt
)
y + e−ηΘ̂0A

TAtf0(X) . (9)

Finally, again following [9], we can decompose f lin
t (x) = µt(x) + γt(x) at any test point x, where145

µt(x) = Θ̂0(x,X)Θ̂−1
0

(
I− e−ηΘ̂0A

TAt
)
y , (10)

γt(x) = f0(x)− Θ̂0(x,X)Θ̂−1
0

(
I− e−ηΘ̂0A

TAt
)
f0(X) . (11)

Assuming our initialization is small, i.e., f0(x) ≈ 0 ∀x, we can write our approximate linearized146

network output as:147

f lin
t (x) ≈ Θ̂0(x,X)Θ̂−1

0

(
I− e−ηΘ̂0A

TAt
)
y . (12)

In our previous analysis, we work instead with the expected or infinite-width NTK matrix K, which148

is fixed throughout training. Using this notation, we have149

ŷ(t) ≈ f lin
t (Xtest) ≈ KtestK

−1
(
I− e−ηKATAt

)
y . (13)

This is nearly identical to Eqn. 3in the main paper, except that the convergence is governed by the150

spectrum of KATA rather than K alone. If A is unitary, such as the Fourier transform matrix151

used in (densely sampled) MRI, then training should behave exactly as if we were training on direct152

measurements. However, if A is not full rank, then training will only affect the components with153

nonzero eigenvalues in KATA. In this more common scenario, we want to design a kernel that will154

provide large eigenvalues in the components that A can represent, so that the learnable components155

will converge quickly, and provide reasonable priors for the components we cannot learn.156

In our two tasks that supervise through a linear map, CT and MRI, the ATA has a structure that157

illuminates how the linear map interacts with the composed NTK. The ATA matrices for both these158

tasks are diagonalizable by the DFT matrix, where the diagonal entries are simply the number of159

times the corresponding frequency is measured by the MRI or CT sampling patterns. This follows160

from the fact that CT and MRI measurements can both be formulated as Fourier space sampling:161

CT samples rotated slices in Fourier space through the origin [5] and MRI samples operator-chosen162

Fourier trajectories. This means that frequencies not observed by the MRI or CT sampling patterns163

will never be supervised during training. Therefore, it is crucial to choose a Fourier feature mapping164

that results in a composed NTK with a good prior on these frequencies.165

5 Task details166

We present additional details for each task from Section 6 in the main text, including training167

parameters, forward models, datasets, etc. All experiments are implemented using JAX [6] and168

trained on a single K80 or RTX2080Ti GPU. Training a single MLP took between 10 seconds (for169

the 2D image task) and 30 minutes (for the inverse rendering task).170

5.1 2D image171

The 2D image regression tasks presented in the main text all use 512 × 512 resolution images. A172

subsampled grid of 256× 256 pixels is used as training data, and an offset grid of 256× 256 pixels173
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is used for testing. We use two image datasets: Natural and Text, each consisting of 32 images. The174

Natural images are generated by taking center crops of randomly sampled images from the Div2K175

dataset [1]. The Text images are generated by placing random strings of text with random sizes and176

colors on a white background (examples can be seen in Figure 11). For each dataset we perform a177

hyperparameter sweep over feature mapping scales on 16 images. We find that scales σg = 10 and178

σp = 6 work best for the Natural dataset and σg = 14 and σp = 5 work best for the Text dataset179

(see Table 1 for mapping definitions). In Table 2, we report model performance using the optimal180

mapping scale on the remaining 16 images.181

Natural Text
No mapping 19.32± 2.48 18.40± 2.23
Basic 21.71± 2.71 20.48± 1.96
Positional enc. 24.95± 3.72 27.57± 3.07
Gaussian 25.57± 4.19 30.47± 2.11

Table 2: 2D image results (mean ± standard deviation of PSNR)

Each model (MLP with 4 layers, 256 channels, ReLU activation) is trained for 2000 iterations using182

the Adam [8] optimizer with default settings (β1 = 0.9, β2 = 0.999, ε = 10−8). Learning rates are183

manually tuned for each dataset and method. For Natural images a learning rate of 10−3 is used184

for the Gaussian RFF and the positional encoding, and a learning rate of 10−2 is used for the basic185

mapping and “no mapping” methods. For the Text images a learning rate of 10−3 is used for all186

methods.187

5.2 3D shape188

We evaluate the 3D shape regression task (similar to Occupancy Networks [11]) on four complex189

triangle meshes commonly used in computer graphics applications (Dragon, Armadillo, Buddha,190

and Lucy, shown in Figure 12), each containing hundreds of thousands of vertices. We train one191

coordinate-based MLP network to represent a single mesh rather than trying to generalize one network192

to encode multiple objects, since our goal is to demonstrate that a network with no mapping or the193

low frequency “basic” mapping cannot accurately represent even a single shape, let alone a whole194

class of objects.195

We use a network with 8 layers of 256 channels each and a ReLU nonlinearity between each layer.196

Our batch size is 323 points, and we use the Adam optimizer [8] with a learning rate starting at197

5 × 10−4 and exponentially decaying by a factor of 0.01 over the course of 10000 total training198

iterations. At each training iteration, we sample a batch of 3D points uniformly at random from the199

bounding box of the mesh, and then calculate ground truth labels (using the point-in-mesh method200

implemented in the Trimesh library [12], which relies on the Embree kernel for acceleration [15]).201

We use cross-entropy loss to train the network to match these classification labels (0 for points outside202

the mesh, 1 for points inside).203

The meshes are scaled to fit inside the unit cube [0, 1]3 such that the centroid of the mesh is204

(0.5, 0.5, 0.5). We use the Lucy statue mesh as a validation object to find optimal scale values for205

the positional encoding and Gaussian feature mapping. As described in the caption for Table 3, we206

calculate error on both a uniformly random test set and a test set that is close to the mesh surface207

(randomly chosen mesh vertices that have been perturbed by a random Gaussian vector with standard208

deviation 0.01) in order to illustrate that Fourier feature mappings provide a large benefit in resolving209

fine surface details. Both test sets have 643 points.210

In Figure 12, we visualize additional results on all four meshes mentioned above (including the211

validation mesh Lucy). We render normal maps, which are computed by taking the cross product212

of the numerical horizontal and vertical derivatives of the depth map. The original depth map is213

generated by intersecting camera rays with the first 0.5 isosurface of the network. We select the214

Fourier feature scales for (d) and (e) by doing a hyperparameter search based on validation loss for215

the Lucy mesh in the last row and report test loss over the other three meshes (Table 3). Note that the216

weights for each trained MLP are only 2MB, while the triangle mesh files for the objects shown are217

61MB, 7MB, 79MB, and 32MB respectively.218
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Uniform points Boundary points
No mapping 0.959± 0.006 0.864± 0.014
Basic 0.966± 0.007 0.892± 0.017
Positional enc. 0.987± 0.005 0.960± 0.011
Gaussian 0.988± 0.007 0.973± 0.010

Table 3: 3D shape results (mean ± standard deviation of intersection-over-union). Uniform points
is an “easy” test set where points are sampled uniformly at random from the bounding box of the
ground truth mesh, while Boundary points is a “hard” test set where points are sampled near the
boundary of the ground truth mesh.

5.3 2D CT219

In computed tomography (CT), we observe measurements that are integral projections (integrals220

along parallel lines) of a density field. We construct a 2D CT task by using ground truth 512× 512221

resolution images, and computing 20 synthetic integral projections at evenly-spaced angles. For each222

of these images, the supervision data is the set of integral projections, and the test PSNR is evaluated223

over the original image.224

We use two datasets for our 2D CT task: randomized Shepp-Logan phantoms [14], and the ATLAS225

brain dataset [10]. For each dataset, we perform a hyperparameter sweep over mapping scales on 8226

examples. We found that scales σg = 4 and σp = 3 work best for the Shepp dataset and σg = 5 and227

σp = 5 work best for the ATLAS dataset. In Table 4, we report model performance using the optimal228

mapping scale on a distinct set of 8 images.229

Shepp ATLAS
No mapping 16.75± 3.64 15.44± 1.28
Basic 23.31± 4.66 16.95± 0.72
Positional enc. 26.89± 1.46 19.55± 1.09
Gaussian 28.33± 1.15 19.88± 1.23

Table 4: 2D CT results (mean ± standard deviation of PSNR).

Each model (MLP with 4 layers, 256 channels, ReLU activation) is trained for 1000 iterations using230

the Adam [8] optimizer with default settings (β1 = 0.9, β2 = 0.999, ε = 10−8). The learning rate is231

manually tuned for each method. Gaussian RFF and positional encoding use a learning rate of 10−3,232

and the basic and “no mapping” method use a learning rate of 10−2.233

5.4 3D MRI234

In magnetic resonance imaging (MRI), we observe measurements that are Fourier coefficients of235

the atomic response to radio waves under a magnetic field. We construct a toy 3D MRI task by236

using ground truth 96× 96× 96 resolution volumes and randomly sampling ∼13% of the Fourier237

coefficients for each volume from an isotropic Gaussian. For each of these volumes, the supervision238

data is the set of sampled Fourier coefficients, and the test PSNR is evaluated over the original239

volume.240

We use the ATLAS brain dataset [10] for our 3D MRI experiments. We perform a hyperparameter241

sweep over mapping scales on 6 examples. We find that scales σg = 5 and σp = 4 perform best.242

In Table 5, we report model performance using the optimal mapping scale on a distinct set of 6243

images. Each model (MLP with 4 layers, 256 channels, ReLU activation) is trained for 1000 iterations244

using the Adam [8] optimizer with default settings (β1 = 0.9, β2 = 0.999, ε = 10−8). We use a245

manually-tuned learning rate of 2× 10−3 for each method. Results are visualized in Figure 14.246

5.5 3D inverse rendering for view synthesis247

In this task we use the “tiny NeRF” simplified version of the view synthesis method NeRF [13] where248

hierarchical sampling and view dependence have been removed. The model is trained to predict249

the color and volume density at an input 3D point. Volumetric rendering is used to render novel250
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ATLAS
No mapping 26.14± 1.45
Basic 28.58± 2.45
Positional enc. 32.23± 3.08
Gaussian 34.51± 2.72

Table 5: 3D MRI results (mean ± standard deviation of PSNR).

viewpoints of the object. The loss is calculated between the rendered views and ground truth renders.251

In our experiments we use the NeRF Lego dataset of 120 images downsampled to 400× 400 pixel252

resolution. The dataset is split into 100 training images, 7 validation images, and 13 test images. The253

reconstruction quality on the validation images is used to determine the best mapping scale; for this254

scene we find σg = 6.05 and σp = 1.27 perform best.255

The model (MLP with 4 layers, 256 channels, ReLU activation) is trained for 5 × 105 iterations256

using the Adam [8] optimizer with default settings (β1 = 0.9, β2 = 0.999, ε = 10−8). The learning257

rate was manually tuned for each mapping: 10−2 for no mapping, 5× 10−3 for basic, 5× 10−4 for258

positional encoding, and 5× 10−4 for Gaussian. During training we use batches of 1024 rays.259

The original NeRF method [13] uses an input mapping similar to the Positional encoding we compare260

against. The original NeRF mapping is smaller than our mappings (8 vs. 256 frequencies). We261

include metrics for this mapping in Table 6 under Original pos. enc. The positional encoding262

mappings only contain frequencies on the axes, and are therefore biased towards signals with on-axis263

frequency content (as demonstrated in Section 1.5). In our experiments we rotate the Lego scene,264

which was manually axis-aligned in the original dataset, for a more equitable comparison. Table 6265

also reports metrics for positional encodings on the original axis-aligned scene. Results are visualized266

in Figure 15.267

3D NeRF
No mapping 22.41± 0.92
Basic 23.16± 0.90
Original pos. enc. 24.81± 0.88
Positional enc. 25.28± 0.83
Gaussian 25.48± 0.89
Original pos. enc. (axis-aligned) 25.60± 0.76
Positional enc. (axis-aligned) 26.27± 0.91

Table 6: 3D NeRF results (mean and standard deviation of PSNR). Error is calculated based on
held-out images of the scene since the ground truth radiance field is not known.
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6 Additional results figures268

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 11: Additional results for the 2D image regression task, for three images from our Natural
dataset (top) and two images from our Text dataset (bottom).
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(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 12: Additional results for our 3D shape occupancy task.

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 13: Additional results for the 2D CT task.
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(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 14: Additional results for the 3D MRI task.

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 15: Additional results for the inverse rendering task [13].

14



References269

[1] Eirikur Agustsson and Radu Timofte. NTIRE 2017 challenge on single image super-resolution:270

Dataset and study. CVPR Workshops, 2017.271

[2] Ronen Basri, Meirav Galun, Amnon Geifman, David Jacobs, Yoni Kasten, and Shira Kritch-272

man. Frequency bias in neural networks for input of non-uniform density. arXiv preprint273

arXiv:2003.04560, 2020.274

[3] Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. NeurIPS,275

2019.276

[4] Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning277

curves in kernel regression and wide neural networks. arXiv preprint arXiv:2002.02561, 2020.278

[5] R. N. Bracewell. Strip integration in radio astronomy. Australian Journal of Physics, 1956.279

[6] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal280

Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy281

programs, 2018. http://github.com/google/jax.282

[7] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Convergence and283

generalization in neural networks. NeurIPS, 2018.284

[8] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.285

[9] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-286

Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models287

under gradient descent. NeurIPS, 2019.288

[10] Sook-Lei Liew, Julia M. Anglin, Nick W. Banks, Matt Sondag, Kaori L. Ito, Kim, et al. A289

large, open source dataset of stroke anatomical brain images and manual lesion segmentations.290

Scientific Data, 2018.291

[11] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.292

Occupancy networks: Learning 3D reconstruction in function space. CVPR, 2019.293

[12] Michael Dawson-Haggerty et al. trimesh, 2019. https://trimsh.org/.294

[13] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,295

and Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. arXiv296

preprint arXiv:2003.08934, 2020.297

[14] Lawrence A. Shepp and Benjamin F. Logan. The Fourier reconstruction of a head section. IEEE298

Transactions on nuclear science, 1974.299

[15] Ingo Wald, Sven Woop, Carsten Benthin, Gregory S Johnson, and Manfred Ernst. Embree: a300

kernel framework for efficient CPU ray tracing. ACM Transactions on Graphics (TOG), 2014.301

[16] Ellen D. Zhong, Tristan Bepler, Joseph H. Davis, and Bonnie Berger. Reconstructing continuous302

distributions of 3D protein structure from cryo-EM images. ICLR, 2020.303

15

http://github.com/google/jax
https://trimsh.org/

	Further experiments
	Optimizing validation error through the NTK linear dynamics
	Feature sparsity and network depth
	Gradient descent does not optimize Fourier features
	Visualizing underfitting and overfitting in 2D
	Failures of positional encoding (axis-aligned bias)

	Additional details for main text figures
	Main text Figure 3 (effect of feature mapping on convergence speed)
	Main text Figure 4 (different random feature distributions in 1D)

	Stationary kernels
	Indirect supervision through a linear map
	Task details
	2D image
	3D shape
	2D CT
	3D MRI
	3D inverse rendering for view synthesis

	Additional results figures

