
A Further experiments

A.1 Optimizing validation error through the NTK linear dynamics

Using Eqn. 3 in the main paper, we can predict what error a trained network will achieve on a set of
testing points. Since this equation depends on the composed NTK, we can directly relate predicted
test set loss to the Fourier feature mapping parameters a and b for a validation set of signals yval:

Lopt =
∥∥∥u(t) − yval

∥∥∥2

2
≈
∥∥∥KvalK

−1
(
I− e−ηKt

)
y − yval

∥∥∥2

2
, (10)

where Kval is the composed NTK evaluated between points in a validation dataset Xval and training
dataset X, and η and t are the learning rate and number of iterations that will be used when training
the actual network.

In Figure 5, we show the results of minimizing Eqn. 10 by gradient descent on aj values (with fixed
corresponding “densely sampled” bj = j) for validation sets sampled from three different 1/fα

noise families. Note that gradient descent on this theoretical loss approximation produces aj values
which are able to perform as well as the best “power law” aj values for each respective signal class
(compared dashed lines versus × markers in Figure 5b). As mentioned in the main text, we find that
this optimization strategy is only viable for small 1D regression problems. In our multidimensional
tasks, using densely sampled bj values is not tractable due to memory constraints. In addition, the
theoretical approximation only holds when training the network using SGD, and in practice we train
using the Adam optimizer [21].

−π −π/2 0 π/2 π

Frequency

10-1

100

101

102

M
ag

n
it
u
d
e

(a) NTK Fourier spectrum

Power ∞
Opt. for α= 1.0

Opt. for α= 1.5

Opt. for α= 2.0

0.0 0.5 1.0 1.5 2.0 ∞
Fourier features power distribution

10-5

10-4

10-3

M
ea

n
 s

q
u
ar

ed
 e

rr
or

α= 1.0

α= 1.5

Signal α= 2.0

(b) Fourier features mapping performances

Power

Best Power

Opt. for α

Figure 5: The Fourier feature mappings can be optimized for better performance on a class of target
signals by using the linearized network approximation. Here we consider target signals sampled
from three different power law distributions. In (a) we show the spectrum for composed kernels
corresponding to different optimized feature mappings, where the feature mappings are initialized
to match the “Power∞” distribution. In (b) we take an alternative approach where we sweep over
"power law" settings for our Fourier features. We find that tuning this simple parameterization is able
to perform on par with the optimized feature maps.

A.2 Feature sparsity and network depth

In our experiments, we observe that deeper networks need fewer Fourier features than shallow
networks. As the depth of the MLP increases, we observe that a sparser set of frequencies can achieve
similar performance; Figure 6 illustrates this effect in the context of 2D image regression.

Again drawing on NTK theory, we understand this tradeoff as an effect of frequency “spreading,” as
illustrated in Figure 7. A Fourier featurization consists of only discrete frequencies, but when com-
posed with the NTK, the influence of each discrete frequency “spreads” over its local neighborhood
in the final spectrum. We find that the “spread” around each frequency feature increases for deeper
networks. For an MLP to learn all of the frequency components in the target signal, its corresponding
composed NTK must contain adequate power across the frequency support of the target signal. This
is accomplished either by including more frequencies in the Fourier features or by spreading those
frequencies through sufficient NTK depth.

12



24 26 28 210

Embedding length

15

20

25

30

P
S
N

R

2 layers

4 layers

8 layers

Figure 6: In a 2D image regression task (ex-
plained in Section E.1) we find that shallower net-
works require more Fourier features than deeper
networks. This is explained by the frequency
spreading effect shown in Figure 7. In this ex-
periment we use the Natural image dataset and
a Gaussian mapping. All of the network layers
have 256 channels, and the networks are trained
using an Adam [21] optimizer with a learning
rate of 10−3.

−π −π/2 0 π/2 π

Frequency

10-2

10-1

100

101

M
ag

n
it
u
d
e

(a) NTK Fourier spectrum with basic mapping

Depth: 4

Depth: 8

Depth: 16

−π −π/2 0 π/2 π

Frequency

10-2

10-1

100

101

M
ag

n
it
u
d
e

(b) NTK Fourier spectrum with basic mapping and an additional frequency

Depth: 4

Depth: 8

Depth: 16

Figure 7: Each frequency included in a Fourier embedding is “spread” by the NTK, with deeper
NTKs causing more frequency spreading. We posit that this frequency spreading is what enables an
MLP with a sparse set of Fourier features to faithfully reconstruct a complex signal, which would be
poorly reconstructed by either sparse Fourier feature regression or a plain coordinate-based MLP.

A.3 Gradient descent does not optimize Fourier features

One may wonder if the Fourier feature mapping parameters aj and bj can be optimized alongside
network weights using gradient descent, which may circumvent the need for careful initialization.
We performed an experiment in which the aj ,bj values are treated as trainable variables (along with
the weights of the network) and optimize all variables with Adam to minimize training loss. Figure 8
shows that jointly optimizing these parameters does not improve performance compared to leaving
them fixed.

0 500 1000 1500 2000

Iteration

15

20

25

30

35

40

P
S
N

R

(a) Train

0 500 1000 1500 2000

Iteration

20.0

20.5

21.0

21.5

22.0

22.5

23.0

23.5

(b) Test

σg = 4

σg = 12

σg = 36

Optimizing aj, bj

Not optimizing aj, bj

Figure 8: “Training” the Fourier feature mapping parameters aj and bj along with the network
weights using Adam does not improve performance, as the bj values do not deviate significantly
from their initial values. We show that this holds when bj are initialized at three different scales of
Gaussian Fourier features in the case of the 2D image task (aj are always initialized as 1).

13



A.4 Visualizing underfitting and overfitting in 2D

Figure 4 in the main text shows (in a 1D setting) that as the scale of the Fourier feature sampling
distribution increases, the trained network’s error traces out a curve that starts in an underfitting regime
(only low frequencies are learned) and ends in an overfitting regime (the learned function includes
high-frequency detail not present in the training data). In Figure 9, we show analogous behavior for
2D image regression, demonstrating that the same phenomenon holds in a multidimensional problem.
In Figure 10, we show how changing the scale for Gaussian Fourier features qualitatively affects the
final result in the 2D image regression task.

21 23 25 27

Standard deviation of sampled bi

14

16

18

20

22

24

P
S
N

R

Gaussian

Uniform

Uniform log

Laplacian

(a) Test error for 2D image task

21 23 25 27

Standard deviation of sampled bi

20

30

40

P
S
N

R

Gaussian

Uniform

Uniform log

Laplacian

Test

Train

(b) Train and test error for 2D image task

Figure 9: An alternate version of Figure 4 from the main text where the underlying signal is a 2D
image (see 2D image task details in Section E.1) instead of 1D signal. This multi-dimensional case
exhibits the same behavior as was seen in the 1D case: we see the same underfitting/overfitting pattern
for four different isotropic Fourier feature distributions, and the distribution shape matters less than
the scale of sampled bi values.

σ = 1 σ = 2 σ = 10 σ = 32 σ = 64

Figure 10: A visualization of the 2D image regression task with different Gaussian scales (correspond-
ing to points along the curve shown in Figure 9). Low values of σ underfit, resulting in oversmoothed
interpolation, and large values of σ overfit, resulting in noisy interpolation. We find that σ = 10
performs best for our Natural image dataset.

A.5 Failures of positional encoding (axis-aligned bias)

Here we present a simple experiment to directly showcase the benefits of using an isotropic frequency
distribution, such as Gaussian RFF, compared to the axis-aligned “positional encoding” used in prior
work [30, 48]. As discussed in the main paper, the positional encoding mapping only uses on-axis
frequencies. This approach is well-suited to data that has more frequency content along the coordinate
axes, but is not as effective for more natural signals.

In Figure 11, we conduct a simple 2D image experiment where we train a coordinate-based MLP (2
layers, 256 channels) to fit target 2D sinusoid images (512× 512 resolution). We sample 64 such
2D sinusoid images (regularly-sampled in polar coordinates, with 16 angles and 4 radii) and train a
2D coordinate-based MLP to fit each, using the same setup as the 2D image experiments described
in Section E.1. The isotropic Gaussian RFF mapping performs well across all angles, while the
positional encoding mapping performs worse for frequencies that are not axis-aligned.

14



0 π/4 π/2 3π/4 π

Target sinusoid angle (radians)

29

30

31

32

33

34

P
S
N

R

Gaussian RFF

Positional encoding

Figure 11: We train a coordinate-based MLP to fit target 2D images consisting of simple sinusoids
at different frequencies and angles. The positional encoding mapping performs well at on-axis
angles and performs worse on off-axis angles, while the Gaussian RFF mapping performs similarly
well across all angles (results are averaged over radii). Error bars are plotted over runs with dif-
ferent randomly-sampled frequencies for the Gaussian RFF mapping, while positional encoding is
deterministic.

B Additional details for main text figures

B.1 Main text Figure 3 (effect of feature mapping on convergence speed)

In Figure 12, we present an alternate version of Figure 3 from the main text showing a denser
sampling of p values to better visualize the effect of changing Fourier feature falloff on the resulting
trained network. Again, the feature mapping used here is aj = 1/jp, bj = j for j = 1, . . . , n/2.

x

y

(a) Final learned functions

p= 0

p= 0.5

p= 1

p= 1.5

p= 2

Target signal

Training points

0 50000Iteration

10-5

10-4

10-3

10-2

10-1

M
ea

n
 s

q
u
ar

ed
 e

rr
or

(d) Train loss

Theory

Observed

0 50000Iteration

10-2

M
ea

n
 s

q
u
ar

ed
 e

rr
or

(b) Test loss

0 50000Iteration

10-3

10-2

10-1

100

A
b
so

lu
te

 E
rr

or

Low

0 50000Iteration

10-1

100 Mid

(c) Train loss frequency components
0 50000Iteration

10-1

100

High

Figure 12: An extension of Figure 3 from the main paper, showing more values of p. In (c) we see
that mappings with more gradual frequency falloff (lower p) converge significantly faster in mid
and high frequencies, resulting in faster overall training convergence (d). In (b) we see that p = 1
achieves a lower test error than the other mappings.

B.2 Main text Figure 4 (different random feature distributions in 1D)

Exact details for the sampling distributions used to generate bj values for Figure 4 in the main text
are shown in Table 2. In Figure 13, we present an alternate version showing both train and test
performance, emphasizing the underfitting/overfitting regimes created by manipulating the scale of
the Fourier features.

Uniform log distribution We include the Uniform log distribution because it is the random equiva-
lent of the “positional encoding” sometimes used in prior work. One observation is that the sampling

15



for uniform-log variables (X ′ = σXul where X ∼ U [0, 1)) corresponds to the following CDF:

P (X ′ ≤ x) =
log x

log σul
, for x ∈ [1, σul) , (11)

which has the following PDF:

p(x) =
d

dx
P (X ′ ≤ x) =

1

x log σul
. (12)

This shows that the randomized equivalent of positional encoding is sampling from a distribution
proportional to a 1/f falloff power law.

Name Sampled bj values
Gaussian σgX for X ∼ N (0, 1)
Uniform σuX for X ∼ U [0, 1)
Uniform log σXul for X ∼ U [0, 1)
Laplacian σlX for X ∼ Laplace(0, 1)
Positional Enc. 2σpX for X ∈ linspace(0, 1) (deterministic)

Table 2: Different distributions used for sampling frequencies, where σ is each distribution’s “scale”.

21 24 27 210

Standard deviation of sampled bi

10-14

10-11

10-8

10-5

10-2

M
ea

n
 s

q
u
ar

ed
 e

rr
or

(a) Data sampled from α= 0.5

21 24 27 210

Standard deviation of sampled bi

10-14

10-11

10-8

10-5

10-2

(b) Data sampled from α= 1.0

21 24 27 210

Standard deviation of sampled bi

10-14

10-11

10-8

10-5

10-2

(c) Data sampled from α= 1.5

Gaussian

Uniform

Uniform log

Laplacian

Test

Train

Figure 13: An alternate version of Figure 4 from the main text showing both training error and test
error for a variety of different Fourier feature sampling distributions. Adding training error to the
plot clearly distinguishes between the underfitting regime with low frequency bi (where train and test
error are similar) versus the overfitting regime with high frequency bi (where the test error increases
but training error approaches machine precision).

C Stationary kernels

One of the primary benefits of our Fourier feature mapping is that it results in a stationary composed
NTK function. In this section, we offer some intuition for why stationarity is desirable for our
low-dimensional graphics and imaging problems.

First, let us consider the implications of using an MLP applied directly to a low-dimensional input
(without any Fourier feature mapping). In this setting, the NTK is a function of the dot product
between its inputs and of their norms [3, 5, 6, 18]. This makes the NTK rotation-invariant, but not
translation-invariant. For our graphics and imaging applications, we want to be able to model an
object or scene equally well regardless of its location, so translation-invariance or stationarity is
a crucial property. We can then add approximate rotation invariance back by using an isotropic
frequency sampling distribution.

This aligns with standard practice in signal processing, in which k(u,v) = h̃(u−v) = h̃(v−u) (e.g.
the Gaussian or radial basis function kernel, or the sinc reconstruction filter kernel). This Euclidean
notion of similarity based on difference vectors is better suited to the low-dimensional regime, in
which we expect (and can afford) dense and nearly uniform sampling. Regression with a stationary
kernel corresponds to reconstruction with a convolution filter: new predictions are sums of training
points, weighted by a function of Euclidean distance.

One of the most important features of our sinusoidal input mapping is that it translates between these
two regimes. If u,v ∈ Rd for small d, γ is our Fourier feature embedding function, and k is a dot

16



product kernel function, then k(γ(u), γ(v)) = h(γ(u)Tγ(v)) = h̃(u− v). In words, our sinusoidal
input mapping transforms a dot product kernel into a stationary one, making it better suited to the
low-dimensional regime.

This effect is illustrated in a simple 1D example in Figure 14, which shows that the benefits of a
stationary composed NTK indeed appear in the MLP setting with a basic Fourier featurization (using
a single frequency). We train MLPs with and without this basic Fourier embedding to learn a set of
shifted 1D Gaussian probability density functions. The plain MLP successfully fits a zero-centered
function but struggles to fit shifted functions, while the MLP with basic Fourier embedding exhibits
stationary behavior, with good performance regardless of shifts.

−π −π/2 0 π/2 π

x

0

1

y

(a) Example target signals

−π −π/2 0 π/2 π

Center of Gaussian

10-4

10-3

10-2

M
ea

n
 s

q
u
ar

ed
 e

rr
o
r

(b) Reconstruction accuracy

No Mapping

Basic Mapping

Figure 14: A plain coordinate-based MLP can learn a centered function (in this case a Gaussian
density) but struggles to model shifts of the same function. Adding a basic Fourier embedding
(with a single frequency) enables the MLP to fit the target function equally well regardless of shifts.
The NTK corresponding to the plain MLP is based on dot products between inputs, whereas the
NTK corresponding to the NTK with Fourier embedding is based on Euclidean distances between
inputs, making it shift-invariant. In this experiment we train an MLP (4 layers, 256 channels, ReLU
activation) for 500 iterations using the Adam [21] optimizer with a learning rate of 10−4. We report
mean and standard deviation performance over 20 random network initializations.

D Indirect supervision through a linear map

In some of the tasks we explore in this work, such as image regression or 3D shape regression,
optimization is performed by minimizing a loss between the output of a network and a directly
observed quantity, such as the color of a pixel or the occupancy of a voxel. But in many graphics
and imaging applications of interest, measurements are indirect, and the loss must be computed on
the output of a network after it has been processed by some physical forward model. In NeRF [30],
measurements are taken by sampling and compositing along rays in each viewing direction. In MRI,
measurements are taken along various curves through the frequency domain. In CT, measurements
are integral projections of the subject at various angles, which correspond to measuring lines through
the origin in the frequency domain. Although the measurement transformation for NeRF is nonlinear
(in density, although it is linear in color), those for both CT and MRI are linear. In this section,
we extend the linearized training dynamics of Lee et al. [22] to the setting of training through a
linear operator denoted by a matrix A. This allows us to modify Eqn. 3 to incorporate A, thereby
demonstrating that the conclusions drawn in this work for the “direct” regression case also apply to
the “indirect” case.

Our derivation closely follows Lee et al. [22], and begins by replacing the neural network f with its
linearization around the initial parameters θ0:

f lin
t (x) , f0(x) +∇θf0(x)|θ=θ0ωt , (13)

where ωt , θt − θ0 denotes the change in network parameters since initialization and t denotes time
in continuous-time gradient flow dynamics. Then [22] describes the dynamics of gradient flow:

ḟ lin
t (x) = −ηΘ̂0(x,X)∇f lin

t (X)L , (14)

where Θ̂t(·, ·) = ∇θft(·)∇θft(·)T is the NTK matrix at time t (Θ̂t is shorthand for Θ̂t(X,X))
and L is the training loss. At this point, we depart slightly from the analysis of [22]: instead of

17



L =
∑

(x,y)∈D `(f
lin
t (x), y) we have L = 1

2

∥∥A(f lin
t (X)− y)

∥∥2

2
, where y denotes the vector of

training labels. The gradient of the loss is then

∇f lin
t (X)L = ∇f lin

t (X)

1

2

∥∥A (f lin
t (X)− y

)∥∥2

2
(15)

= ATA
(
f lin
t (X)− y

)
. (16)

Substituting this into the gradient flow dynamics of Eqn. 14 gives us:

ḟ lin
t (x) = −ηΘ̂0(x,X)ATA

(
f lin
t (X)− y

)
, (17)

with corresponding solution:

f lin
t (X) =

(
I− e−ηΘ̂0ATAt

)
y + e−ηΘ̂0ATAtf0(X) . (18)

Finally, again following [22], we can decompose f lin
t (x) = µt(x) + γt(x) at any test point x, where

µt(x) = Θ̂0(x,X)Θ̂−1
0

(
I− e−ηΘ̂0ATAt

)
y , (19)

γt(x) = f0(x)− Θ̂0(x,X)Θ̂−1
0

(
I− e−ηΘ̂0ATAt

)
f0(X) . (20)

Assuming our initialization is small, i.e., f0(x) ≈ 0 ∀x, we can write our approximate linearized
network output as:

f lin
t (x) ≈ Θ̂0(x,X)Θ̂−1

0

(
I− e−ηΘ̂0ATAt

)
y . (21)

In our previous analysis, we work instead with the expected or infinite-width NTK matrix K, which
is fixed throughout training. Using this notation, we have

ŷ(t) ≈ f lin
t (Xtest) ≈ KtestK

−1
(
I− e−ηKATAt

)
y . (22)

This is nearly identical to Eqn. 3in the main paper, except that the convergence is governed by the
spectrum of KATA rather than K alone. If A is unitary, such as the Fourier transform matrix
used in (densely sampled) MRI, then training should behave exactly as if we were training on direct
measurements. However, if A is not full rank, then training will only affect the components with
nonzero eigenvalues in KATA. In this more common scenario, we want to design a kernel that will
provide large eigenvalues in the components that A can represent, so that the learnable components
will converge quickly, and provide reasonable priors for the components we cannot learn.

In our two tasks that supervise through a linear map, CT and MRI, the ATA has a structure that
illuminates how the linear map interacts with the composed NTK. The ATA matrices for both these
tasks are diagonalizable by the DFT matrix, where the diagonal entries are simply the number of
times the corresponding frequency is measured by the MRI or CT sampling patterns. This follows
from the fact that CT and MRI measurements can both be formulated as Fourier space sampling:
CT samples rotated slices in Fourier space through the origin [7] and MRI samples operator-chosen
Fourier trajectories. This means that frequencies not observed by the MRI or CT sampling patterns
will never be supervised during training. Therefore, it is crucial to choose a Fourier feature mapping
that results in a composed NTK with a good prior on these frequencies.

E Task details

We present additional details for each task from Section 6 in the main text, including training
parameters, forward models, datasets, etc. All experiments are implemented using JAX [8] and
trained on a single K80 or RTX2080Ti GPU. Training a single MLP took between 10 seconds (for
the 2D image task) and 30 minutes (for the inverse rendering task).

E.1 2D image

The 2D image regression tasks presented in the main text all use 512 × 512 resolution images. A
subsampled grid of 256× 256 pixels is used as training data, and an offset grid of 256× 256 pixels

18



is used for testing. We use two image datasets: Natural and Text, each consisting of 32 images. The
Natural images are generated by taking center crops of randomly sampled images from the Div2K
dataset [1]. The Text images are generated by placing random strings of text with random sizes and
colors on a white background (examples can be seen in Figure 15). For each dataset we perform a
hyperparameter sweep over feature mapping scales on 16 images. We find that scales σg = 10 and
σp = 6 work best for the Natural dataset and σg = 14 and σp = 5 work best for the Text dataset
(see Table 2 for mapping definitions). In Table 3, we report model performance using the optimal
mapping scale on the remaining 16 images.

Natural Text
No mapping 19.32± 2.48 18.40± 2.23
Basic 21.71± 2.71 20.48± 1.96
Positional enc. 24.95± 3.72 27.57± 3.07
Gaussian 25.57± 4.19 30.47± 2.11

Table 3: 2D image results (mean ± standard deviation of PSNR)

Each model (MLP with 4 layers, 256 channels, ReLU activation, sigmoid output) is trained for 2000
iterations using the Adam [21] optimizer with default settings (β1 = 0.9, β2 = 0.999, ε = 10−8).
Learning rates are manually tuned for each dataset and method. For Natural images a learning rate of
10−3 is used for the Gaussian RFF and the positional encoding, and a learning rate of 10−2 is used
for the basic mapping and “no mapping” methods. For the Text images a learning rate of 10−3 is used
for all methods.

E.2 3D shape

We evaluate the 3D shape regression task (similar to Occupancy Networks [27]) on four complex
triangle meshes commonly used in computer graphics applications (Dragon, Armadillo, Buddha,
and Lucy, shown in Figure 16), each containing hundreds of thousands of vertices. We train one
coordinate-based MLP network to represent a single mesh rather than trying to generalize one network
to encode multiple objects, since our goal is to demonstrate that a network with no mapping or the
low frequency “basic” mapping cannot accurately represent even a single shape, let alone a whole
class of objects.

We use a network with 8 layers of 256 channels each and a ReLU nonlinearity between each layer.
We apply a sigmoid activation to the output. Our batch size is 323 points, and we use the Adam
optimizer [21] with a learning rate starting at 5 × 10−4 and exponentially decaying by a factor of
0.01 over the course of 10000 total training iterations. At each training iteration, we sample a batch
of 3D points uniformly at random from the bounding box of the mesh, and then calculate ground
truth labels (using the point-in-mesh method implemented in the Trimesh library [28], which relies
on the Embree kernel for acceleration [45]). We use cross-entropy loss to train the network to match
these classification labels (0 for points outside the mesh, 1 for points inside).

The meshes are scaled to fit inside the unit cube [0, 1]3 such that the centroid of the mesh is
(0.5, 0.5, 0.5). We use the Lucy statue mesh as a validation object to find optimal scale values for
the positional encoding and Gaussian feature mapping. As described in the caption for Table 4, we
calculate error on both a uniformly random test set and a test set that is close to the mesh surface
(randomly chosen mesh vertices that have been perturbed by a random Gaussian vector with standard
deviation 0.01) in order to illustrate that Fourier feature mappings provide a large benefit in resolving
fine surface details. Both test sets have 643 points.

In Figure 16, we visualize additional results on all four meshes mentioned above (including the
validation mesh Lucy). We render normal maps, which are computed by taking the cross product
of the numerical horizontal and vertical derivatives of the depth map. The original depth map is
generated by intersecting camera rays with the first 0.5 isosurface of the network. We select the
Fourier feature scales for (d) and (e) by doing a hyperparameter search based on validation loss for
the Lucy mesh in the last row and report test loss over the other three meshes (Table 4). Note that the
weights for each trained MLP are only 2MB, while the triangle mesh files for the objects shown are
61MB, 7MB, 79MB, and 32MB respectively.

19



Uniform points Boundary points
No mapping 0.959± 0.006 0.864± 0.014
Basic 0.966± 0.007 0.892± 0.017
Positional enc. 0.987± 0.005 0.960± 0.011
Gaussian 0.988± 0.007 0.973± 0.010

Table 4: 3D shape results (mean ± standard deviation of intersection-over-union). Uniform points
is an “easy” test set where points are sampled uniformly at random from the bounding box of the
ground truth mesh, while Boundary points is a “hard” test set where points are sampled near the
boundary of the ground truth mesh.

E.3 2D CT

In computed tomography (CT), we observe measurements that are integral projections (integrals
along parallel lines) of a density field. We construct a 2D CT task by using ground truth 512× 512
resolution images, and computing 20 synthetic integral projections at evenly-spaced angles. For each
of these images, the supervision data is the set of integral projections, and the test PSNR is evaluated
over the original image.

We use two datasets for our 2D CT task: randomized Shepp-Logan phantoms [40], and the ATLAS
brain dataset [23]. For each dataset, we perform a hyperparameter sweep over mapping scales on 8
examples. We found that scales σg = 4 and σp = 3 work best for the Shepp dataset and σg = 5 and
σp = 5 work best for the ATLAS dataset. In Table 5, we report model performance using the optimal
mapping scale on a distinct set of 8 images.

Shepp ATLAS
No mapping 16.75± 3.64 15.44± 1.28
Basic 23.31± 4.66 16.95± 0.72
Positional enc. 26.89± 1.46 19.55± 1.09
Gaussian 28.33± 1.15 19.88± 1.23

Table 5: 2D CT results (mean ± standard deviation of PSNR).

Each model (MLP with 4 layers, 256 channels, ReLU activation, sigmoid output) is trained for 1000
iterations using the Adam [21] optimizer with default settings (β1 = 0.9, β2 = 0.999, ε = 10−8).
The learning rate is manually tuned for each method. Gaussian RFF and positional encoding use a
learning rate of 10−3, and the basic and “no mapping” method use a learning rate of 10−2.

E.4 3D MRI

In magnetic resonance imaging (MRI), we observe measurements that are Fourier coefficients of
the atomic response to radio waves under a magnetic field. We construct a toy 3D MRI task by
using ground truth 96× 96× 96 resolution volumes and randomly sampling ∼13% of the Fourier
coefficients for each volume from an isotropic Gaussian. For each of these volumes, the supervision
data is the set of sampled Fourier coefficients, and the test PSNR is evaluated over the original
volume.

We use the ATLAS brain dataset [23] for our 3D MRI experiments. We perform a hyperparameter
sweep over mapping scales on 6 examples. We find that scales σg = 5 and σp = 4 perform best. In
Table 6, we report model performance using the optimal mapping scale on a distinct set of 6 images.
Each model (MLP with 4 layers, 256 channels, ReLU activation, sigmoid output) is trained for 1000
iterations using the Adam [21] optimizer with default settings (β1 = 0.9, β2 = 0.999, ε = 10−8). We
use a manually-tuned learning rate of 2× 10−3 for each method. Results are visualized in Figure 18.

E.5 3D inverse rendering for view synthesis

In this task we use the “tiny NeRF” simplified version of the view synthesis method NeRF [30] where
hierarchical sampling and view dependence have been removed. The model is trained to predict
the color and volume density at an input 3D point. Volumetric rendering is used to render novel

20



ATLAS
No mapping 26.14± 1.45
Basic 28.58± 2.45
Positional enc. 32.23± 3.08
Gaussian 34.51± 2.72

Table 6: 3D MRI results (mean ± standard deviation of PSNR).

viewpoints of the object. The loss is calculated between the rendered views and ground truth renders.
In our experiments we use the NeRF Lego dataset of 120 images downsampled to 400× 400 pixel
resolution. The dataset is split into 100 training images, 7 validation images, and 13 test images. The
reconstruction quality on the validation images is used to determine the best mapping scale; for this
scene we find σg = 6.05 and σp = 1.27 perform best.

The model (MLP with 4 layers, 256 channels, ReLU activation, sigmoid on RGB output) is trained
for 5 × 105 iterations using the Adam [21] optimizer with default settings (β1 = 0.9, β2 = 0.999,
ε = 10−8). The learning rate is manually tuned for each mapping: 10−2 for no mapping, 5× 10−3

for basic, 5 × 10−4 for positional encoding, and 5 × 10−4 for Gaussian. During training we use
batches of 1024 rays.

The original NeRF method [30] uses an input mapping similar to the Positional encoding we compare
against. The original NeRF mapping is smaller than our mappings (8 vs. 256 frequencies). We
include metrics for this mapping in Table 7 under Original pos. enc. The positional encoding
mappings only contain frequencies on the axes, and are therefore biased towards signals with on-axis
frequency content (as demonstrated in Section A.5). In our experiments we rotate the Lego scene,
which was manually axis-aligned in the original dataset, for a more equitable comparison. Table 7
also reports metrics for positional encodings on the original axis-aligned scene. Results are visualized
in Figure 19.

3D NeRF
No mapping 22.41± 0.92
Basic 23.16± 0.90
Original pos. enc. 24.81± 0.88
Positional enc. 25.28± 0.83
Gaussian 25.48± 0.89
Original pos. enc. (axis-aligned) 25.60± 0.76
Positional enc. (axis-aligned) 26.27± 0.91

Table 7: 3D NeRF results (mean and standard deviation of PSNR). Error is calculated based on
held-out images of the scene since the ground truth radiance field is not known.

21



F Additional results figures

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 15: Additional results for the 2D image regression task, for three images from our Natural
dataset (top) and two images from our Text dataset (bottom).

22



(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 16: Additional results for the 3D shape occupancy task [27].

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 17: Results for the 2D CT task.

23



(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 18: Additional results for the 3D MRI task.

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 19: Additional results for the inverse rendering task [30].

24


