
Supplementary Material for
Multi-Plane Program Induction with 3D Box Priors

We strongly recommend the reader to view the supplementary video, as it includes a graphical
illustration of the Box Program Induction process and view synthesis animations.

This supplementary document is organized as the following. First, in Appendix A, we show the
mathematical details of how to reconstruct the 3D positions and surface normal vectors of different
planes based on the plane segmentation for a box’s inner views (see Appendix B for outer views).
Second, in Appendix B, we present the Box Program Induction (BPI) applied to outer views of boxes
(details on BPI applied to inner views are in the main text). Next, in Appendix C, we discuss the
implementation details of BPI. Finally, we present more qualitative results on box program induction,
plane segmentation, image inpainting, and image extrapolation in Appendix D.

A Plane Reconstruction from Segmentation in Inner Views
In an inner view of a box, we use the plane segmentation of the input image to determine the 3D
positions and surface normal vectors of four planes. The plane segmentation is represented as four
rays starting from the detected vanishing point. Our reconstruction assumes a pinhole camera model
with no lens distortion, as illustrated in Fig. 1a.

We start by defining the 3D coordinate system. We define the position of the camera pinhole O as
origin of the coordinate system. We also define the optical axis of the camera (i.e., the ray from the
center of the image plane Π′ to O) as the +z axis.

V ′ denotes the vanishing point shown on the image plane. Four rays starting from V ′ will intersect
with the image boundary at four points {I ′k | k = 1, 2, 3, 4}. The line segments {V ′I ′k | k =
1, 2, 3, 4}, namely the intersection line segments, are 2D projections of the intersection lines in 3D,
between four planes. We also denote these 3D intersections lines as {IkEk | i = 1, 2, 3, 4}, where Ik
is the corresponding 3D projection of I ′k, and Ek is the 3D projection of an arbitrary point on the 2D
line segment V ′I ′k. Thus, all lines {I ′kIk | k = 1, 2, 3, 4} should intersect at the optical center O.

As can be seen in Fig. 1a, the focal length (i.e. the distance between the image center and the optical
center O) is correlated with the distance between Ik and O (i.e., the camera-to-subject distance)∗.
Moreover, the aspect ratio of the image sensor is correlated with the ratio between the sizes of four
planes (i.e., the “aspect ratio” of the box). Thus, it is impossible to fully determine the focal length
and the camera aspect ratio from this single image. Given this ambiguity, we assume the focal length
to be 35mm and the aspect ratio to be 1, and then optimize for the equivalent distance between Ik
and O.

To this end, we first consider the following property of vanishing point: the line V ′O should be
parallel with all 3D intersection lines IkEk. Thus, we perform an orthographical projection of the
inner view using a new optical axis V ′O. This leads to a new image Π′′, as illustrated in Fig. 1b. The
line segment OIk will also be projected onto Π′′ as a line segment OI ′′k , and four intersection lines
IkEk will become four points on Π′′. Determining the distance between O and Ik is equivalent to
determining the distance between I ′′k and V ′ on the new image plane Π′′.

∗Formally, we need three planes that are perpendicular to each other to determine the focal length based
on the perspective effect. However, we have only two such planes here. See Liebowitz et al. [5] for a detailed
discussion.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Wireframe
Vanishing Point
Camera Pinhole

𝐼!

𝐼"𝐼#

𝐼$

𝐸!

𝐸"

𝐸$

𝐸#

𝐼#%

𝐼$%

𝐼"%

𝐼!%
Image Plane: Π′

𝑉%

Slope=𝑣

(a) Perspective projection in an inner view (b) Orthographic projection from the vanishing point

𝑉%

𝐼#%%

𝑦 =
𝑤
! 𝑥

𝑦 =
𝑤"
𝑥

𝑦 =
𝑤#𝑥

𝑦 =
𝑤
$ 𝑥

𝐼"%%

𝐼!%%

𝐼$%%

Slope=𝑢

Orthographic Plane: Π′′

𝑂

Figure 1: Illustration of (a) the perspective projection in an inner view of the box (image upside down to be
consistent with the projection), and (b) the orthographic projection centered at the vanishing point.

Unfortunately, one can not fully determine the distance between I ′′k and V ′, but only the ratio between
V ′I ′′1 and V ′I ′′k , k = 2, 3, 4, even if we have assumed the focal length and the aspect ratio. This is
because this camera-to-subject distance is also correlated with the actual size of the box. Intuitively, a
box that is close and small may look identical in the image as another box that is far but big. Thus, we
will manually set the distance between V ′ and I ′′1 to be 1 meter. It is important to note that, although
we have manually set the focal length, the aspect ratio, and the camera-to-subject distance, these
value of these parameters will not affect the plane rectification results. Moreover, they also have no
influence on downstream tasks such as image inpainting.

With the position of I ′′1 , we then determine the positions of I ′′k , k = 2, 3, 4, relative to the position of
I ′′1 . We use the following box prior: four planes of the box are either perpendicular or parallel to each
other. Thus, on the orthographic image plane Π′′, the quadrilateral I ′′1 I

′′
2 I
′′
3 I
′′
4 should be a rectangle.

Now we use the 2D coordinates defined on the plane Π′′ and centered at the vanishing point V ′.
Denote the coordinates of I ′′k on Π′′ by (xk, yk), the slope of I ′′1 I

′′
2 by u, and the slope of I ′′2 I

′′
3 by v.

Also denote the slope of V I ′′k by wk, k = 1, 2, 3, 4, as illustrated in Fig. 1b. We have the following
equation system:

yk = wkxk; k = 1, 2, 3, 4 (I ′′k lies on the ray V I ′′k .)
y1 − y2 = u(x1 − x2) (definition.)
y2 − y3 = v(x2 − x3) (definition.)
y3 − y4 = u(x3 − x4) (I ′′1 I

′′
2 is parallel to I ′′3 I

′′
4 .)

y4 − y1 = v(x4 − x1) (I ′′2 I
′′
3 is parallel to I ′′4 I

′′
1 .)

x21 + y21 = 1 (camera-to-subject distance assumption.)
uv = −1 (I ′′1 I

′′
2 and I ′′2 I

′′
3 are perpendicular to each other.)

This equation system allows us to solve for u and v unambiguously. In fact, there exists a closed-form
solution to the values of u and v, which is independent of (xk, yk). After determining u and v, we
can further compute the positions of I ′′k and thus the 3D positions of Ik, k = 1, 2, 3, 4.

During inference, we first compute the orthographic projection Π′′ based on the detected vanishing
point and the focal length. Next, by fixing the position of I ′′1 , we solve for the other I ′′k , k = 2, 3, 4 on
the orthographic image. Finally, we project the solution back to the 3D space and determine the 3D
positions and surface normal vectors for individual planes.

B Box Program Induction for Outer Views of Boxes
In this section, we present the box program induction for outer views of boxes. The whole process
is almost identical to the inner view case, except that for an outer view, we only need to consider

2

two planes (e.g., two side planes of a building), with the other planes being either non-visible or
foreshortened severely. The full search process consists of four steps. First, we use pre-trained neural
networks to detect the 2D wireframe line segments (but no vanishing points) from the image. We also
filter out wireframe segments that are too short in length. Next, we generate a set of candidate plane
segmentation maps by partitioning the image based on the detected wireframe segments. Then, for
each segmented plane, we seek the program that best describes the regularity on each plane. Finally,
we rank all candidate plane segmentations by the fitness score (defined in the main text).

Step 1: Visual cue detection. Following the box prior, an outer view of a box contains only two
planes. Therefore, there will be only one intersection line between these two planes (e.g., two walls
of a building). We use L-CNN [8] to extract wireframes in the image. Next, we filter out wireframe
segments whose length is smaller than a threshold δ1. The remaining wireframe segments are denoted
by the set WF . Note that unlike the inner view case, we do not use vanishing point detection for
outer views.

Step 2: Plane segmentation. Next, we then extend every wireframe segment to a line. Each line
will partition the input image into two parts, which we treat as the candidate plane segmentation of
the image.

Step 3: Plane rectification and regularity inference. Since we only have two planes, we cannot
use the plane segmentation to fully reconstruct the positions and surface normal vectors of different
planes. We run the Perspective Plane Program Induction (P3I) algorithm [4] on each plane to jointly
infer the surface normal of each plane and its regularity structure.

Step 4: Box program ranking. Identical to the inner view case, we sum up the fitness score for
two planes in each candidate segmentation as the overall program fitness. We use this score to rank all
candidate segmentations, and pick the program with the highest fitness to describe the entire image.

C Implementation Details
When filtering wireframes by length, we set δ1 = 0.1 × min(w, h), where w, h are the width and
height of the input image, respectively. Radius used to filter wireframes toward the detected vanishing
point is δ2 = 0.01 × min(w, h). In the plane rectification step, we rectify the plane region to a
200× 200 image, on which we infer the regularity. We assume that objects repeat at least 3 times on
each plane.

D Additional Results
Time complexity. For the corridor dataset, statistically, each image contains 1,506 wireframe
combinations on average. 46 programs are evaluated on each plane. Note that BPI reduces the search
space significantly based on the box prior, so that the search can be done efficiently (23× faster than
without the box prior).

We also show the runtime of different algorithms on the task of plane segmentation (Table 1) and
image inpainting (Table 2). The Image Melding [2] and Huang et al. [3] baselines are tested on a
single machine with an Intel i7-6500U@2.5GHz CPU and 8GB RAM. All other baselines are tested
on a single machine with an Intel E5-2650@2.20GHz CPU, a GeForce GTX 1080 GPU, and 8GB
RAM.

Qualitative results. We supplement more results on box program induction (Fig. 2). Our model
can be applied to less constrained images by allowing the user to specify the regular region. It also
works for images where not all planes of a box exhibit regular patterns. Fig. 2 (i) shows example
results. In (a), we run BPI on a user-specified region (the orange bounding box). BPI outputs a
reasonable program even though the left plane is curved. We also show that our model can be applied
to a broader class of images than buildings, such as the bamboo forest in (b), and the scene with
irregular planes in (c).

We also provide more qualitative results for plane segmentation (Fig. 3), image inpainting (Fig. 4)
and image extrapolation (Fig. 5).

3

Huang et al. [3] PlaneRCNN [6] BPI (Ours)

Corridor Boxes 1.91s 0.14s 43.50s
Building Boxes 6.83s 0.76s 171.20s

Table 1: Runtime of different methods on the task of plane segmentation.

PatchMatch [1] Image Melding [2] Huang et al. [3] Gated Conv [7] BPI (Ours)

Corridor Boxes 61.6s 1275.1s 18.9s 1.9s 20.1s
Building Boxes 122.1s 808.3s 64.4s 4.9s 41.4s

Table 2: Runtime of different methods on the task of image inpainting.

References
[1] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan Goldman. PatchMatch: A Randomized

Correspondence Algorithm for Structural Image Editing. ACM TOG, 28(3):24, 2009. 4

[2] Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B Goldman, and Pradeep Sen. Image Melding:
Combining Inconsistent Images using Patch-based Synthesis. In SIGGRAPH, 2012. 3, 4

[3] Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, and Johannes Kopf. Image Completion using Planar
Structure Guidance. ACM TOG, 33:129:1–129:10, 2014. 3, 4

[4] Yikai Li, Jiayuan Mao, Xiuming Zhang, William T. Freeman, Joshua B. Tenenbaum, and Jiajun Wu.
Perspective Plane Program Induction from a Single Image. In CVPR, 2020. 3

[5] David Liebowitz, Antonio Criminisi, and Andrew Zisserman. Creating Architectural Models from Images.
CGF, 18(3):39–50, 1999. 1

[6] Chen Liu, Kihwan Kim, Jinwei Gu, Yasutaka Furukawa, and Jan Kautz. PlaneRCNN: 3D Plane Detection
and Reconstruction From a Single Image. In CVPR, 2019. 4

[7] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Free-Form Image Inpainting
with Gated Convolution. In ICCV, 2019. 4

[8] Yichao Zhou, Haozhi Qi, and Yi Ma. End-to-end Wireframe Parsing. In ICCV, 2019. 3

4

SetPlane_l(pos=[-1.1, -1.39, 0.23],

normal=[-1.00, -0.01, -0.00])

for i in range(0, 10)

Draw(, x = 20 * i)

SetPlane_t(pos=[1.04, -1.37, 0.23],

normal=[0.01, -0.95, -0.31])

for i in range(0, 10)

Draw(, x = 20 * i)

SetPlane_r(pos=[1.00, 1.55, 1.19],

normal=[1.00, 0.01, 0.00])

for i in range(0, 10)

Draw(, x = 20 * i)

SetPlane_b(pos=[-1.15, 1.52, 1.19],

normal=[-0.01, 0.95, 0.31])

for i in range(0, 10)

Draw(, x = 20 * i)

SetPlane_l(pos=[-1.4, -1.48, 1.68],

normal=[0.40, 0.06, 0.92])

for i in range(0, 6)

for j in range(0, 9)

Draw(, x = -28 * i

+ 6 * j,

y = 52 * j)

SetPlane_r(pos=[-1.5, -1.49, 1.10],

normal=[-0.07, 0.14, 0.99])

for i in range(0, 5)

for j in range(0, 5)

Draw(, x = 55 * i,

y = 52 * j)

SetPlane_l(pos=[-1.0, -2.77, 0.10],

normal=[-1.00, -0.01, 0.03])

for i in range(0, 10)

Draw(, x = 20 * i)

SetPlane_t(pos=[1.03, -2.75, 0.03],

normal=[0.01, -0.99, -0.10])

for i in range(0, 3)

Draw(, x = 65 * i)

SetPlane_r(pos=[1.01, 0.42, 0.36],

normal=[1.00, 0.01, -0.03])

for i in range(0, 9)

Draw(, x = 22 * i)

SetPlane_b(pos=[-1.02, 0.40, 0.42],

normal=[-0.01, 0.99, 0.10])

for i in range(0, 6)

Draw(, x = 30 * i)

(b) (c)(a)

Figure 2: More image examples and the corresponding programs. We use cyan lines to visualize the lattice
structure on each plane.

5

Input Huang’14 PlaneRCNN BPI (Ours) Ground Truth

Figure 3: Visualization of the plane segmentation by different methods.

6

Corrupted Images PatchMatch Image Melding Huang et al. [2014] GatedConv BPI (Ours) Ground Truth

Figure 4: Qualitative results on the task of image inpainting.

7

InGANInput Image Content-Aware Scale Kaspar et al. [2015] Huang et al. [2014] BPI (Ours)

Figure 5: Qualitative results on the task of image extrapolation.

8

	Plane Reconstruction from Segmentation in Inner Views
	Box Program Induction for Outer Views of Boxes
	Implementation Details
	Additional Results

