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Abstract

The literature on ranking from ordinal data is vast, and there are several ways to
aggregate overall preferences from pairwise comparisons between objects. In par-
ticular, it is well-known that any Nash equilibrium of the zero-sum game induced
by the preference matrix defines a natural solution concept (winning distribution
over objects) known as a von Neumann winner. Many real-world problems, how-
ever, are inevitably multi-criteria, with different pairwise preferences governing the
different criteria. In this work, we generalize the notion of a von Neumann winner
to the multi-criteria setting by taking inspiration from Blackwell’s approachability.
Our framework allows for non-linear aggregation of preferences across criteria, and
generalizes the linearization-based approach from multi-objective optimization.
From a theoretical standpoint, we show that the Blackwell winner of a multi-criteria
problem instance can be computed as the solution to a convex optimization problem.
Furthermore, given random samples of pairwise comparisons, we show that a
simple, “plug-in” estimator achieves (near-)optimal minimax sample complexity.
Finally, we showcase the practical utility of our framework in a user study on
autonomous driving, where we find that the Blackwell winner outperforms the von
Neumann winner for the overall preferences.

1 Introduction
Economists, social scientists, engineers, and computer scientists have long studied models for
human preferences, under the broad umbrella of social choice theory [10, 7]. Learning from human
preferences has found applications in interactive robotics for learning reward functions [45, 39],
in medical domains for personalizing assistive devices [59, 9], and in recommender systems for
optimizing search engines [15, 28]. The recent focus on safety in AI has popularized human-in-the-
loop learning methods that use human preferences in order to promote value alignment [16, 46, 6].

The most popular form of preference elicitation is to make pairwise comparisons [51, 13, 33].
Eliciting such feedback involves showing users a pair of objects and asking them a query: Do you
prefer object A or object B? Depending on the application, an object could correspond to a product in
a search query, or a policy or reward function in reinforcement learning. A vast body of classical work
dating back to Condorcet and Borda [17, 12] has focused on defining and producing a “winning"
object from the result of a set of pairwise comparisons.

In relatively recent work, Dudik et al. [22] proposed the concept of a von Neumann winner, corre-
sponding to a distribution over objects that beats or ties every other object in the collection. They
showed that under an expected utility assumption, such a randomized winner always exists and
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(a) (b)
Figure 1. (a) Policy A focuses on optimizing comfort and policy B on speed, and these are compared
pairwise in different environments. (b) Preference matrices, where entry (i, j) of the matrix contains the
proportion of comparisons between the pair (i, j) that are won by object i. (The diagonals are set to
half by convention). The overall pairwise comparisons are given by the matrix POverall

ex , and preferences
along each of the criteria by matrices PComfort

ex and PSpeed
ex (the numbers here are illustrative of our

user-study in Section 4). Policy R is a randomized policy 1/2 A +1/2 B. While the preference matrices
satisfy the linearity assumption individually along speed and comfort, the assumption is violated overall,
wherein R is preferred over both A and B.

overcomes limitations of existing winning concepts—the Condorcet winner does not always exist,
while the Borda winner fails an independence of clones test [47]. However, the assumption of
expected utility relies on a strong hypothesis about how humans evaluate distributions over objects: it
posits that the probability with which any distribution over objects π beats an object is linear in π.

Consequences of assuming linearity: In order to better appreciate these consequences, consider
as an example the task of deciding between two policies (say A and B) to deploy in an autonomous
vehicle. Suppose that these policies have been obtained by optimizing two different objectives, with
policy A optimized for comfort and policy B optimized for speed. Figure 1(a) shows a snapshot of
these two policies. When compared overall, 60% of the people preferred Policy A over B – making it
the von Neumann winner. The linearity assumption then posits that a randomized policy that mixes
between A and B can never be better than both A and B; but we see that the Policy R = 1/2 A + 1/2 B
is actually preferred by a majority over both A and B! Why is the linearity assumption violated here?

One possible explanation for such a violation is that the comparison problem is actually multi-criteria
in nature. If we look at the preferences for the criterion speed and comfort individually in Figure 1(b),
we see that Policy A does quite poorly on the speed axis while B lags behind in comfort. In contrast,
Policy R does acceptably well along both the criteria and hence is preferred overall to both Policies A
and B. It is indeed impossible to come to this conclusion by only observing the overall comparisons.
This observation forms the basis of our main proposal: decompose the single overall comparison and
ask humans to provide preferences along simpler criteria. This decomposition of the comparison
task allows us to place structural assumptions on comparisons along each criterion. For instance,
we may now posit the linearity assumption along each criterion separately rather than on the overall
comparison task. In addition to allowing for simplified assumptions, breaking up the task into such
simpler comparisons allows us to obtain richer and more accurate feedback as compared to the single
overall comparison. Indeed, such a motivation for eliciting simpler feedback from humans finds its
roots in the the study of cognitive biases in decision making, which suggests that the human mind
resorts to simple heuristics when faced with a complicated questions [53].

Contributions: In this paper, we formalize these insights and propose a new framework for
preference learning when pairwise comparisons are available along multiple, possibly conflicting,
criteria. As shown by our example in Figure 1, a single distribution which is the von Neumann
winner along every criteria might not exist. To counter this, we formulate the problem of finding
the “best” randomized policy by drawing on tools from the literature on vector valued pay-offs in
game theory. Specifically, we take inspiration from Blackwell’s approachability [11] and introduce
the notion of a Blackwell winner. This solution concept strictly generalizes the concept of a von
Neumann winner, and recovers the latter when there is only a single criterion present. Section 2
describes this framework in detail, and Section 3 collects our statistical and computational guarantees
for learning the Blackwell winner from data. Section 4 describes a user study with an autonomous
driving environment, in which we ask human subjects to compare self-driving policies along multiple
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criteria such as safety, aggressiveness, and conservativeness. Our experiment demonstrates that the
Blackwell winner is able to better trade off utility along these criteria and produces randomized
policies that outperform the von Neumann winner for the overall preferences.

Related work. Most closely related to our work is the field of computational social choice, which
has focused on defining notions of winners from overall pairwise comparisons (see the survey [37] for
a review). Amongst them, three deterministic notions of a winner—the Condorcet [17], Borda [12],
and Copeland [18] winners—have been widely studied. In addition, Dudik et al. [22] recently
introduced the notion of a (randomized) von Neumann winner. Starting with the work of Yue et al. [57],
there have been several research papers studying an online version of preference learning, called the
Dueling Bandits problem. Algorithms have been proposed to compete with Condorcet [60, 62, 4],
Copeland [61, 56], Borda [30] and von Neumann [22] winners.

The theoretical foundations of decision making based on multiple criteria have been widely studied
within the operations research community . This sub-field—called multiple-criteria decision analysis—
has focused largely on scoring, classification, and sorting based on multiple-criteria feedback. See
the surveys [44, 63] for thorough overviews of existing methods and their associated guarantees. The
problem of eliciting the user’s relative weighting of the various criteria has also been considered [20].
However, relatively less attention has been paid to the study of randomized decisions and statistical
inference, both of which form the focus of our work. From an applied perspective, the combination
of multi-criteria assessments has received attention in disparate fields such as psychometrics [40, 35],
healthcare [50], and recidivism prediction [55]. In many of these cases, a variety of approaches—both
linear and non-linear—have been empirically evaluated [19]. Justification for non-linear aggregation
of scores along the criteria has a long history in psychology and the behavioral sciences [27, 24, 54].

In the game theory literature, Blackwell [11] introduced the notion of approachability as a general-
ization of a zero-sum game with vector-valued payoffs (for a detailed discussion see Appendix A).
Blackwell’s approachability and its connections with no-regret learning and calibrated forecasting
have been extensively studied [1, 42, 34]. These connections have enabled applications of Blackwell’s
results to problems ranging from constrained reinforcement learning [36] to uncertainty estimation
for question-answering tasks [31]. In contrast, our framework for preference learning along multiple
criteria deals with a single shot game and uses the idea of the target set to define the concept of a
Blackwell winner. Another body of literature related to our work studies Nash equilibria in games
with perturbed payoffs, under both robust [3, 32] and uncertain (or Bayesian) [25] formulations
(see the recent survey by Perchet [43]). Perturbation theory for Nash equilibria has been derived in
these contexts, and it is well-known that the Nash equilibrium is not (at least in general) stable to
perturbations of the payoff matrix. On the other hand, the results of [22] consider Nash equilibria of
perturbed, symmetric, zero-sum games, but show that the payoff of the perturbed Nash equilibrium is
indeed stable. Our work provides a similar characterization for the multi-criteria setting.

2 Framework for preference learning along multiple criteria

We now set up our framework for preference learning along multiple criteria. We consider a collection
of d objects over which comparisons can be elicited along k different criteria. We index the objects
by the set [d] : = {1, . . . , d} and the criteria by the set [k].

2.1 Probabilistic model for comparisons

Since human responses to comparison queries are typically noisy, we model the pairwise preferences
as random variables drawn from an underlying population distribution. In particular, the result of a
comparison between a pair of objects (i1, i2) along criterion j is modeled as a draw from a Bernoulli
distribution, with p(i1, i2; j) = P(i1 � i2 along criterion j). By symmetry, we must have

p(i2, i1; j) = 1− p(i1, i2; j) for each triple i1 ∈ [d], i2 ∈ [d], and j ∈ [k]. (1)

We let π1, π2 ∈ ∆d represent1 two distributions over the d objects. With a slight abuse of notation, let
p(π1, π2; j) denote the probability with which an object drawn from distribution π1 beats an object

1We let ∆d denote the d-dimensional simplex.
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drawn from distribution π2 along criterion j. We assume for each individual criterion j that the
probability p(π1, π2; j) is linear in the distributions π1 and π2, i.e. that it satisfies the relation

p(π1, π2; j) : = Ei1∼π1,i2∼π2 [p(i1, i2; j)] . (2)

Equation (2) encodes the per-criterion linearity assumption highlighted in Section 1. We collect the
probabilities {p(i1, i2; j)} into a preference tensor P ∈ [0, 1]d×d×k and denote by Pd,k the set of all
preference tensors that satisfy the symmetry condition (1). Specifically, we have

Pd,k = {P ∈ [0, 1]d×d×k | P(i1, i2; j) = 1−P(i2, i1; j) for all (i1, i2, j)} . (3)

Let Pj denote the d × d matrix corresponding to the comparisons along criterion j, so that
p(π1, π2; j) = π>1 Pjπ2. Also note that a comparison between a pair of objects (i1, i2) induces
a score vector containing k such probabilities. Denote this vector by P(i1, i2) ∈ [0, 1]k, whose j-th
entry is given by p(i1, i2; j). Denote by P(π1, π2) the score vector for a pair of distribution (π1, π2).

In the single criterion case when k = 1, each comparison between a pair of objects is along an overall
criterion. We let Pov ∈ [0, 1]d×d represent such an overall comparison matrix. As mentioned in
Section 1, most preference learning problems are multi-objective in nature, and the overall preference
matrix Pov is derived as a non-linear combination of per-criterion preference matrices {Pj}kj=1.
Therefore, even when the linearity assumption (2) holds across each criterion, it might not hold for
the overall preference Pov. In contrast, when the matrices Pj are aggregated linearly to obtain the
overall matrix Pov, we recover the assumptions of Dudik et al. [22].

2.2 Blackwell winner

(a) (b)
Figure 2. Two target sets S1 and S2 for our exam-
ple from Figure 1 that capture trade-offs between
comfort and speed. Set S1 requires feasible score
vectors to satisfy 40% of the population along both
comfort and speed. Set S2 requires both scores to
be greater than 0.3 but with a linear trade-off: the
combined score must be at least 0.9.

Given our probabilistic model for pairwise
comparisons, we now describe our notion of
a Blackwell winner. When defining a win-
ning distribution for the multi-criteria case, it
would be ideal to find a distribution π∗ that
is a von Neumman winner along each of the
criteria separately. However, as shown in our
example from Figure 1, such a distribution
need not exist. We thus need a generalization
of the von Neumann winner that explicitly ac-
counts for conflicts between the criteria.

Blackwell [11] asked a related question for
the theory of zero-sum games: how can one
generalize von Neumann’s minimax theorem
to vector-valued games? He proposed the no-
tion of a target set: a set of acceptable payoff vectors that the first player in a zero-sum game seeks
to attain. Within this context, Blackwell proposed the notion of approachability, i.e. how the player
might obtain payoffs in a repeated game that are close to the target set on average. We take inspiration
from these ideas to define a solution concept for the multi-criteria preference problem.Our notion of a
winner also relies on a target set, which we denote by S ⊂ [0, 1]k, and which in our setting contains
score vectors. This set provides a way to combine different criteria by specifying combinations of
preference scores that are acceptable. Figure 2 provides an example of two such sets.

Observe that for our preference learning problem, the target set S is by definition monotonic with
respect to the orthant ordering, that is, if z1 ≥ z2 coordinate-wise, then z2 ∈ S implies z1 ∈ S. Our
goal is to then produce a distribution π∗ that can achieve a target score vector for any distribution
with which it is compared—that is P(π∗, π) ∈ S for all π ∈ ∆d. When such a distribution π∗ exists,
we say that the problem instance (P, S) is achievable. On the other hand, it is clear that there are
problem instances (P, S) that are not achievable. While Blackwell’s workaround was to move to the
setting of repeated games, preference aggregation is usually a one-shot problem. Consequently, our
relaxation instead introduces the notion of a worst-case distance to the target set. In particular, we
measure the distance between any pair of score vectors u, v ∈ [0, 1]k as ρ(u, v) = ‖u− v‖ for some
norm ‖ · ‖. Using the shorthand ρ(u, S) : = infv∈S ‖u− v‖, the Blackwell winner π∗ for an instance
(P, S, ‖ · ‖) is now defined as the one which minimizes the maximum distance to the set S, i.e.,

π(P, S, ‖·‖) ∈ argmin
π∈∆d

[v(π;P, S, ‖·‖)], where v(π;P, S, ‖·‖) : = max
π′∈∆d

ρ(P(π, π′), S) . (4)
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Observe that equation (4) has an interpretation as a zero-sum game, where the objective of the
minimizing player is to make the score vector P(π, π′) as close as possible to the target set S.

We now look at commonly studied frameworks for single criterion preference aggregation and
multi-objective optimization and show how these can be naturally derived from our framework.

Example: Preference learning along a single criterion. A particular special case of our frame-
work is when we have a single criterion (k = 1) and the preferences are given by a matrix Pov. The
score Pov(i1, i2) is a scalar representing the probability with which object i1 beats object i2 in an
overall comparison. As a consequence of the von Neumann minimax theorem, we have

max
π1∈∆d

min
π2∈∆d

Pov(π1, π2)= min
π2∈∆d

max
π1∈∆d

Pov(π1, π2)=
1

2
, (5)

with any maximizer above called the von Neumann winner [22]. Thus, for any preference matrix
Pov, a von Neumann winner is preferred to any other object with probability at least 1

2 .

Let us show how this uni-criterion formulation can be derived as a special case of our framework.
Consider the target set S = [ 1

2 , 1] and choose the distance function ρ(a, b) = |a− b|. By equation (5),
the target set S = [ 1

2 , 1] is achievable for all preference matrices Pov, and so the von Neumann
winner and the Blackwell winner π(Pov, [

1
2 , 1], | · |) coincide. ♣

Example: Weighted combinations of a multi-criterion problem. One of the common ap-
proaches used in multi-objective optimization to reduce a multi-dimensional problem to a uni-
dimensional counterpart is by introducing a weighted combinations of objectives. Formally, consider
a weight vector w ∈ ∆k and the corresponding preference matrix P(w) : =

∑
j∈[k] wjP

j obtained
by combining the preference matrices along the different criteria. A winning distribution can then
be obtained by solving for the von Neumann winner of P(w) given by π(P(w), [ 1

2 , 1], | · |). The
following proposition establishes that such an approach is a particular special case of our framework.
Proposition 1. (a) For every weight vector w ∈ ∆k, there exists a target set Sw ∈ [0, 1]k such that
for any norm ‖ · ‖, we have

π(P, Sw, ‖ · ‖) = π(P(w), [1/2, 1], | · |) for all P ∈ Pd,k.
(b) Conversely, there exists a set S and a preference tensor P with a unique Blackwell winner π∗
such that for all w ∈ ∆k, exactly one of the following is true:

π(P(w), [1/2, 1], | · |) 6= π∗ or argmax
π∈∆d

min
i∈[d]

P(π, i) = ∆d .

Thus, while the Blackwell winner is always able to recover any linear combination of criteria, the
converse is not true. Specifically, part (b) of the proposition shows that for a choice of preference
tensor P and target set S, either the von Neumann winner for P(w) is not equal to the Blackwell
winner, or it degenerates to the entire simplex ∆d and is thus uninformative. Consequently, our
framework is strictly more general that weighting the individual criteria. ♣

3 Statistical guarantees and computational approaches

In this section, we provide theoretical results on computing the Blackwell winner from samples of
pairwise comparisons along the various criteria.

Observation model and evaluation metrics. We operate in the natural passive observation model,
where a sample consists of a comparison between two randomly chosen objects along a randomly cho-
sen criterion. Specifically, we assume access to an oracle that when queried with a tuple η = (i1, i2, j)
comprising a pair of objects (i1, i2) and a criterion j, returns a comparison y(η) ∼ Ber(p(i1, i2; j)).
Each query to the oracle constitutes one sample. In the passive sampling model, the tuple of objects
and criterion is sampled uniformly, with replacement, that is (i1, i2)∼Unif{

(
[d]
2

)
} and j∼Unif{[k]}

where Unif{A} denotes the uniform distribution over the elements of a set A. Given access to sam-
ples {y1(η1), . . . , yn(ηn)} from this observation model, we define the empirical preference tensor
(specifically the upper triangular part)

P̂n(i1, i2, j) : =

∑n
`=1 y`(η`)I[η` = (i1, i2, j)]

1 ∨
∑
` I[η` = (i1, i2, j)]

for i1 < i2 , (6)
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where each entry of the upper-triangular tensor is estimated using a sample average and the remaining
entries are calculated to ensure the symmetry relations implied by the inclusion P̂n ∈ Pd,k.

As mentioned before, we are interested in computing the solution π∗ : = π(P, S, ‖ · ‖) to the
optimization problem (4), but with access only to samples from the passive observation model. For
any estimator π̂ ∈ ∆d obtained from these samples, we evaluate its error based on its value with
respect to the tensor P, i.e.,

∆P(π̂, π) : = v(π̂;S,P, ‖ · ‖)− v(π∗;S,P, ‖ · ‖). (7)

Note that the error ∆P implicitly also depends on the set S and the norm ‖ · ‖, but we have chosen
our notation to be explicit only in the preference tensor P. For the rest of this section, we restrict our
attention to convex target sets S and refer them to as valid sets. Having established the background,
we are now ready to provide sample complexity bounds on the estimation error ∆P(π̂, π∗).

3.1 Upper bounds on the error of the plug-in estimator

While, our focus in this section is to provide upper bounds on the error of the plug-in estimator
π̂plug = π(P̂, S, ‖ · ‖), we first state a general perturbation bound which relates the error of the
optimizer π(P̃, S, ‖ · ‖) to the deviation of the tensor P̃ from the true tensor P. We use P(·, i) ∈
[0, 1]d×k to denote a matrix formed by viewing the i-th slice of P along its second dimension.
Theorem 1. Suppose the distance ρ is induced by the norm ‖ · ‖q for some q ≥ 1. Then for each
valid target set S and preference tensor P̃, we have

∆P(π(P̃), π∗) ≤ 2 max
i∈[d]
‖P̃(·, i)−P(·, i))‖∞,q. (8)

Note that this theorem is entirely deterministic: it bounds the deviation in the optimal solution to the
problem (4) as a function of perturbations to the tensor P. It also applies uniformly to all valid target
sets S. In particular, this result generalizes the perturbation result of Dudik et al. [22, Lemma 3]
which obtained such a deviation bound for the single criterion problem with π∗ as the von Neumann
winner. Indeed, one can observe that by setting the distance ρ(u, v) = |u− v| in Theorem 1 for the
uni-criterion setup, we have the error ∆P(π(P̃), π∗) ≤ 2‖P̃−P‖∞,∞, matching the bound of [22].

Let us now illustrate a consequence of this theorem by specializing it to the plug-in estimator, and
with the distances given by the `∞ norm.
Corollary 1. Suppose that the distance ρ is induced by the `∞-norm ‖ · ‖∞. Then there exists a
universal constant c > 0 such that given a sample size n > cd2k log( cdkδ ), we have for each valid
target set S

E [∆P(π̂plug, π
∗)] ≤ c

√
d2k

n
log

(
cdk

δ

)
, (9)

with probability greater than 1− δ.

The bound (9) implies that the plug-in estimator π̂plug is an ε-approximate solution whenever the
number of samples scales as n = Õ(d

2k
ε2 ). Observe that this sample complexity scales quadratically

in the number of objects d and linearly in the number of criteria k. This scaling represents the
effective dimensionality of the problem instance, since the underlying preference tensor P has
O(d2k) unknown parameters. Notice that the corollary holds for sample size n = Õ(d2k); this
should not be thought of as restrictive, since otherwise, the bound (9) is vacuous.

3.2 Information-theoretic lower bounds

While Corollary 1 provides an upper bound on the error of the plug-in estimator that holds for all
valid target sets S, it is natural to ask if this bounds is sharp, i.e., whether there is indeed a target set
S for which one can do no better than the plug-in estimator. In this section, we address this question
by providing lower bounds on the minimax risk Mn,d,k(S, ‖ · ‖∞) : = inf π̂ supP∈P E [∆P(π̂, π∗)] ,
where the infimum is taken over all estimators that can be computed from n samples from our
observation model. It is important to note that the error ∆P is computed using the `∞ norm and for
the set S. Our lower bound will apply to the particular choice of target set S0 = [1/2, 1]k.
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Theorem 2. There is a universal constant c such that for all d ≥ 4, k ≥ 2, and n ≥ cd4k, we have

Mn,d,k(S0, ‖ · ‖∞) ≥ c
√
d2k

n
. (10)

Comparing equations and (9) and (10), we see that for the `∞-norm and the set S0, we have provided
upper and lower bounds that match up to a logarithmic factor in the dimension. Thus, the plug-in
estimator is indeed optimal for this pair (‖ · ‖∞, S0).Further, observe that the above lower bound is
non-asymptotic, and holds for all values of n & d4k. This condition on the sample size arises as a
consequence of the specific packing set used for establishing the lower bound, and improving it is an
interesting open problem.

However, this raises the question of whether the set S0 is special, or alternatively, whether one can
obtain an S-dependent lower bound. The following proposition shows that at least asymptotically,
the sample complexity for any polyhedral set S obeys a similar lower bound.

Proposition 2 (Informal). Suppose that we have a valid polyhedral target set S, and that d ≥ 4.
There exists a positive integer n0(d, k, S) such that for all n ≥ n0(d, k, S) we have

Mn,d,k(S, ‖ · ‖∞) &

√
d2k

n
. (11)

We defer the formal statement and proof of this proposition to Appendix B. This proposition estab-
lishes that the plugin estimator π̂plug is indeed asymptotically optimal in the `∞ norm for broad class
of sets S.

3.3 Computing the plug-in estimator

In the last few sections, we discussed the statistical properties of the plug-in estimator, and showed
that its sample complexity was optimal in a minimax sense. We now turn to the algorithmic question:
how can the plug-in estimator π̂plug be computed? Our main result in this direction is the following
theorem that characterizes properties of the objective function v(π;P, S, ‖ · ‖).

Theorem 3. Suppose that the distance function is given by an `q norm ‖ · ‖q for some q ≥ 1. Then
for each valid target set S, the objective function v(π;P, S, ‖ · ‖q) is convex in π, and Lipschitz in
the `1 norm, i.e.,

|v(π1;P, S, ‖ · ‖q)− v(π2;P, S, ‖ · ‖q)| ≤ k
1
q · ‖π1 − π2‖1 for each π1, π2 ∈ ∆d.

Theorem 3 establishes that the plug-in estimator can indeed be computed as the solution to a
(constrained) convex optimization problem. In Appendix C, we discuss a few specific algorithms
based on zeroth-order and first-order methods for obtaining such a solution and an analysis of the
corresponding iteration complexity for these methods; see Propositions 5 and 6 in the appendix.

4 Autonomous driving user study

In order to evaluate the proposed framework, we applied it to an autonomous driving environment. The
objective is to study properties of the randomized policies obtained by our multi-criteria framework—
the Blackwell winner for specific choices of the target set—and compare them with the alternative
approaches of linear combinations of criteria and the single-criterion (overall) von Neumann winner.
We briefly describe the components of the experiment here; see Appendix D for more details.

Self-driving Environment. Figure 1(a) shows a snapshot of one of the worlds in this environment
with the autonomous car shown in orange. We construct three different worlds in this environment:

W1: The first world comprises an empty stretch of road with no obstacles (20 steps).
W2: The second world consists of a sequence of cones placed in certain sequences (80 steps).
W3: The third world has additional cars driving at varying speeds in their fixed lanes (80 steps).
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Policies. For our base policies, we design five different reward functions encoding different self-
driving behaviors. These polices, named Policy A-E, are then set to be the model predictive control
based policies based on these reward functions wherein we fix the planning horizon to 6. We defer
the details of these reward functions to Appendix D. A randomized policy π ∈ ∆5 is given by a
distribution over the base policies A-E. Such a randomized policy is implemented in our environment
by randomly sampling a base policy from the mixture distribution after every H = 18 time steps and
executing this selected policy for that duration. To account for the randomization, we execute each
such policy for 5 independent runs in each of the worlds and record these behaviors.

Subjective Criteria. We selected five subjective criteria to compare the policies, with questions
asking which of the two policies was C1: Less aggressive, C2: More predictable, C3: More quick,
C4: More conservative, and had C5: Less collision risk. Such a framing of question ensures that
higher score value along any of C1-C5 is preferred; thus a higher score along C1 would imply less
aggressive while along C2 would mean more predictable. In addition to the these base criteria, we
also consider an Overall Preference which compares any pair of policies in an aggregate manner.
Additionally, we also asked the users to rate the importance of each criterion in their overall preference.

Main Hypotheses. The central focus of the main hypotheses is on comparing the randomized
policies given by the Blackwell winner, the overall von Neumann winner, and those given by
weighing the criteria linearly.

MH1 There exists a set S such that the Blackwell winner with respect to S and `∞-norm produced
by our framework outperforms the overall von Neumann winner.

MH2 The Blackwell winner for oblivious score sets S outperforms both oblivious2 and data-driven
weights for linear combination of criteria.

Independent Variables. The independent variable of our experiment is the choice of algorithms
for producing the different randomized winners. These comprise the von Neumann winner based
on overall comparisons, Blackwell winners based on two oblivious target sets, and 9 different linear
combinations weights (3 data-driven and 6 oblivious).

We begin with the two target sets S1 and S2 for our evaluation of the Blackwell winner which
were selected in a data-oblivious manner. Set S1 is an axis-aligned set promoting the use of safer
policies with score vector constrained to have a larger value along the collision risk axis. Similar to
Figure 2(b), the set S2 adds a linear constraint along aggressiveness and collision risk. This target set
thus favors policies which are less aggressive and have lower collision risk. For evaluating hypothesis
MH2, we considered several weight vectors, both oblivious and data-dependent, comprising average
of the users’ self-reported weights, that obtained by regressing the overall criterion on C1-C5, and a
set of oblivious weights. See Appendix D for details of the sets S1 and S2, and the weights w1:9.

Data collection. The experiment was conducted in two phases, both of which involved human sub-
jects on Amazon Mechanical Turk (Mturk) (see Appendix D for an illustration of the questionnaire).
The first phase of the experiment involved preference elicitation for the five base policies A-E. Each
user was asked to provide comparison data for all ten combinations of policies. The cumulative
comparison data is given in Appendix D, and the average weight vector elicited from the users was
found to be w1 = [0.21, 0.19, 0.20, 0.18, 0.22]. We ran this study with 50 subjects.

In the overall preference elicitation, we saw an approximate ordering amongst the base policies:
C � E % D % B � A. Thus, Policy C was the von Neumann winner along the overall criterion.
For each of the linear combination weights w1 through w9, Policy C was the weighted winner.
The Blackwell winners R1 and R2 for the sets S1 and S2 with the `∞ distance were found to be
R1 = [0.09, 0.15, 0.30, 0.15, 0.31] and R2 = [0.01, 0.01, 0.31, 0.02, 0.65].

In the second phase, we obtained preferences from a set of 41 subjects comparing the randomized
polices R1 and R2 with the baseline policies A-E. The results are aggregated in Table 1 in Appendix D.

Analysis for main hypotheses. Given that the overall von Neumann winner and those correspond-
ing to weightsw1:9 were all Policy C, hypotheses MH1 and MH2 reduced whether users prefer at least
one of {R1, R2} to the deterministic policy C, that is whether Pov(C,R1) < 0.5 or Pov(C,R2) < 0.5.

2We use the term oblivious to denote variables that were fixed before the data collection phase and data-driven
to denote those which are based on collected data.
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Policies C and E were preferred to R1 by 0.71 and 0.61 fraction of the respondents, respectively.
On the other hand, R2 was preferred to the von Neumann winner C by 0.66 fraction of the subjects.
Using the data, we conducted a hypothesis test with the null and alternative hypotheses given by

H0 : Pov(C,R2) ≥ 0.5, and H1 : Pov(C,R2) < 0.5.

Among the hypotheses that make up the (composite) null, our samples have the highest likelihood
for the distribution Ber(0.5). We therefore perform a one-sided hypothesis test with the Binomial
distribution with number of samples n = 41, success probability p = 0.5 and number of successes
x = 14 (indicating number of subjects which preferred Policy C to R2). The p-value for this test was
obtained to be 0.0298. This supports both our claimed hypotheses MH1 and MH2.

5 Discussion and future work
In this paper, we considered the problem of eliciting and learning from preferences along multiple
criteria, as a way to obtain rich feedback under weaker assumptions. We introduced the notion of a
Blackwell winner, which generalizes many known winning solution concepts. We showed that the
Blackwell winner was efficiently computable from samples with a simple and optimal procedure, and
also that it outperformed the von Neumann winner in a user study on autonomous driving. Our work
raises many interesting follow-up questions: How does the sample complexity vary as a function of
the preference tensor P? Can the process of choosing a good target set be automated? What are the
analogs of our results in the setting where pairwise comparisons can be elicited actively?

Broader impact

An important step towards deploying AI systems in the real world involves aligning their objectives
with human values. Examples of such objectives include safety for autonomous vehicles, fairness
for recommender systems, and effectiveness of assistive medical devices. Our paper takes a step
towards accomplishing this goal by providing a framework to aggregate human preferences along
such subjective criteria, which are often hard to encode mathematically. While our framework is
quite expressive and allows for non-linear aggregation across criteria, it leaves the choice of the target
set in the hands of the designer. As a possible negative consequence, getting this choice wrong could
lead to incorrect inferences and unexpected behavior in the real world.
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A Blackwell’s approachability

Blackwell [11] introduced the concept of approachability as a generalization of the minimax theorem
to vector-valued payoffs. Formally, a Blackwell game is an extension of two-player zero-sum games
with vector-valued reward functions.

Let X ,Y denote the action spaces for the two players and r : X × Y 7→ Rk be the corresponding
vector-valued reward function. Further, let S ⊆ Rk denote a target set. The objective of player 1 is to
ensure that the reward vector r lies in the set S while that of player 2 is ensure that the reward r lies
outside this set S. Following [1], we introduce the notion of satisfiability and response-satisfiability.

Definition 1 (Satisfiability). For a Blackwell game parameterized by (X ,Y, r, S), we say that,

• S is satisfiable if there exists x ∈ X such that for all y ∈ Y , we have that r(x, y) ∈ S.

• S is response-satisfiable if for every y ∈ Y , there exists x ∈ X such that r(x, y) ∈ S.

In the case of scalar rewards, Von Neumann’s minimax theorem indicates that any set which is
satisfiable is also response-satsifiable. In other words, there exists a strategy for Player 1, oblivious
of Player 2’s strategy which ensures that the reward belongs to the set S if the set S is response-
satisfiable. The existence of such a relation was crucial in obtaining the concept of the Von Neumann
winner described in Section 2 for the uni-criterion problem.

However, such a statement fails to hold in the general vector-valued case (see [1] for a counterexam-
ple). In order to overcome this limitation, Blackwell [11] defined the notion of approachability as
follows.

Definition 2 (Blackwell’s Approachability). Given a Blackwell game (X ,Y, r, S), we say that a set
S is approachable if there exists an algorithmA which selects points in X such that for any sequence
y1, . . . yt ∈ Y ,

lim
T→∞

ρ

(
1

T

T∑
t=1

r(xt, yt), S

)
→ 0 ,

where xt = A(y1, . . . , yt−1) is the algorithm’s play at time t for some distance function ρ.

The celebrated Blackwell’s theorem then claims that any set S is approachable iff it is response-
satisfiable. This means that while no single choice of action in the set X can guarantee a response
in the set S, there exists an algorithm which ensures that in the repeated game, the average rewards
approach the set S, for any choice of opponent play.

Note that our definition of achievability is a stronger requirement than Blackwell’s approachability.
While approachability requires the time-averaged payoff in a repeated game to belong to the pre-
specified set S, achievability requires the same to be true in a single-shot play of the game. Indeed, as
the following lemma shows, one can construct examples of multi-criteria preference problems which
are approachable but not achievable.

Proposition 3 (Approachability does not imply achievability). There exists a preference tensor
P ∈ Pd,k and a target set S ⊂ [0, 1]k such that
a) For the Blackwell game given by (∆d,∆d,P, S), the set S is approachable, and
b) The set S is not achievable with respect to P.

Proof. We will consider an example in a 2-dimensional action space with 2 criteria. Consider the
preference matrix given by:

P1 =

[ 1
2 1

0 1
2

]
and P2 =

[ 1
2 0

1 1
2

]
, (12)

along with the convex set S = [ 1
2 , 1]2. The tensor P represents the strongest possible trade-off

between the two objects: Object 1 is preferred over 2 along the first criterion while the reverse is true
for the second criterion.

The Blackwell game given by (∆d,∆d,P, S) can indeed be shown to be approachable. The set S
is response-satisfiable since for every strategy y ∈ ∆d chosen by the column player, the choice of
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x = y would yield a reward vector P(x, y) = [1
2 ,

1
2 ] ∈ S. Then, by Blackwell’s theorem [11], the set

S is approachable.

In contrast, consider any choice of distribution π1 = [p, 1 − p] for the multi-criteria preference
problem. The corresponding score vectors for responses i2 = 1, 2 are given by:

r1 = P(π1, i2 = 1) =
[p

2
, 1− p

2

]
and r2 = P(π1, i2 = 2) =

[
1

2
+
p

2
,

1

2
− p

2

]
.

For any choice of the parameter p ∈ [0, 1], one cannot have both r1 and r2 simultaneously belong to
the set S. Hence, we have that the set S is not achievable with respect to P.

This example can be extended to any arbitrary dimension k by extending the tensor to have Pj equal
to the all-half matrix for any criterion j > 2 and the target set to be S = [ 1

2 , 1]k. Similarly, in order
to extend the example to any dimension, consider the preference tensor (for k = 2)

P1
d =



P1 P1/2 · · · P1/2

P1/2 P1 · · · P1/2

... · · ·
. . .

...

P1/2 P1/2 · · · P1


and P2

d =



P2 P1/2 · · · P1/2

P1/2 P2 · · · P1/2

... · · ·
. . .

...

P1/2 P1/2 · · · P2


,

with the smaller matrices P1 and P2 from equation (12) at the diagonal and P1/2 denoting the
all-half tensor of the appropriate dimension. A similar calculation as for the d = 2 case yields that
the set S is not achievable. This establishes the required claim.

B Proof of main results

In this section, we provide formal proofs of all the results stated in the main paper. Appendix C to
follow collects some additional results and their proofs.

B.1 Proof of Proposition 1

We establish both parts of the proposition separately.

B.1.1 Proof of part (a)

For any weight vector w ∈ ∆k, consider the set

Sw =
{
r ∈ [0, 1]k | 〈w, r〉 ≥ 1/2

}
.

The set Sw is clearly convex. Indeed, for any two vectors r1, r2 ∈ Sw and any scalar α ∈ [0, 1], we
have

〈w,αr1 + (1− α)r2〉 = α〈w, r1〉+ (1− α)〈w, r2〉 ∈
[

1

2
, 1

]
.

It is straightforward to verify that the set Sw is also monotonic with respect to the orthant ordering.

We now show that a von Neumann winner π∗ of the (single-criterion) preference matrix Pw : = P(w)
can be written as π(P, Sw, ‖ · ‖) for an arbitrary choice of norm ‖ · ‖. For each π̃ ∈ ∆d, we have

〈w,P(π∗, π̃)〉 =
∑
j∈[k]

wjP
j(π∗, π̃) = Pw(π∗, π̃))

(i)

≥ 1

2
,

where the inequality (i) follows since π∗ is a von Neumann winner for the matrix Pw. Thus, we
have the inclusion P(π∗, π̃) ∈ Sw for all π̃ ∈ ∆d, so that maxπ̃∈∆d

ρ(P(π∗, π̃), Sw) = 0 for any
distance metric ρ. Consequently, we have

π∗ ∈ argmin
π∈∆k

max
π̃∈∆d

ρ(P(π, π̃), Sw),

which establishes the claim for part (a).
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B.1.2 Proof of part (b)

Consider the multi-criteria preference instance given by target set S = [ 1
2 , 1]k, the `∞ distance

function and the preference tensor P

P1 =

[ 1
2 1

0 1
2

]
, P2 =

[ 1
2 0

1 1
2

]
, and Pj =

[ 1
2

1
2

1
2

1
2

]
The unique Blackwell winner for this instance (P, S, ‖ · ‖∞) is given by

π(P, S, ‖ · ‖∞)︸ ︷︷ ︸
π∗

= [1/2, 1/2] . (13)

For any weight w ∈ [0, 1]k, consider the von Neumann winners corresponding to the weighted
matrices Pw

π(Pw, [1/2, 1], | · |) =


[1, 0] for w s.t. Pw(1, 2) > 0.5

[0, 1] for w s.t. Pw(1, 2) < 0.5

π ∈ ∆2 otherwise
. (14)

Comparing equations (13) and (14) establishes the required claim.

B.2 Proof of Theorem 1

Let us use the shorthand π̃ : = π(P̃). We begin by decomposing the desired error term as

∆P(π̃, π∗)

= v(π̃;S,P, ‖ · ‖)− v(π̃;S, P̃, ‖ · ‖)︸ ︷︷ ︸
Perturbation error at π̃

+ v(π̃;S, P̃, ‖ · ‖)− v(π∗;S, P̃, ‖ · ‖)︸ ︷︷ ︸
≤0

+ v(π∗;S, P̃, ‖ · ‖)− v(π∗;S,P, ‖ · ‖)︸ ︷︷ ︸
Perturbation error at π∗

In order to obtain a bound on the perturbation errors, note that for any distribution π, we have

v(π;S,P, ‖ · ‖)− v(π;S, P̃, ‖ · ‖) = max
i1

[ρ(P(π, i1), S)]−max
i2

[ρ(P̃(π, i2), S)]

(i)

≤ max
i

[ρ(P(π, i), S)− ρ(P̃(π, i), S)], (15)

where step (i) follows by setting the i2 equal to i1. Noting that the distance is given by the `q norm,
we have

v(π;S,P, ‖ · ‖)− v(π;S, P̃, ‖ · ‖) ≤ max
i

[min
z1∈S

‖P(π, i)− z1‖q − min
z2∈S

‖P̃(π, i)− z2‖q]

(i)

≤ max
i

[‖P(π, i)− P̃(π, i)‖q],

where the inequality (i) follows by setting z2 equal to z1. Taking a supremum over all distributions π
completes the proof.

B.3 Proof of Corollary 1

By Theorem 1, it suffices to provide a bound on the quantity maxi ‖P(·, i)− P̂(·, i))‖∞,∞ for the
plug-in preference tensor P̂. Now by definition, we have

max
i
‖P(·, i)− P̂(·, i))‖∞,∞ = max

i1,i2,j
|Pj(i1, i2)− P̂j(i1, i2)| .

For each i = (i1, i2, j) representing some index of the tensor, let Ni : = #{` | η` = i} denote
the number of samples observed at that index. Since Ni can be written as a sum of i.i.d. Bernoulli
random variables, applying the Hoeffding bound yields

Pr

{∣∣∣Ni − n

d2k

∣∣∣ ≥ c√n log(c/δ)

d2k

}
≤ δ for each δ ∈ (0, 1).
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Note that we also have n ≥ c0d
2k log(c1d/δ) by assumption. For a large enough choice of the

constants (c0, c1), applying the union bound yields the sequence of sandwich relations
n

2d2k
≤ Ni ≤

3n

2d2k
for all indices i with probability greater than 1− δ. (16)

Furthermore, conditioned on Ni (for i = (i1, i2, j)), the Hoeffding bound yields the relation

Pr

|Pj(i1, i2)− P̂j(i1, i2)| ≥ c

√
log(c/δ)

Ni

 ≤ δ for each δ ∈ (0, 1).

Putting this together with a union bound, we have

Pr

max
i1,i2,j

|Pj(i1, i2)− P̂j(i1, i2)| ≥ c

√
log(cd2k/δ)

miniNi

 ≤ δ. (17)

Combining inequalities (16) and (17) with a final union bound completes the proof.

B.4 Proof of Theorem 2

Suppose throughout that k ≥ 2, and recall the axis-aligned convex target set S0 = [ 1
2 , 1]k. We split

our proof into two cases depending on whether d is even or odd.

Case 1: d even. We use Le Cam’s method and construct two problem instances with preference
tensors given by P0 and P1. Two key elements in the construction are the following 2×2×2 tensors,
which we denote by Pcr and P̃cr, respectively. Their entries are given by

P1
cr =

[
1
2

1
2 + γ

1
2 − γ

1
2

]
, P2

cr =

[
1
2

1
2 − γ

1
2 + γ 1

2

]
,

P̃cr
1

=

[
1
2

1
2 + γ

d
1
2 −

γ
d

1
2

]
and P̃cr

2
=

[
1
2

1
2 −

γ
d

1
2 + γ

d
1
2

]
.

Note that these tensors are parameterized by a scalar γ ∈ [0, 1/2], whose exact value we specify
shortly. Also denote by P1/2 the 2× 2× 2 all-half tensor. We are now ready to construct the pair of
d× d× k preference tensors (P0,P1).

In order to construct tensor P0, we specify its entries on the first two criteria according to

P1:2
0 =



P1/2 P1/2 · · · P1/2

P1/2 Pcr · · · P1/2

... · · ·
. . .

...

P1/2 P1/2 · · · Pcr


, (18)

and set the entries on the remaining k − 2 criteria to 1/2.

On the other hand, the first two criteria of the tensor P1 are given by

P1:2
1 =



P̃cr P1/2 · · · P1/2

P1/2 Pcr · · · P1/2

... · · ·
. . .

...

P1/2 P1/2 · · · Pcr


, (19)

with the entries on the remaining k − 2 criteria once again set identically to 1/2.

Note that the tensors P0 and P1 only differ on the first 2 × 2 × 2 block. Furthermore, the
following lemma provides an exact calculation of the values minπ v(π;P0, S0, ‖ · ‖∞) and
minπ v(π;P1, S0, ‖ · ‖∞).
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Lemma 1. We have

V0 : = min
π
v(π;P0, S0, ‖ · ‖∞) = 0 and V1 : = min

π
v(π;P0, S0, ‖ · ‖∞) =

γ

3d− 2
.

Given samples from these two instances, we now use Le Cam’s lemma [see 52, Chap 2] to lower
bound the minimax risk as

Mn,d,k(S0, ‖ · ‖∞) ≥ |V0 − V1|
2

(1− ‖Pn0 − Pn1‖TV) =
γ

2(3d− 2)
(1− ‖Pn0 − Pn1‖TV) , (20)

where Pn0 and Pn1 are the probability distributions induced on sample space by the passive sampling
strategy applied to the tensor P0 and P1, respectively.

Using Pinsker’s inequality, the decoupling property for KL divergence and the fact that that
KL(P‖Q) ≤ χ2(P‖Q), we have

‖Pn0 − Pn1‖TV ≤
√
n

2
KL(P1‖P0) ≤

√
n

2
χ2(P1‖P0) . (21)

The chi-squared distance between the two distributions P0 and P1 is given by

χ2(P1‖P0) =
1

d2k

∑
(i1,i2,j)

(
Pj1(i1, i2)

Pj2(i1, i2)
− 1

)2
(i)
=

2

d2k

((
2γ

d

)2

+

(
−2γ

d

)2
)

=
16γ2

d4k
,

where step (i) follows from the fact that P1 and P2 differ only in 4 entries and that the passive
sampling strategy samples each index uniformly at random. Putting together the pieces, we have:

Mn,d,k(S0, ‖ · ‖∞) ≥ γ

2(3d− 2)

(
1−

√
n

2

16γ2

d4k

)
(ii)
=

1

48
√

2

√
d2k

n
.

where step (ii) follows by setting γ2 = d4k
32n and using the fact that 3d− 2 ≤ 3d. Note that since we

require γ2 ≤ 1
4 , the above bound is valid only for n & d4k. This concludes the proof for even d.

Case 2: d odd. By assumption, we have d ≥ 5. In this case, we construct P0 and P1 exactly as
before, but replace Pcr in the last two rows of both P0 and P1 with the following modified 3× 3× 2
tensor:

P1
cr,3 =

 1
2

1
2 + γ 1

2 − γ
1
2 − γ

1
2

1
2 − γ

1
2 + γ 1

2 + γ 1
2

 and P2
cr,3 =

 1
2

1
2 − γ

1
2 + γ

1
2 + γ 1

2
1
2 + γ

1
2 − γ

1
2 − γ

1
2

 .
By mimicking its proof, it can be verified that this modification ensures that the corresponding
values V0 and V1 still satisfy Lemma 1. Thus, the lower bound remains unchanged up to constant
factors.

B.4.1 Proof of Lemma 1

Let us compute the two values separately.

Computing V0. The choice of distribution π∗ = [1, 0, . . . , 0] yields the score vector
[1/2, 1/2, . . . , 1/2], which is in the set S0. Thus, we have V0 = 0.

Computing V1. Note that the optimal distribution π∗ achieving the value V1 will be of the form
π∗ = [p/2, p/2, (1− p)/(d− 2), . . . , (1− p)/(d− 2)] for some p ∈ [0, 1].

This follows from the symmetry in the preference tensor for row objects ranging from 3 to d. Given
such a distribution π∗, the distance of the reward vector from the set S0 is given by

inf
z∈S
‖P(π∗, i2)− z‖∞ =


γp
2d i2 = 1, 2

γ(1−p)
d−2 o.w.

.

Thus, for any value of p > 2d/(3d − 2), the distance is maximized for i2 ∈ {1, 2}, and yields a
value γp/(2d). On the other hand, for p < 2d/(3d − 2), the maximizing index is i2 ≥ 3, and the
maximizing value is γ(1− p)/(d− 2). Optimizing these values for p yields the claim.
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B.5 Instance dependent lower bounds

In this section, we give a formal statement of Proposition 2 along with its proof.

We begin by defining some notation. For any α, β ∈ [− 1
2 ,

1
2 ] and choice of criteria j1, j2 ∈ [k], we

define the tensor P(j1,j2)
α,β ∈ [0, 1]2×2×k as

Pj1α,β =

[ 1
2

1
2 + α

1
2 − α

1
2

]
, Pj2α,β =

[ 1
2

1
2 + β

1
2 − β

1
2

]
and Pjα,β =

[ 1
2

1
2

1
2

1
2

]
for j 6= {j1, j2} .

Further, we denote by P1/2 the all-half tensor whose dimensions may vary depending on the context.
Any distribution π over the two objects can be parameterized by a value q ∈ [0, 1] with q being the
probability placed on the first object and 1− q the probability on the second object. We will consider
the distance function given by the `∞ norm. Given this distance function, we overload our notation
for the value

v(q;P
(j1,j2)
α,β , S) = max

i
[ρ(P

(j1,j2)
α,β (q, i), S)] and V(P

(j1,j2)
α,β ;S) = min

q
v(q;P

(j1,j2)
α,β ;S) .

(22)
We now state our main assumption for the score set S which allows us to formulate our lower bound.
Assumption 1. There exists a pair of criteria (j1, j2), values α0 ∈ (0, 1

2 ] and β0 ∈ [− 1
2 , 0], and a

gap parameter γ > 0 such that

V(P1/2;S) + γ ≤ V(P
(j1,j2)
α0,β0

;S)

for the all-half tensor P1/2 ∈ [0, 1]2×2×k.

The assumption above indicates that there exists a pair of criteria along which one can observe some
sort of trade-off when they interact with the underlying score set S. The preference tensor P(j1,j2)

α0,β0

captures this trade-off and the gap parameter γ quantifies it. Going forward, we assume without
loss of generality that (j1, j2) = (1, 2) and drop the dependence of the tensor on these indices,
writing Pα0,β0

≡ P
(1,2)
α0,β0

. The following lemma indicates the importance of the special values of
(α, β) = (0, 0) for which P0,0 = P1/2.

Lemma 2. For any α, β ∈ [− 1
2 ,

1
2 ], we have V(P0,0;S) ≤ V(Pα,β ;S).

The above lemma establishes that for any set, the value attained by setting (α0, β) = (0, 0) will be
lower than any other setting of the same parameters. For any parameter δ ∈ [0, 1], denote by Pwt,δ
the weighted tensor

Pwt,δ : = (1− δ)P0,0 + δPα0,β0
.

In order to understand the value V(Pwt,δ;S), we establish the following structural lemma which
gives us insight into how this value varies as a function of the parameter δ ∈ [0, 1].
Lemma 3. Consider a target set S that is given by an intersection of h half-spaces. Then, the value
function V(Pwt,δ;S) is a piece-wise linear and continuous function of δ ∈ [0, 1] with at most 4h
pieces.

The above lemma states that the value V(Pwt,δ;S) is a piece-wise linear function of δ. Consider the
first such piece which has a non-zero slope. Such a line has to exist since V(Pwt,δ) is continuous in δ
and we have V(Pwt,0) < V(Pwt,1). Also, this slope has to be positive since we know from Lemma 2
that V(Pwt,0) ≤ V(Pwt,δ) for any δ ∈ [0, 1]. Denote the starting point of this line by δ0 and the
corresponding slope by m0, and observe that the value V(Pwt,δ0) = V(Pwt,0). With this notation, we
now proceed to prove the lower bound on sample complexity for any polyhedral target score set S.
Proposition 4 (Formal). Suppose that we have a valid polyhedral target set S satisfying Assumption 1
with parameters (α0, β0). Then, there exists a universal constant c such that for all d ≥ 4, k ≥ 2,
and n ≥ d2k

δ̄2
(1/2−δ0α0)2

α2
0+β2

0
, we have

Mn,d,k(S, ‖ · ‖∞) ≥ c
m0( 1

2 − δ0α0)√
α2

0 + β2
0

√
d2k

n
. (23)
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Proof. For this proof, we focus on the case when the number of criteria k is even. The proof for the
case when k is odd can be obtained similar to the proof of Theorem 2.

We use Le Cam’s method for obtaining a lower bound on the minimax value and construct the lower
bound instances using the tensor given by Pwt,δ . For some δ ∈ [0, 1] (to be fixed later), consider the
parameter δ1 = δ0 + δ. Using these values of δ0 and δ1, we create the following two instances P0

and P1:

P0 =



Pwt,δ0 P1/2 · · · P1/2

P1/2 Pα0,β0 · · · P1/2

... · · ·
. . .

...

P1/2 P1/2 · · · Pα0,β0

 and P1 =



Pwt,δ1 P1/2 · · · P1/2

P1/2 Pα0,β0
· · · P1/2

... · · ·
. . .

...

P1/2 P1/2 · · · Pα0,β0

 ,

where Pα0,β0
is as given by Assumption 1. The following lemma now shows that that there exists a

small enough δ̄ such that the value function V(Pwt,δ;S) is linear in the range δ ∈ [δ0, δ1].

Lemma 4. There exists a δ̄ ∈ (0, 1) such that for all δ ∈ [0, δ̄] and δ1 = δ0 + δ, we have

a. The value V(Pwt,δ1 ;S) = V(Pwt,δ0 ;S) + δm0.

b. The minimizer π∗1 for P∗1 is given by π∗1 = [q0, 1− q0, 0 . . . , 0].

We defer the proof of this lemma to the end of the section. Thus, for a small enough value of δ ∈ [0, δ̄],
we have |V(P0)− V(P1)| = δm0. As was shown in the proof of Theorem 2, the minimax rate is
lower bounded as

Mn,d,k(S, ‖ · ‖∞) ≥ |V(P0)− V(P1)|
2

(1− ‖Pn0 − Pn1‖TV) ≥ δm0

2

(
1−

√
n

2
χ2(P1‖P0)

)
,

(24)
where Pn0 and Pn1 are the probability distributions induced on sample space by the passive sampling
strategy and the preference tensor P0 and P1 respectively. In order to obtain the requisite lower bound,
we proceed to compute an upper bound on the chi-squared distance between the two distributions P0

and P1 as

χ2(P1‖P0) =
1

d2k

∑
(i1,i2,j)

(
Pj1(i1, i2)

Pj0(i1, i2)
− 1

)2

(i)

≤ 2

d2k

((
α2

0δ
2

( 1
2 − δ0α0)2

)
+

(
β2

0δ
2

( 1
2 + δ0β0)2

))
(ii)

≤ 2δ2

d2k

(
α2

0 + β2
0

( 1
2 − δ0α0)2

)
,

where (i) follows from the fact that the instances P0 and P1 differ only in 4 entries and (ii) follows

from the assumption that |α0| ≥ |β0|. Now, substituting the value of δ2 = d2k
4n ·

( 1
2−δ0α0)2

α2
0+β2

0
and using

the above bound with equation (24), we have

Mn,d,k(S, ‖ · ‖∞) ≥
m0( 1

2 − δ0α0)

8
√
α2

0 + β2
0

√
d2k

n
,

which holds whenever we have δ ∈ [0, δ̄] or equivalently n ≥ d2k
4δ̄2

( 1
2−δ0α0)2

α2
0+β2

0
. This establishes the

desired claim.
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B.5.1 Proof of Lemma 2

For any α, β ∈ [− 1
2 ,

1
2 ], consider the value

V(Pα,β ;S) = min
q∈[0,1]

max
i

[ρ(Pα,β(q, i), S)]

= min
q∈[0,1]

max
τ∈[0,1]

[ρ(Pα,β(q, τ), S)]

(i)

≥ ρ

([
1

2

]k
, S

)
= V(P1/2;S) ,

where (i) follows by setting τ = q and
[

1
2

]k
denotes the vector with each entry set to half. This

establishes the claim.

B.5.2 Proof of Lemma 3

Let us denote by q0 any minimizer of the value v(q;Pα0,β0 , S) and the two score vectors corre-
sponding to the choices for i in equation (22) by z1,i : = Pα0,β0(q0, i). Observe that for Pwt,δ, the
distribution given by q0 is still a minimizer of its value. Further, the score vectors for the two column
choices are given by:

zδ,i = (1− δ)
[

1

2

]k
+ δz1,i for i = {1, 2}.

Recall that the distance function is given by ρ(zδ,i, S) = minz∈S ‖zδ,i − z‖∞. Now, the minimizer
z will lie on the closest hyperplane(s) to the point zδ,i. In order to establish the claim, it suffices
to show that for any fixed hyperplane3 H , the distance function given by ρ(zδ,i, H) is a piece-wise
linear function for δ ∈ [0, 1].

Let us consider a point zδ,i which does not belong to the half-space given by H , since otherwise, the
distance to the halfspace is 0. If we have ρ(zδ,i, H) = ζ, then the vector zδ,i + ζ1k must lie on the
hyperplane H . This follows from the monotonicity property of the hyperplane H .

For any δ = 1
2δ1 + 1

2δ2 such that zδ1,i and zδ2,i do not belong to the half-space given by H , we have

ρ(zδ,i) =
1

2
ρ(zδ1,i)︸ ︷︷ ︸

ζ1

+
1

2
ρ(zδ2,i)︸ ︷︷ ︸

ζ2

,

where the above equality follows since zδ1,i + ζ11k and zδ2,i + ζ21k both lie on the hyperplane H
and therefore zδ,i + ζ1+ζ2

2 1k also lies on the hyperplane. Combined with the fact that for any point
zδ,i which lies in the half-space given by H , the distance ρ(zδ,i, H) = 0, we have that the function
ρ(zδ,i, H) is a piece-wise linear function with at most 2 linear pieces for δ ∈ [0, 1].

Since ρ(zδ,i, S) is a minimum over h hyperplanes, this function is itself a piece-wise linear func-
tion with at most 2h pieces. The desired claim now follows from noting that the value function
V(Pwt,δ;S)is a maximum over two piece-wise linear functions each with at most 2h pieces.

B.5.3 Proof of Lemma 4

Consider δ1 = δ0 + δ such that δ0 and δ1 share the same linear piece. This can be guaranteed to hold
true for all δ ≤ δ̄1 by the piecewise linear nature of the value V(Pwt,δ).

For part (b) of the claim, let us consider the tensor P̃ = P1(3 :, 3 :) formed by removing the first
two rows and columns from the tensor P1. Then, from Assumption 1, we have that V(P̃;S) ≥
V(P1/2;S) + γ̃ for some γ̃ > 0. Selecting a value of δ̄2 such that δ̄2m0 ≤ γ̃, we can ensure that
condition (b.) is satisfied.

Finally, setting δ̄ = min(δ̄1, δ̄2) completes the proof.

B.6 Proof of Theorem 3

Let us prove the two claims of the theorem separately. We use the shorthand v(π) : = v(π;P, S, ‖ · ‖)
for convenience.

3we use the hyperplane H and the half-space induced by it interchangeably.
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Establishing convexity. Consider any two distributions π1, π2 ∈ ∆k and a scalar α ∈ [0, 1]. Since
the set S is closed and convex, we have

v(απ1 + (1− α)π2) = max
i∈[d]

min
z∈S

[ρ(P(απ1 + (1− α)π2, i), z)]

(i)
= max

i∈[d]

min
z1,z2∈S

[ρ(αP(π1, i) + (1− α)P(π2, i), αz1 + (1− α)z2)]

(ii)

≤ max
i∈[d]

(
α · min

z1∈S
[ρ(P(π1, i), z1)] + (1− α) · min

z2∈S
[ρ(P(π2, i), z2)]

)
(iii)

≤ αv(π1) + (1− α)v(π2) ,

where (i) follows from the convexity of S and linearity of the preference evaluation (Eq. (2)), (ii)
follows from the convexity of the distance function given by `q norm and (iii) follows from distributing
the max over the two terms. This establishes the first part of the theorem.

Establishing the Lipschitz bound. Consider any two distributions π1, π2 ∈ ∆d. The difference
in their value function can then be upper bounded as

|v(π1)− v(π2)| = | max
i1∈[d]

[ρ(P(π1, i1), S)]− max
i2∈[d]

[ρ(P(π2, i2), S)]|

(i)

≤ max
i∈[d]

|ρ(P(π1, i), S)− ρ(P(π2, i), S)|

= max
i∈[d]

| min
z1∈S

ρ(P(π1, i), z1)− min
z2∈S

ρ(P(π2, i), z2)|

(ii)

≤ max
i∈[d]

max
z∈S
|ρ(P(π1, i), z)− ρ(P(π2, i), z)| ,

where (i) follows from using the inequality |maxx f(x)−maxy g(y)| ≤ maxx |f(x)− g(x)| and
(ii) follows through a similar inequality |minx f(x)−miny g(y)| ≤ maxx |f(x)− g(x)|. Since the
distance function ρ is specified by the `q norm ‖ · ‖q , we have

|v(π1)− v(π2)| ≤ max
i∈[d]

‖P(π1, i)−P(π2, i)‖q

=

 k∑
j=1

(
〈π1 − π2,P

j(·, i)〉
)q 1

q

(i)

≤ k
1
q · ‖π1 − π2‖1 ,

where (i) follows from an application of Hölder’s inequality (`1 − `∞) to the inner product
〈π1 − π2,P

j(·, i)〉 and the fact that Pj(i1, i2) ∈ [0, 1] for any (i1, i2, j). This establishes the
Lipschitz bound and concludes the proof of the theorem.

C Additional results and their proofs

This section covers additional sample complexity results as well as optimization algorithms for
finding the Blackwell winner of a multi-criteria preference learning instance.

C.1 Sample complexity bounds for `1 norm

Corollary 2. Suppose that the distance ρ is induced by the `1 norm ‖ · ‖1. Then there exists a
universal constant c > 0 such that given a sample size n > cd2k log( cdkδ ), we have for each valid
target set S

∆P(π̂plug, π
∗) ≤ ck

√
d2k

n
log

(
cdk

δ

)
(25)

with probability exceeding 1− δ.
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Algorithm 1: Zeroth-order method for multi-criteria preference learning
Input: Time steps T , step size η, smoothing radius δ
Initialize: θ1 = 0
for t = 1, . . . , T do

πt = argmaxπ∈∆d
〈θt, π〉 − r(π) where r(π) =

∑
i πi log(πi)

Sample ut uniformly from the Euclidean unit sphere {u | ‖u‖2 = 1}
For every i ∈ [d], query points z1,i = P(πt + δut, i) and z2,i = P(πt + δut, i)
Set v(πt + δut;P, S, ρ) = maxi ρ(z1,i, S) and v(πt − δut;P, S, ρ) = maxi ρ(z2,i, S)

Set sub-gradient estimate ĝt = d
2δ (v(πt + δut;P, S, ρ)− v(πt − δut;P, S, ρ))ut

Update θt+1 = θt − ηĝt
Output: π̄T = 1

T

∑T
t=1 πt

Proof. Being somewhat more explicit with our notation, let N(i1,i2,j) denote the number of samples
observed under the passive sampling model at index (i1, i2, j) of the tensor. Proceeding as in
equation (17), we have

Pr

{
‖Pj(·, i2)− P̂j(·, i2)‖∞ ≥ c

√
log(cd/δ)

mini1∈[d]N(i1,i2,j)

}
≤ δ.

Summing over all criteria j ∈ [k] along with a union bound, we obtain

Pr

{
‖P(·, i2)− P̂(·, i2))‖∞,1 ≥ ck

√
log(cdk/δ)

mini1,j N(i1,i2,j)

}
≤ δ.

Finally, in order to obtain a bound on the maximum deviation in the (∞, 1)-norm, we take a union
bound over all d choices of the index i2, and apply inequality (16) to obtain

max
i2
‖P(·, i2)− P̂(·, i2))‖∞,1 ≤ ck

√
d2k

n
log

(
c
dk

δ

)
with probability exceeding 1− δ.

A few comments regarding the corollary are in order. The above corollary suggests that the sample
complexity required for obtaining an ε-accurate solution with respect to the `1 norm is n = Õ(d

2k3

ε2 ).
Observe that this bound is a factor of k2 worse than the corresponding one for `∞ norm established
in Corollary 1. This additional sample complexity occurs since for any vector v ∈ Rk, we have
‖v‖1 ≤ k‖v‖∞. This implies that the error when measured with respect to `1 can be upto k times
larger; since the sample complexity scales as 1

ε2 , the corresponding increase with respect to the
number of criteria k is quadratic.

C.2 Optimization algorithms

Recall that Theorem 3 established that the objective function v(π;P, S, ‖ · ‖q) is convex in π and
Lipschitz with respect to the `1 norm. This implies that one could compute the plug-in solution
π̂plug as a solution to a constrained optimization problem. In this section, we discuss a few specific
algorithms based on zeroth-order and first-order methods for obtaining such a solution.

C.2.1 Zeroth-order optimization

Zeroth-order methods for minimizing a function f(x) over x ∈ X work with a function query oracle.
That is, at each time step, the algorithm has access to an oracle which returns the value f(x) for any
point x ∈ X . In our setup, since we are interested in minimizing the value function v(π;P, S, ρ)
over π ∈ ∆d, such a function query requires access to the target set S via an oracle O0

S such that

O0
S(z)→ min

z1∈S
ρ(z, z1) ,
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for the underlying distance function ρ(·). The oracle O0
S essentially takes as input a score vector

z ∈ [0, 1]k and outputs the distance of this point to the target set S. Given this oracle, it is easy to see
that for any π, one can compute the corresponding value function v(π;P, S, ρ).

There have been several algorithms proposed for optimization with such oracles when the underlying
function f is convex [23, 2, 48, 21, 38, 49] or non-convex, smooth [26]. The key idea in the proposed
algorithms is to utilize the zeroth-order oracle to constuct estimates of the (sub-)gradient of the
function f using a class of techniques called randomized smoothing. The algorithms then differ in the
construction of these estimates depending on the underlying randomness as well as on the number of
oracle calls during each time step.

Given the results of Theorem 3, we can restrict our focus on algorithms for the class of convex
Lipschitz function f . To this end, Shamir [49] proposed an algorithm for optimizing such functions
which required two function evaluations at each time. The algorithm, adapted to the multi-criteria
preference learning problem, is detailed in Algorithm 1. For our setup, we select the negative entropy
regularization, r(π) =

∑
i πi log(πi) to suit the geometry of our domain X = ∆d.

The proposed algorithm, maintains an estimate of the distribution, πt, and at each time step t, queries
the function value v(·;P, S, ρ) at the following two points: πt+δut and πt−δut, where u is sampled
uniformly from the Euclidean unit sphere and δ > 0 represents the smoothing radius. Given these
queries, the sub-gradient estimate, ĝt is then obtained as:

ĝt : =
d

2δ
(v(πt + δut;P, S, ρ)− v(πt − δut;P, S, ρ))ut .

The sub-gradient estimate is then used to update the parameter estimate πt+1 using the mirror descent
algorithm with the specified regularization function. The zeroth-order method in Algorithm 1 does
not require the underlying function to be smooth and hence works for our problem setup with arbitrary
non-differentiable distance functions. We can now obtain the following convergence result, based on
Theorem 1 from the work of Shamir [49].
Proposition 5. Suppose the conditions of Theorem 3 hold, and that Algorithm 1 is run for T
iterations with step-size ηt = c

k1/q
√
dT

and smoothing radius δ = c log d√
T

, and produces a sequence
π1, π2, . . . , πT . Then we have

v (π̄T ;P, S, ‖ · ‖q) ≤ min
π∈∆d

v(π;P, S, ‖ · ‖q) + ck
1
q ·

√
d log2 d

T

where π̄T = 1
T

∑T
t=1 πt.

Proof. By Theorem 3, the value function v(π;P, S, ‖ · ‖q) is convex and Lv = k
1
q -Lipschitz with

respect to ‖ · ‖1. Also, the choice of the regularizer r(π) =
∑
i πi log(πi) is 1-strongly convex with

respect to the ‖ · ‖1. Plugging in the above values in Theorem 1 from [49] establishes the above
convergence rate.

Thus, in order to obtain a distribution π̂ that is ε-close to π∗ in function value, we need to run Algo-

rithm 1 for T = O

(
k

2
q d log2 d
ε2

)
iterations. Also, note that each iteration of the algorithm requires d

calls to the oracle O0
S . Therefore the total oracle complexity of the procedure is O

(
k

2
q d2 log2 d

ε2

)
.

C.3 First-order optimization

In this section, we look at first-order methods to compute the plug-in estimator. Let us denote by
∂v(π) the set of sub-differentials of the function v(·;P, S, ‖ · ‖) evaluated at π. Further, let the set
Γ(π) denote the set of maximizers for a policy π, that is,

Γ(π) =

{
π̃ ∈ ∆d | π̃ ∈ argmax

π2∈∆d

min
z∈S

[‖P(π, π2)− z‖]
}
. (26)

Note that both of these quantities depend implicitly on the tuple (S,P, ‖ · ‖), but we have dropped
this dependence in the notation. Given the setup above, Lemma 5 below characterizes this set ∂v(π)
for any smooth `q norm (with 1 < q <∞).
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Algorithm 2: First-order method for multi-criteria preference learning
Input: Time steps T , step size η
Initialize: θ1 = 1k
for t = 1, . . . , T do

Set the distribution πt = θt
‖θt‖1

Obtain gt ∈ conv
{

P(·,π2)[P(πt,π2)−ΠS(P(πt,π2))]
‖P(πt,π2)−ΠS(P(πt,π2))‖q | π2 ∈ Γ(πt)

}
[See eq.(26) for Γ(πt)]

Update θt+1,i = πt,i exp(−ηgt,i)
Output: π̄T = 1

T

∑T
t=1 πt

Lemma 5. Suppose that the distance is induced by a smooth `q norm for 1 < q <∞. Then the set
of sub-differentials of v at π is given by:

∂v(π) = conv
{
P(·, π2) [P(π, π2)−ΠS(P(π, π2))]

‖P(π, π2)−ΠS(P(π, π2))‖q
| π2 ∈ Γ(π)

}
,

where ΠS(z) denotes the unique projection of the point z onto set S along ‖ · ‖q .

We defer the proof of the above lemma to later in the section. Note that in order to access such a
sub-gradient, we need access to an oracle O1

S that provides projection queries of the form

O1
S(z)→ argmin

z1∈S
ρ(z, z1).

The oracle O1
S takes in a point z and outputs the closest point in the set S to this point. Given such an

oracle, we can compute the sub-gradient of the function v(π;P, S, ρ) using Lemma 5 by evaluating
it at the point given by P(π, π2) for some π2 ∈ Γ(π).

Given access to such a projection oracle O1
S , we detail out a procedure based on a standard im-

plementation of mirror descent with entropic regularization (or Exponentiated gradient method) in
Algorithm 2 to minimize the objective v(π;G). Note that we select the negative entropy function,
r(π) =

∑
i πi log(πi), as the regularization function for the mirror descent procedure since our pa-

rameter space is given by the simplex ∆k and the negative entropy function is known to be 1-strongly
convex with respect to ‖ · ‖1 over this space.

The algorithm works by maintaining at each time instance a distribution πt over the set of objects
and updates it via an exponentiated gradient update. That is, the sub-gradient gt is evaluated at
the current point πt using access to both O1

S and O0
S , and is used to update each coordinate of the

variable θt. The updated distribution πt+1 is obtained via a KL-projection of θt onto the simplex
∆k, which can be shown to be equivalent to the normalization θ/‖θ‖1. We now proceed to prove a
convergence result for this gradient-based Algorithm 2, based on a standard analysis of the mirror
descent procedure (for example, see [14, Theorem 4.2]).
Proposition 6. Suppose the conditions of Theorem 3 hold and consider any `q-norm for 1 < q <∞.

Suppose that running Algorithm 1 for T iterations with step-size ηt = 1
k1/q

√
2 log d
T produces a

sequence π1, π2, . . . , πT . Then we have

v(π̄T ;P, S, ‖ · ‖q) ≤ min
π∈∆d

v(π;P, S, ‖ · ‖q) + k
1
q ·
√

2 log d

T

where π̄T = 1
T

∑T
t=1 πt.

Proof. Note that the function v(π;P, S, ‖ · ‖q) is convex and k
1
q -Lipschitz with respect to the `1

norm from Theorem 3. Further, the mirror map given by negative entropy function is 1-strongly
convex with respect to ‖ · ‖1. Plugging in these values in Theorem 4.2 from [14] establishes the
required convergence rate.

In order to obtain an ε-accurate solution in function value, it suffices to run the above algorithm

for T = O

(
k

2
q log d
ε2

)
iterations, with each iteration using 1 call to the oracle O1

S and d calls
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to the oracle O0
S (to obtain the set Γ). Thus, we see that the total oracle complexity changes as

O1
S : O

(
k

2
q log d
ε2

)
calls and O0

S : O

(
k

2
q d log d
ε2

)
calls – effectively, an O(d log d) decrease in the

calls to O0
S is compensated by a corresponding increase of O( log d

ε2 ) calls to the stronger oracle O1
S .

Proof of Lemma 5. Consider the function φ(π1, π2) = maxz∈S ‖P(π1, π2)− z‖ over the domain
π2 ∈ ∆d. For any fixed π2, we have that the function φ(π1, π2) is convex in π1. Thus, by Danskin’s
theorem, we have that the subdifferential set is given by:

∂v(π) = conv
{
∂φ(π, π2)

∂π
| π2 ∈ Γ(π)

}
, (27)

where conv represents the convex hull of the set. Let us now focus on the partial derivative ∂φ(π,π2)
∂π

for any π2 which is a maximizer. This partial derivative involves differentiation of a metric projection
onto a convex set, which has been studied extensively in the literature of convex analysis [41, 58, 5].
Recently, Balestro et al. [8] established that for distance functions given by smooth norms, the
derivative of metric projection for any z /∈ S is given by:

∇ρ(z, S) = ∇ min
z2∈S

‖z − z2‖ =
z −ΠS(z)

‖z −ΠS(z)‖
,

where ΠS(z) denotes the unique projection of the point z onto set S. Combining this with the chain
rule of differentiation, we have that:

∂φ(π, π2)

∂π
=

P(·, π2) [P(π, π2)−ΠS(P(π, π2))]

‖P(π, π2)−ΠS(P(π, π2))‖q
.

The above, in conjunction with equation (27) establishes the desired claim.

D Details of user study

In this section, we provide the deferred details of the user study from Section 4.

Self-driving environment. The self-driving environment consists of an autonomous car which can
be controlled by providing real-valued inputs acceleration and angular acceleration at every time step.
We allow the policies to have access to the dynamics of this environment. Observe that there is no
explicit reward function in the environment and each policy differs in the way it optimizes a chosen
reward function to drive the car forward in a safe manner.

Policies. The MPC based Policies A-E were constructed by optimizing linear rewards comprising
features F1-F9 as

F1 Distance from the starting point along y-axis.
F2 Velocity of the autonomous car.
F3 Distance from the center of each lane.
F4 Gaussian collision detector for nearby objects.
F5 Collision detector which works at smaller radii than F4.
F6 Over-speeding feature which penalizes higher speeds.
F7 Reward for over-taking vehicles in the front.
F8 Gaussian off-road detector.
F9 Reward to promote speeding up near obstacles.

For each of the base policy, we set the weights of the features to encode different driving behaviors.

Pol A programmed to prefer the right-most lane and progress forward at a slow speed.
Pol B programmed to prefer the left-most lane and move forward as fast as possible.
Pol C programmed to be conservative, avoids collision and proceeds forward.
Pol D programmed to get attracted towards other cars and obstacles.
Pol E programmed to prefer center lane and exhibit opportunistic behavior by moving ahead of

other cars.
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Details of target set and linear weights. We selected the two data-oblivious sets to trade-off
between the criteria C1-C5 as

S1 = {z | z ∈ [0, 1]5, z1 ≥ 0.3, z2 ≥ 0.3, z3 ≥ 0.2, z4 ≥ 0.3, z5 ≥ 0.4},
S2 = {z | z ∈ [0, 1]5, z1 ≥ 0.25, z2 ≥ 0.25, z3 ≥ 0.25, z4 ≥ 0.25, z5 ≥ 0.25, z1 + z5 ≥ 0.9}.

(28)

In addition, we selected 9 set of weights w1:9 for linearly combining the different criteria.

w1: Average of the users’ self-reported weights.
w2: Weight vector obtained by regressing the overall criterion on C1-C5 with squared loss as

w2 ∈ argmin
w∈∆5

∑
i1,i2

(Pov(i1, i2)−
∑
j

w(j)Pj(i1, i2))2.

w3: Weight obtained by regressing Bradley-Terry-Luce (BTL) scores. The BTL parametric
model assumes a real-valued score vi for each policy and posits that Pr(Pol i � Pol j) =
exp(vi)/ exp(vi) + exp(vj). Denoting the scores obtained from the overall preferences by
vov and those obtained from the individual criteria by vj for j ∈ [5], the weight

w2 ∈ argmin
w∈∆5

∑
i

(vovi −
∑
j

w(j)vji )
2.

w4: Data-oblivious weight w4 = [0.2, 0.2, 0.2, 0.2, 0.2].
w5: Data-oblivious weight w5 = [0.25, 0.5/3, 0.5/3, 0.5/3, 0.25].
w6: Data-oblivious weight w6 = [0.30, 0.4/3, 0.4/3, 0.4/3, 0.30].
w7: Data-oblivious weight w7 = [0.5/3, 0.5/3, 0.25, 0.5/3, 0.25].
w8: Data-oblivious weight w8 = [0.4/3, 0.4/3, 0.3, 0.4/3, 0.30].
w9: Data-oblivious weight w9 = [0.3, 0.1/2, 0.3, 0.1/2, 0.3].

The set of data oblivious weights were chosen to account for different trade-offs along the criteria
C1-C5 including the uniform weight w4.

Data Collection. Table 1 shows the comparison data collected from the Mturk users in both the
phases of the experiment. The entry i, j of the comparison matrices represents the fraction of users
which preferred Policy i over Policy j. The top 5 rows and columns of each matrix correspond to
the baseline policies while the bottom rows correspond to the two randomized policies R1 and R2
obtained as the Blackwell winner corresponding to sets S1 and S2 respectively.

In addition, we would like to highlight some details from an experiment design perspective. Since the
experiment was run in two phases, we could not guarantee the same set of subjects to participate in
both parts of the experiment. In order to limit distribution shifts, we restricted the nationality of the
subjects to United States and began both the phases on the same time and day of the week. Also, in
order to prevent biased evaluations, the ordering of the policy pairs as well as the ordering policies
within a comparison was randomized across the users.

Figures 3, 4 and 5 shows the experiment setup we used for obtaining comparison data from Amazon
Mechanical Turk users consisting of the instructions, the policy comparison page and the questionnaire
that the users were asked to fill out.

Implementation Details. The computation of the Blackwell winner for the different target set S
was done using the CVX package in Matlab. For the MPC policies, the horizon length H was set to
be 18, three times the planning horizon = 6.
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A B C D E
A 0.50 0.64 0.45 0.41 0.39
B 0.36 0.50 0.30 0.30 0.25
C 0.55 0.70 0.50 0.55 0.57
D 0.59 0.70 0.45 0.50 0.52
E 0.61 0.75 0.43 0.48 0.50

R1 0.49 0.80 0.22 0.46 0.29
R2 0.49 0.88 0.66 0.61 0.41

(a) C1: Aggressiveness

A B C D E
A 0.50 0.57 0.50 0.50 0.41
B 0.43 0.50 0.30 0.39 0.45
C 0.50 0.70 0.50 0.43 0.59
D 0.50 0.61 0.57 0.50 0.57
E 0.59 0.55 0.41 0.43 0.50

R1 0.46 0.71 0.32 0.51 0.39
R2 0.51 0.71 0.61 0.59 0.51

(b) C2: Predictability

A B C D E
A 0.50 0.16 0.25 0.32 0.30
B 0.84 0.50 0.89 0.82 0.68
C 0.75 0.11 0.50 0.73 0.61
D 0.68 0.18 0.27 0.50 0.41
E 0.70 0.32 0.39 0.59 0.50

R1 0.73 0.22 0.76 0.78 0.76
R2 0.90 0.24 0.44 0.66 0.66

(c) C3: Quickness

A B C D E
A 0.50 0.59 0.45 0.57 0.39
B 0.41 0.50 0.32 0.34 0.32
C 0.55 0.68 0.50 0.48 0.59
D 0.43 0.66 0.52 0.50 0.50
E 0.61 0.68 0.41 0.50 0.50

R1 0.44 0.80 0.20 0.39 0.24
R2 0.41 0.80 0.71 0.59 0.39

(d) C4: Conservativeness

A B C D E
A 0.50 0.52 0.41 0.50 0.43
B 0.48 0.50 0.32 0.55 0.55
C 0.59 0.68 0.50 0.55 0.57
D 0.50 0.45 0.45 0.50 0.50
E 0.57 0.45 0.43 0.50 0.50

R1 0.54 0.68 0.32 0.49 0.41
R2 0.63 0.73 0.59 0.61 0.54

(e) C5: Collision Risk

A B C D E
A 0.50 0.39 0.25 0.43 0.34
B 0.61 0.50 0.30 0.50 0.50
C 0.75 0.70 0.50 0.57 0.61
D 0.57 0.50 0.43 0.50 0.48
E 0.66 0.50 0.39 0.52 0.50

R1 0.66 0.76 0.29 0.59 0.39
R2 0.66 0.73 0.66 0.56 0.51

(f) Overall Preferences

Table 1. Each matrix consists of pairwise comparisons between policies elicited from a user study
with around 50 participants on Mturk. An entry i, j of the comparison matrices represents the fraction
of users which preferred Policy i over Policy j. Policies A-E comprise the base set of policies while
Policies R1-R2 are the randomized Blackwell winners obtained from the sets in equation (28). While
Policy C is the overall von Neumann winner, Policy R2 is preferred over it by 66% of the users.
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Figure 3. Instructions provided to the users before the experiment began. The users were asked to
compare behavior of policies and were told to expect some policies to exhibit a randomized behavior.
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Figure 4. Layout of the experiment where each panel shows a GIF exhibiting a Policy controlling the
autonomous vehicle in one of the worlds of the environment. The users were instructed to compare
behaviors across each of the columns before proceeding to answer the questions.
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Figure 5. Layout of the questions panel comprising the 6 comparison questions and the form for
reporting the relevance of each criterion in the overall evaluation.
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