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Abstract

We study the sample complexity of private synthetic data generation over an1

unbounded sized class of statistical queries, and show that any class that is privately2

proper PAC learnable admits a private synthetic data generator (perhaps non-3

efficient). A differentially private synthetic generator is an algorithm that receives4

a IID data and publishes synthetic data that is indistinguishable from the true data5

w.r.t a given fixed class of statistical queries. The synthetic data set can then be6

used by a data scientist without compromising the privacy of the original data set.7

Previous work on synthetic data generators focused on the case that the query class8

D is finite and obtained sample complexity bounds that scale logarithmically with9

the size |D|. Here we construct a private synthetic data generator whose sample10

complexity is independent of the domain size, and we replace finiteness with the11

assumption that D is privately PAC learnable (a formally weaker task, hence we12

obtain equivalence between the two tasks).13

Our proof relies on a new type of synthetic data generator, Sequential Synthetic14

Data Generators, which we believe may be of interest of their own right. A15

sequential SDG is defined by a sequential game between a generator that proposes16

synthetic distributions and a discriminator that tries to distinguish between real17

and fake distributions. We characterize the classes that admits a sequential-SDG18

and show that they are exactly Littlestone classes. Given the online nature of19

the Sequential setting, it is natural that Littlestone classes arise in this context.20

Nevertheless, the characterization of Sequential–SDGs by Littlestone classes turns21

out to be technically challenging, and to the best of the authors knowledge, does22

not follow via simple reductions to online prediction.23

1 Introduction24

Generating differentially–private synthetic data [8, 15] is a fundamental task in learning that has won25

considerable attention in the last few years [23, 40, 24, 17].26

Formally, given a class D of distinguishing functions, a fooling algorithm receives as input IID27

samples from an unknown real-life distribution, preal, and outputs a distribution psyn that is ε-close28

to preal w.r.t the Integral Probability Metric ([31]), denoted IPMD:29

IPMD(p, q) = sup
d∈D

∣∣∣∣ Ex∼p[d(x)]− E
x∼q

[d(x)]

∣∣∣∣ (1)

A DP-SDG is then simply defined to be a differentially private fooling algorithm.30

A fundamental question is then: Which classes D can be privately fooled? In this paper, we focus31

on sample complexity bounds and give a first such characterization. We prove that a class D is32

DP–foolable if and only if it is privately (proper) PAC learnable. As a corollary, we obtain equivalence33
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between several important tasks within private learning such as proper PAC Learning [26], Data34

Release [15], Sanitization [5] and what we will term here Private Uniform Convergence.35

Much focus has been given to the task of synthetic data generation. Also, several papers [24, 17,36

21, 22] discuss the reduction of private fooling to private PAC learning. In contrast with previous37

work, we assume an arbitrary large domain. In detail, previous existing bounds normally scale38

logarithmically with the size of the query class D (or alternatively, depend on the size of the domain).39

Here we initiate a study of the sample complexity that does not assume that the size of the domain is40

fixed. Instead, we only assume that the class is privately PAC learnable, and obtain sample complexity41

bounds that are independent of the cardinality |D|. We note that the existence of a private synthetic42

data generator entails private proper PAC learning, hence our assumption is a necessary condition for43

the existence of a DP-SDG.44

The general approach taken for generating synthetic data (which we also follow here) is to exploit45

an online setup of a sequential game between a generator that aims to fool a discriminator and a46

discriminator that attempts to distinguish between real and fake data. The utility and generality47

of this technical method, in the context of privacy, has been observed in several previous works48

[23, 36, 21]. However, in the finite case, specific on-line algorithms, such as Multiplicative Weights49

and Follow-the-Perturbed-Leader are considered. The algorithms are then exploited, in a white-box50

fashion, that allow easy construction of SDGs. The technical challenge we face in this work is to51

generalize the above technique in order to allow the use of no-regret algorithms that work over infinite52

classes. Such algorithms don’t necessarily share the attractive traits of MW and FtPL that allow their53

exploitation for generating synthetic data. To overcome this, we study here a general framework of54

sequential SDGs and show how an arbitrary online algorithm can be turned, via a Black-box process,55

into an SDG which in turn can be privatized. We discuss these challenges in more detail in ??.56

Thus, the technical workhorse behind our proof is a learning primitive which is of interest of its own57

right. We term it here Sequential Synthetic Data Generator (Sequential-SDG). Similar frameworks58

appeared [21], and not only in the context of private-SDGs but also more broadly [20, 29] in59

theoretical studies about generative learning algorithms [19, 18].60

In the sequential-SDG setting, we consider a sequential game between a generator (player G) and a61

discriminator (player D). At every iteration, player G proposes a distribution and player D outputs a62

discriminating function from a prespecified binary class D. The game stops when player G proposes63

a distribution that is close in IPMD distance to the true target distribution. As we focus on the64

statistical limits of the model, we ignore the optimization and computational complexity aspects and65

we assume that both players are omnipotent in terms of their computational power.66

We provide here characterization of the classes that can be sequentially fooled (i.e. classes D for67

which we can construct a sequential SDG) and show that the sequentially foolable classes are exactly68

Littlestone classes [30, 6]. In turn, we harness sequential SDGs to generate synthetic data together69

with a private discriminator in order to generate private synthetic data. Because this framework70

assumes only a private learner, we in some sense show that the sequential setting is a canonical71

method to generate synthetic data.72

To summarize this work contains several contributions: We provide the first domain-size independent73

sample complexity bounds for DP-Fooling, and show an equivalence between private synthetic data74

generation and private learning. Second, we introduce and characterize a new class of SDGs and75

demonstrate their utility in the construction of private synthetic data.76

2 Prelimineries77

In this section we recall standard definitions and notions in differential privacy and learning (a more78

extensive background is also given in Appendix A). Throughout the paper we will study classes D of79

boolean functions defined on a domain X . However, we will often use a dual point of view where we80

think of X as the class of functions and on D as the domain. Therefore, in order to avoid confusion,81

in this section we letW denote the domain andH ⊆ {0, 1}W to denote the functions class.82
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2.1 Differential Privacy and Private Learning83

Differential Privacy [14, 13] is a statistical formalism which aims at capturing algorithmic privacy. It84

concerns with problems whose input contains databases with private records and it enables to design85

algorithms that are formally guaranteed to protect the private information. For more background see86

the surveys [16, 41].87

The formal definition is as follows: letWm denote the input space. An input instance Ω ∈ Wm is88

called a database, and two databases Ω′,Ω′′ ∈ Wm are called neighbours if there exists a single89

i ≤ m such that Ω′i 6= Ω′′i . Let α, β > 0 be the privacy parameters, a randomized algorithm90

M : Wm → Σ is called (α, β)-differentially private if for every two neighbouring Ω′,Ω′′ ∈ Wm91

and for every event E ⊆ Σ:92

Pr
[
M(Ω′) ∈ E

]
≤ eα Pr

[
M(Ω′′) ∈ E

]
+ β.

An algorithm M : ∪∞m=1Wm → Y is called differentially private if for every m its restriction toWm93

is (α(m), β(m))-differentially private, where α(m) = O(1) and β(m) is negligible1. Concretely,94

we will think of α(m) as a small constant (say, 0.1) and β(m) = O(m− logm).95

Private Learning. We next overview the notion of Differentially private learning algorithms [26].96

In this context the input database is the training set of the algorithm.97

Given a hypothesis classH over a domain W , we say thatH ⊆ {0, 1}W is privately PAC learnable98

if it can be learned by a differentially private algorithm. That is, if there is a differentially private99

algorithm M and a sample complexity bound m(ε, δ) = poly(1/ε, 1/δ) such that for every ε, δ > 0100

and every distribution P over W × {0, 1}, if M receives an independent sample S ∼ Pm then it101

outputs an hypothesis hS such that with probability at least 1− δ:102

LP(hS) ≤ min
h∈H

LP(h) + ε,

where LP(h) = E(w,y)∼P
[
1[h(w) 6= y]

]
. If M is proper, namely hS ∈ H for every input sample S,103

thenH is said to be Privately Agnostically and Properly PAC learnable (PAP-PAC-learnable).104

In some of our proofs it will be convenient to consider private learning algorithms whose privacy105

parameter α satisfies α ≤ 1 (rather than α = O(1) as in the definition of private algorithms). This can106

be done without loss of generality due to privacy amplification theorems (see, for example (similar,107

for example [41] (Definition 8.2) and references within (see also discussion after Lemma 3 for further108

details).109

Sanitization. The notion of sanitization has been introduced in [8] and further studied in [5]. Let110

H ⊆ {0, 1}W be a class of functions. An (ε, δ, α, β,m)-sanitizer forH is an (α, β)-private algorithm111

M that receives as an input a sample S ∈ Wm and outputs a function Est : H → [0, 1] such that112

with probability at least 1− δ,113

(∀h ∈ H) :
∣∣∣Est(h)− |{w ∈ S : h(w) = 1}|

|S|

∣∣∣ ≤ ε.
We say that H is sanitizable if there exists an algorithm M and a bound m(ε, δ) = poly(1/ε, 1/δ)114

such that for every ε, δ > 0, the restriction of M to samples of size m = m(ε, δ) is an (ε, δ, α, β,m)-115

sanitizer forH with α = α(m) = O(1) and β = β(m) negligible.116

Private Uniform Convergence. A basic concept in Statistical Learning Theory is the notion of117

uniform convergence. In a nutshell, a class of hypothesesH satisfies the uniform convergence property118

if for any unknown distribution P over examples, one can uniformly estimate the expected losses119

of all hypotheses in H given a large enough sample from P . Uniform convergence and statistical120

learning are closely related. For example, the Fundamental Theorem of PAC Learning asserts that121

they are equivalent for binary-classification [37].122

This notion extends to the setting of private learning: a class H satisfies the Private Uniform123

Convergence property if there exists a differentially private algorithm M and a sample complexity124

1I.e. β(m) = o(m−k) for every k > 0.
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bound m(ε, δ) = poly(1/ε, 1/δ) such that for every distribution P overW × {0, 1} the following125

holds: if M is given an input sample S of size at least m(ε, δ) which is drawn independently from P,126

then it outputs an estimator L̂ : H → [0, 1] such that with probability at least (1− δ) it holds that127

(∀h ∈ H) :
∣∣L̂(h)− LP(h)

∣∣ ≤ ε.
Note that without the privacy restriction, the estimator128

L̂(h) = LS(h) :=
|{(wi, yi) ∈ S : h(wi) 6= yi}|

|S|

satisfies the requirement for m = Õ(d/ε2), where d is the VC-dimension ofH; this follows by the129

celebrated VC-Theorem [42, 37].130

3 Problem Setup131

We assume a domain X and we let D ⊆ {0, 1}X be a class of functions over X . The class D is132

referred to as the discriminating functions class and its members d ∈ D are called discriminating133

functions or distinguishers. We let ∆(X ) denote the space of distributions over X . Given two134

distributions p, q ∈ ∆(X ), let IPMD(p, q) denote the IPM distance between p and q as in Eq. (1).135

It will be convenient to assume thatD is symmetric, i.e. that whenever d ∈ D then also its complement,136

1− d ∈ D. Assuming that D is symmetric will not lose generality and will help simplify notations.137

We will also use the following shorthand: given a distribution p and a distinguisher d we will often138

write139

p(d) := E
x∼p

[d(x)].

Under this assumption and notation we can remove the absolute value from the definition of IPM:140

IPMD(p, q) = sup
d∈D

(p(d)− q(d)) . (2)

3.1 Synthetic Data Generators141

A synthetic data generator (SDG), without additional constraints, is defined as follows142

Definition 1 (SDG). An SDG, or a fooling algorithm, for D with sample complexity m(ε, δ) is an143

algorithm M that receives as input a sample S of points from X and parameters ε, δ such that the144

following holds: for every ε, δ > 0 and every target distribution preal, if S is an independent sample145

of size at least m(ε, δ) from preal then146

Pr
[
IPMD(psyn, preal) < ε

]
≥ 1− δ,

where psyn := M(S) is the distribution outputted by M , and the probability is taken over S ∼147

(preal)
m as well as over the randomness of M .148

We will say that a class is foolable if it can be fooled by an SDG algorithm whose sample complexity149

is poly(1
ε ,

1
δ ). Foolability, without further constraints, comes with the following characterization150

which is an immediate corollary (or rather a reformulation) of the celebrated VC Theorem ([42]).151

Denote by Memp an algorithm that receives a sample S and returns Memp(S) := pS , the empirical152

distribution over S.153

Observation 1 ([42]). The following statements are equivalent for a class D ⊆ {0, 1}X :154

1. D is PAC–learnable.155

2. D is foolable.156

3. D satisfies the uniform convergence property.157

4. D has a finite VC-dimension.158

5. Memp is a fooling algorithm for D with sample complexity m = O( log 1/δ
ε2 ).159
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Observation 1 shows that foolability is equivalent to PAC-learnability (and in turn to finite VC di-160

mension). We will later see analogous results for DP–Foolability (which is equivalent to differentially161

private PAC learnability) and Sequential–Foolability (which is equivalent to online learnability).162

We now discuss the two fundamental models that are the focus of this work – DP–Foolability and163

Sequential–Foolability.164

3.2 DP–Synthetic Data Generators165

We next introduce the notion of a DP–synthetic data generator and DP–Foolability. As discussed,166

DP-SDGs have been the focus of study of several papers [8, 15, 23, 40, 24, 17].167

Definition 2 (DP-SDG). A DP-SDG, or a DP-fooling algorithm M for a class D is an algorithm168

that receives as an input a finite sample S and two parameters (ε, δ) and satisfies:169

• Differential Privacy. For every m, the restriction of M to input samples S of size m is170

(α(m), β(m))-differentially private, where α(m) = O(1) and β(m) is negligible.171

• Fooling. M fools D: there exists a sample complexity bound m = m(ε, δ) such that for172

every target distribution preal if S is a sample of at least m examples from preal then173

IPMD(psyn, preal) ≤ ε with probability at least 1− δ, where psyn is the output of M on174

the input sample S.175

We will say in short that a class D is DP– Foolable if there exists a DP-SDG for the class D with176

sample complexity m = poly(1/ε, 1/δ).177

3.3 Sequential–Synthetic Data Generators178

We now describe the second model of foolability which, as discussed, is the technical engine behind179

our proof of equivalence between DP-foolability and DP-learning.180

Sequential-SDGs A Sequential-SDG can be thought of as a sequential game between two players181

called the generator (denoted by G) and the discriminator (denoted by D). At the beginning of the182

game, the discriminator D receives the target distribution which is denoted by preal. The goal of the183

generator G is to find a distribution p such that p and preal are ε-indistinguishable with respect to184

some prespecified discriminating class D and an error parameter ε > 0, i.e.185

IPMD(p, preal) ≤ ε.

We note that both players know D and ε. The game proceeds in rounds, where in each round t the186

generator G submits to the discriminator a candidate distribution pt and the discriminator replies187

according to the following rule: if IPMD(pt, preal) ≤ ε then the discriminator replies “WIN” and the188

game terminates. Else, the discriminator picks dt ∈ D such that |preal(dt)− pt(dt)| > ε, and sends189

dt to the generator along with a bit which indicates whether pt(dt) > preal(dt) or pt(dt) < preal(dt).190

Equivalently, instead of transmitting an extra bit, we assume that the discriminator always sends191

dt ∈ D ∪ (1−D) s.t.192

preal(dt)− pt(dt) > ε. (3)

Definition 3 (Sequential–Foolability). Let ε > 0 and let D be a discriminating class.193

1. D is called ε-Sequential–Foolable if there exists a generator G and a bound T = T (ε) such194

that G wins any discriminator D with any target distribution preal after at most T rounds.195

2. The round complexity of Sequential–Fooling D is defined as the minimal upper bound T (ε)196

on the number of rounds that suffice to ε–Fool D.197

3. D is called Sequential–Foolable if it is ε-Sequential foolable for every ε > 0 with T (ε) =198

poly(1/ε).199

In the next section we will see that if D is ε-Sequential–Foolabe for some fixed ε < 1/2 then it is200

Sequential–Foolable with round complexity T (ε) = O(1/ε2).201
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4 Results202

Our main result characterizes DP–Foolability in terms of basic notions from differential privacy and203

PAC learning.204

Theorem 1 (Characterization of DP–Fooling). The following statements are equivalent for a class205

D ⊆ {0, 1}X :206

1. D is privately and properly learnable in the agnostic PAC setting.207

2. D is DP–Foolable.208

3. D is sanitizable.209

4. D satisfies the private uniform convergence property.210

The implication Item 3 =⇒ Item 1 was known prior to this work and was proven in [5]. The211

equivalence among Items 2 to 4 is natural and expected. Indeed, each of them expresses the existence212

of a private algorithm that publishes, privately, certain estimates of all functions in D.213

The fact that Item 1 implies the other three items is perhaps more surprising, and the main contribution214

of this work, and we show that Item 1 implies Item 2. Our proof of that exploits the Sequential215

framework. In a nutshell, we observe that a class that is both sequentially foolable and privately pac216

learnable is also DP-foolable: this result follows by constructing a sequential SDG that with a private217

discriminator, that is assumed to exists, combined with standard compositional and preprocessing218

arguments regarding the privacy of the generators output.219

Thus to prove the implication we only need to show that private PAC learning implies sequential220

foolability. This result follows from Corollary 2 that provides characterization of sequential foolable221

classes as well as a recent result by [1] that shows that private PAC learnable classes have finite222

Littlestone dimension. See Appendix B.2 for a complete proof.223

Private learnability versus private uniform convergence. The equivalence Item 1 ⇐⇒ Item 4224

is between private learning and private uniform convergence. The non-private analogue of this225

equivalence is a cornerstone in statistical learning; it reduces the statistical challenge of minimizing226

an unknown population loss to an optimization problem of minimizing a known empirical estimate.227

In particular, it yields the celebrated Empirical Risk Minimization (ERM) principle: “Output h ∈ H228

that minimizes the empirical loss”. We therefore highlight this equivalence in the following corollary:229

Corollary 1 (Private proper learning = private uniform convergence). Let H ⊆ {0, 1}X . Then H230

is privately and properly PAC learnable if and only ifH satisfies the private uniform convergence231

property.232

Sequential–SDGs We next describe our characterization of Sequential-SDGs. As discussed, this233

characterization is the technical heart behind the equivalence between private PAC learning and234

DP-foolability. Nevertheless we believe that it may be of interest of its own right. We thus provide235

quantitative upper and lower bounds on the round complexity of Sequential-SDGs in terms of the236

Littlestone dimension (see [6] or Appendix A for the exact definition).237

Theorem 2 (Quantitative round-complexity bounds). Let D be a discriminating class with dual238

Littlestone dimension `∗ and let T (ε) denote the round complexity of Sequential–Fooling D. Then,239

1. T (ε) = O
(
`∗

ε2 log `∗

ε

)
for every ε.240

2. T (ε) ≥ `∗

2 for every ε < 1
2 .241

To prove Item 1 we construct a generator with winning strategy which we outline in ??. A complete242

proof of Theorem 2 appears in Appendix B.1.1. As a corollary we get the following characterization243

of Sequential–Foolability:244

Corollary 2 (Characterization of Sequential–Foolability). The following are equivalent for D ⊆245

{0, 1}X :246

1. D is Sequential–Foolable.247
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2. D is ε-Sequential–Foolable for some ε < 1/2.248

3. D has a finite dual Littlestone dimension.249

4. D has a finite Littlestone dimension.250

Corollary 2 follows directly from Theorem 2 (which gives the equivalences 1 ⇐⇒ 2 ⇐⇒ 3) and251

from [7] (which gives the equivalence 3 ⇐⇒ 4, see Lemma 4 for further detail).252

Sequential-SDGs versus DP-SDGs So far we have introduced and characterized two formal setups253

for synthetic data generation. It is therefore natural to compare and seek connections between these254

two frameworks. We first note that the DP setting may only be more restrictive than the Sequential255

setting:256

Corollary 3 (DP–Foolability implies Sequential–Foolability). Let D be a class that is DP–Foolable.257

Then D has finite Littlestone dimension and in particular is Sequential–Foolable.258

Corollary 3 follows from Theorem 1: indeed, the latter yields that DP–Foolability is equivalent to259

Private agnostic proper -PAC learnability (PAP-PAC), and by [1] PAP-PAC learnability implies a260

finite Littlestone dimension which by Corollary 2 implies Sequential–Foolability.261

Towards a converse of Corollary 3. By the above it follows that the family of classes D that can262

be fooled by a DP algorithm is contained in the family of all Sequential–Foolable classes; specifically,263

those which admit a Sequential-SDG with a differentially private discriminator.264

We do not know whether the converse holds; i.e. whether “Sequential–Foolability =⇒ DP– Foola-265

bility”. Nevertheless, the implication “PAP-PAC learnability =⇒ DP–Foolability” (Theorem 1) can266

be regarded as an intermediate step towards this converse. Indeed, as discussed above, PAP-PAC267

learnablity implies Sequential–Foolablility. It is therefore natural to consider the following question,268

which is equivalent2 to the converse of Corollary 3:269

Question 1. Let D be a class that has finite Littlestone dimension. Is D properly and privately270

learnable in the agnostic PAC setting?271

A weaker form of this question – Whether every Littlestone class is privately PAC Learnable? – was272

posed by [1] as an open question (and was recently resolved in [9]).273

5 Discussion274

In this work we developed a theory for two types of constrained-SDG, sequential and private. Let us275

now discuss SDGs more generally, and we broadly want to consider algorithms that observe data,276

sampled from some real-life distribution, and in turn generate new synthetic examples that resemble277

real-life samples, without any a-priori constraints. For example, consider an algorithm that receives278

as input some tunes from a specific music genre (e.g. jazz, rock, pop) and then outputs a new tune.279

Recently, there has been a remarkable breakthrough in the the construction of such SDGs with the280

introduction of the algorithmic frameworks of Generative Adversarial Networks (GANs) [19, 18], as281

well as Variational AutoEncoders (VAE) [28, 33]. In turn, the use of SDGs has seen many potential282

applications [25, 32, 43]. Here we followed a common tinterpretation of SDGs as IPM minimizers283

[2, 4]. However, it was also observed [2, 3] that there is a critical gap between the task of generating284

new synthetic data (such as new tunes) and the IPM minimization problem: In detail, Observation 1285

shows that the IPM framework allows certain “bad" solutions that memorize. Specifically, let S286

be a sufficiently large independent sample from the target distribution and consider the empirical287

distribution as a candidate solution to the IPM minimization problem. Then, with high probability,288

the IPM distance between the empirical and the target distribution vanishes as |S| grows.289

To illustrate the problem, imagine that our goal is to generate new jazz tunes. Let us consider the290

discriminating class of all human music experts. The solution suggested above uses the empirical291

distribution and simply “generates" a tune from the training set3. This clearly misses the goal of292

2I.e. an affirmative answer to Question 1 is equivalent to the converse of Corollary 3.
3There are at most 7 · 109 music experts in the world. Hence, by standard concentration inequalities a sample

of size roughly 9
ε2

log 10 suffices to achieve IPM distance at most ε with high probability.
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generating new and original tunes but the IPM distance minimization framework does not discard this293

solution. For this reason we often invoke further restrictions on the SDG and consider constrained-294

SDGs. For example, [4] suggests to restrict the class of possible outputs psyn and shows that, under295

certain assumptions on the distribution preal, the right choice of class D leads to learning the true296

underlying distribution (in Wasserstein distance).297

In this work we explored two other types of constrained-SDGs, DP–SDGs and Sequential–SDGs,298

and we characterized the foolable classes in a distribution independent model, i.e. without making299

assumptions on the distribution preal. One motivation for studying these models, as well as the300

interest in a distribution independent setting, is the following underlying question:301

The output of Synthetic Data Generators should be new examples. But in what sense we require the302

output to be novel or distinct from the training set? How and in what sense we should avoid copying303

the training data or even outputting a memorized version of it?304

To answer such questions is of practical importance. For example, consider a company that wishes to305

automatically generate music or images to be used commercially. One approach could be to train an306

SDG, and then sell the generated output. What can we say about the output of SDGs in this context?307

Are the images generated by the SDG original? Are they copying the data? or breaching copyright?308

In this context, the differentially private setup comes with a very attractive interpretation that provides309

further motivation to study DP-SDGs, beyond preserving privacy of the dataset. To illustrate our310

interpretation of differential privacy as a criterion for originality consider the following situation:311

imagine that Lisa is a learning painter. She has learned to paint by observing samples of painting,312

produced by a mentor painter Mona. After a learning process, she draws a new painting L. Mona313

agrees that this new painting is a valid work of art, but Mona claims the result is not an original314

painting but a mere copy of a painting, say M , produced by Mona.315

How can Lisa argue that paint L is not a plagiary? The easiest argument would be that she had never316

observed M . However, this line of defence is not always realistic as she must observe some paintings.317

Instead, we will argue using the following thought experiment: What if Lisa never observed M?318

Might she still create L? If we could prove that this is the case, then one could argue similarly that L319

is not a palgiary.320

The last argument is captured by the notion of differential privacy. In a nutshell, a randomized algo-321

rithm that receives a sequence of data points x̄ as input is differentially private if removing/replacing322

a single data point in its input, does not affect its output y by much; more accurately, for any event323

E over the output y that has non-negligible probability on input x̄, then the probability remains324

non-negligible even after modifying one data point in x̄.325

The sequential setting also comes with an appealing interpretation in this context. A remarkable326

property of existing SDGs (e.g. GANs), that potentially reduces the likeliness of memorization, is327

that the generator’s access to the sample is masked. In more detail, the generator only has restricted328

access to the training set via feedback from a discriminator that observes real data vs. synthetic data.329

Thus, potentially, the generator may avoid degenerate solutions that memorize. Nevertheless, even330

though the generator is not given a direct access to the training data, it could still be that information331

about this data could "leak" through the feedback it receives from the discriminator. This raises332

the question of whether Sequential–Foolability can provide guarantees against memorization, and333

perhaps more importantly, in what sense? To start answering this question part of this work aims to334

understand the interconnection between the task of Sequential-Fooling and the task of DP–Fooling.335

Finally, the above questions also motivate our interest in a distribution-independent setting, that336

avoids assumptions on the distribution preal which we often don’t know. In detail, if we only cared337

about the resemblence between preal and psyn then we may be content with any algorithm that338

performs well in practice regardless of whether certain assumptions that we made in the analysis339

hold or not. But, if we care to obtain guarantees against copying or memorizing, then these should340

principally hold. And thus we should prefer to obtain our guarantees without too strong assumptions341

on the distribution preal.342

Broader Impact343

There are no foreseen ethical or societal consequences for the research presented herein.344
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• Let D be a symmetric class with Ldim∗(D) = `∗, and let ε > 0 be the error parameter.
Pick A to be an online learner for the dual class X like in Corollary 4, and set

T =
⌈4`∗

ε2
log

4`∗

ε2

⌉
= O

(`∗
ε2

log
`∗

ε

)
.

• Set f̂1(d̄) = Ed∼d̄[f1(d)] as the predictor of A at its initial state.
• For t = 1, . . . , T

1. If there exists pt ∈ ∆(X ) such that

(∀d ∈ D) : E
x∼pt

[ft(d)− x(d)] ≤ ε

2
,

then
– pick such a pt and submit it to the discriminator.
∗ If the discriminator replies with “Win” then output pt.
∗ Else, receive from the discriminator dt ∈ D such that preal(dt)− pt(dt) ≥ ε
∗ Set d̄t = δdt , and yt = 1.

2. Else
– Find d̄t ∈ ∆(D) such that(

∀x ∈ X
)

: E
d∼d̄t

[ft(d)− x(d)] >
ε

2

(if no such d̄t exists then output “error”).
– Set yt = 0.
– Submit pt = pt−1 to the discriminator and proceed to item 3 below (i.e. here the

generator sends a dummy distribution to the discriminator and ignores the answer).

3. Update A with the observation (d̄t, yt), receive f̂t+1, set ft+1 such that f̂t+1(d̄) =
Ed̄[ft+1(d)] (such ft+1 exists by the assumed properties of A – see Corollary 4), and
proceed to the next iteration.

• Output “Lost” (we will prove that this point is never reached).

Figure 1: A fooling strategy for the generator with respect to a symmetric discriminating class D.
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A Background449

A.1 Prelimineries450

In this section we review some of the basic notations we will use as well as discuss further some451

standard definitions and notions in differential privacy and online learning.452

We continue here the convention of Section 2, and in this section we letW denote the domain and453

H ⊆ {0, 1}W to denote the functions class.454

A.1.1 Notations455

For a finite4 set W , let ∆(W) denote the space of probability measures over W . Note that W456

naturally embeds in ∆(W) by identifying w ∈ W with the Dirac measure δw supported on w.457

Therefore, every f : ∆(W) → R induces aW → R function via this identification. In the other458

4The same notation will be used for infinite classes also. However we will properly define the the measure
space and σ-algebra at later sections when we extend the results to the infinite regime.
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direction, every f : W → R naturally extends to a linear5 map f̂ : ∆(W) → R which is defined459

by f̂(p) = Ep[f ] for every p ∈ ∆(W).460

We will often deal with boolean functions f : W → {0, 1}, and in some cases we will treat f as461

the subset ofW that it indicates. For example, given a distribution p ∈ ∆(W) we will use p(f) to462

denote the measure of the subset that f indicates (i.e. p(f) = Prw∼p[f(w) = 1]). Given a class of463

functions F ⊆ {0, 1}W , its dual class is a class of F → {0, 1} functions, where each function in it is464

associated with w ∈ W and acts on F according to the rule f 7→ f(w). By a slight abuse of notation465

we will denote the dual class withW and use w(f) to denoted the function associated with w (i.e.466

w(f) := f(w) for every f ∈ F ).467

Given a sample S = (w1, . . . , wm) ∈ Wm, the empirical distribution induced by S is the discrete468

distribution pS defined by pS(w) = 1
m

∑m
i=1 1[w = wi].469

A.1.2 Basic properties of Differential Privacy470

We will use the following three basic properties of algorithmic privacy.471

Lemma 1 (Post-Processing (Lemma 2.1 in [41])). If M :Wm → Σ is (α, β)-differentially private472

and F : Σ→ Z is any (possibly randomized) function, then F ◦M :Wm → Z is (α, β)-differentially473

private.474

Lemma 2 (Composition (Lemma 2.3 in [41])). Let M1, ...,Mk :Wm → Σ be (α, β)-differentially475

private algorithms, and define M :WM → Σk by476

M(Ω) =
(
M1(Ω),M2(Ω), . . . ,Mk(Ω)

)
.

Then, M is (kα, kβ)-differentially private.477

Lemma 3 (Privacy Amplification (Lemma 4.12 in [10])). Let α ≤ 1 and let M be a (α, β)-478

differentially private algorithm operating on databases of size u. For v > 2u, construct an algorithm479

M ′ that on input database Ω ∈ Wv subsamples (with replacement) u points from Ω and runs M on480

the result. Then M ′ is (α̃, β̃)-differentially private for481

α̃ = 6αu/v β̃ = exp(6αu/v)
4u

v
β.

We remark that the requirement α ≤ 1 can be replaced by α ≤ c for any constant c at the expanse of482

increasing the constant factors in the definitions of α̃ β̃. This follows by the same argument that is483

used to prove Lemma 3 in [10].484

A.1.3 Littlestone Dimension and Online Learning485

We begin be recalling the basic notion of Littlestone dimension.486

Littlestone Dimension The Littlestone dimension is a combinatorial parameter that characterizes487

regret bounds in online learning, but also have recently been related to other concepts in machine488

learning such as differentially private learning [1]. Perhaps surprisingly, the notion also plays a489

central role in Model Theory ([39, 12], and see [1] for further discussion).490

The definition of this parameter uses the notion of mistake-trees: these are binary decision trees whose491

internal nodes are labelled by elements ofW . Any root-to-leaf path in a mistake tree can be described492

as a sequence of examples (w1, y1), ..., (wd, yd), where wi is the label of the i’th internal node in the493

path, and yi = +1 if the (i+ 1)’th node in the path is the right child of the i’th node, and otherwise494

yi = 0. We say that a tree T is shattered byH if for any root-to-leaf path (w1, y1), ..., (wd, yd) in T495

there is h ∈ H such that h(wi) = yi, for all i ≤ d.496

The Littlestone dimension ofH, denoted by Ldim(H), is the maximum depth of a complete tree that497

is shattered byH.498

The dual Littlestone Dimension which we will denote by Ldim∗(H) is the Littlestone dimension of499

the dual class (i.e. we considerW as the hypothesis class and H is the domain). We will use the500

following fact:501

5A function g : ∆(W)→ R is linear if g
(
αp1 + (1− α)p2

)
= αg(p1) + (1− α)g(p2), for all α ∈ [0, 1]
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Lemma 4. [Corollary 3.6 in [7]] Every class H has a finite Littlestone dimension if and only if it502

has a finite dual Littlestone dimension. Moreover we have the following bound:503

Ldim∗(H) ≤ 22Ldim(H)+2

− 2

Online Learning The Online learnability of Littlestone classes has been established by [30] in504

the realizable case and by [6] in the agnostic case. Ben-David et al’s [6] agnostic Standard Online505

Algorithm (SOA) will serve as a workhorse for our main results and we thus recall the online learning506

setting and state the relevant results. For a more exaustive survey on online learning we refer the507

reader to [11, 38].508

In the a binary online setting we assume a domain W and a space of hypotheses H ⊆ {0, 1}W .509

We consider the following oblivious setting which can be described as a repeated game between a510

learner L and an adversary continuing for T rounds; the horizon T is fixed and known in advanced511

to both players. At the beginning of the game, the adversary picks a sequence of labelled examples512

(wt, yt)
T
t=1 ⊆ W × {0, 1}. Then, at each round t ≤ T , the learner chooses (perhaps randomly) a513

mapping ft :W → [0, 1] and then gets to observe the labelled example (wt, yt). The performance of514

the learner L is measured by her regret, which is the difference between her loss and the loss of the515

best hypothesis inH:516

REGRETT (L; {wt, yt}Tt=1) =

T∑
t=1

E [|ft(wt)− yt|]−min
h∈H

∑
|h(wt)− yt|, (4)

where the expectation is taken over the randomness of the learner. Define517

REGRETT (L) = sup
{wt,yt}Tt=1

REGRETT (L; {wt, yt}Tt=1).

The following result establishes that Littlestone classes are learnable in this setting:518

Theorem 3. [[6]] Let H be a class with Littlestone dimension ` and let T be the horizon. Then,519

there exists an online learning algorithm L such that520

REGRETT (L) ≤
√

1

2
` · T log T

We will need the following corollary of Theorem 3. Recall that ∆(W) denotes the class of distri-521

butions overW , and that every f : W → [0, 1] extends linearly to ∆(W) by f̂(p) = Ew∼p[f(w)].522

The next statement concerns an online setting where the labelled example are of the form523

(pt, yt) ∈ ∆(W)× {0, 1}, and the regret of a learner L with respect toH ⊆ {0, 1}W is defined by524

replacing each h by its linear extension ĥ:525

REGRETT (L; {pt, yt}Tt=1) =

T∑
t=1

E [|ft(pt)− yt|]−min
h∈H

∑
|ĥ(pt)− yt|

=

T∑
t=1

E [|ft(pt)− yt|]−min
h∈H

∑
| E
x∼pt

[h(w)]− yt|

Corollary 4. Let H be a finite class with Littlestone dimension ` and let T be the horizon. Then,526

there exists a deterministic online learner L that receives labelled examples from the domain ∆(W)527

such that528

REGRETT (L) ≤
√

1

2
`T log T

Moreover, at each iteration t the predictor used by L is of the form f̂t(p) = Ew∼p[ft(w)], where ft529

is someW → [0, 1] function.530

Corollary 4 follows from Theorem 3; see Appendix C for a proof.531
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B Proofs532

B.1 Proof of Theorem 2533

B.1.1 Upper Bound: Proof of Item 1534

In this section we prove the upper bound presented in Theorem 2 in the case where X is finite (and in535

turn, D ⊆ {0, 1}X is also finite). As discussed though, the bounds will be independent of the domain536

size. The general case is proven in a similar fashion but is somewhat more delicate. The general537

proof is then given in Appendix D.538

First note that we may assume without loss of generality that D is symmetric. Indeed, if D is not539

symmetric then we may replace D with D ∪ (1−D), noting that this does not affect the Sequential540

game, namely (i) IPMD = IPMD∪(1−D) (and so the goal of the generator remains the same), and541

(ii) the set of distinguishers the discriminator may use remains the same (recall that the discriminator542

is allowed to use distinguishers from 1 − D). Also, one can verify that this modification does not543

change the dual Lttlestone dimension (i.e. Ldim∗(D) = Ldim∗(D ∪ (1−D))).544

Therefore, we assume D is a finite symmetric class with dual Littlestone dimension `∗. The generator545

used in the proof is depicted in Fig. 1. The generator uses an online learner A for the dual class X546

with domain ∆(D) as in Corollary 4, where the horizon is set to be T =
⌈

4`∗

ε2 log 4`∗

ε2

⌉
. Let D be547

an arbitrary discriminator, let preal ∈ ∆(X ) be the target distribution, and let ε > 0 be the error548

parameter. The proof follows from the next lemma:549

Lemma 5. Let D be a finite set of discriminators, let f : D → [0, 1], Assume that,550 (
∀p ∈ ∆(X )

)
(∃d ∈ D) : E

x∼p
[f(d)− x(d)]) > ε/2.

Then:551 (
∃d̄ ∈ ∆(D)

)(
∀x ∈ X

)
: E
d∼d̄

[f(d)− x(d)] > ε/2.

Before proving this lemma, we show how it implies the desired upper bound on the round complexity.552

We first argue that the algorithm never outputs “error”: indeed, since A only uses predictors of the553

form f̂t(d̄) = Ed̄[ft], Lemma 5 implies that whenever Item 2 in the “For” loop is reached then an554

appropriate d̄t ∈ ∆(D) exists and therefore the algorithm never outputs “error”.555

Next, we bound the number of rounds: let T ′ ≤ T be the number of iterations performed when the556

generator G runs against the discriminator D. The only way for the generator to lose is if the “For”557

loop ends without its winning and T ′ = T . Thus, It suffices to show that T ′ < T . The argument558

proceeds by showing that the regret of A in each iteration t ≤ T ′ increases by at least ε/2. This,559

combined with the bound on A’s regret (from Corollary 4) will yield the desired bound.560

We begin by analyzing the increase in A’s regret. Let (d̄1, y1), . . . , (d̄T ′ , yT ′) and f̂1, . . . , f̂T ′ be the561

sequences obtained during the execution of the algorithm as defined in Fig. 1. Recall from Corollary 4562

that f̂t(d̄) = Ed∼d̄[ft(d)], where ft : D → [0, 1]. We claim that the following holds:563

(∀t ≤ T ′) :

{
Ed∼d̄t

[
preal(d)− ft(d)

]
≥ ε

2 if yt = 1,

Ed∼d̄t
[
ft(d)− preal(d)

]
≥ ε

2 if yt = 0.
(5)

Indeed, if yt = 1 then by Fig. 1, the chosen pt satisfies564

(∀d ∈ D) : ft(d)− E
x∼pt

[x(d)] ≤ ε

2
.

Since the discriminator replies with dt such that preal(dt)− pt(dt) ≥ ε, and d̄t = δdt , it follows that565

E
d∼d̄t

[
preal(d)− ft(d)

]
= E
d∼d̄t

[preal(dt)]− E
d∼d̄t

[ft(dt)]

= preal(dt)− ft(dt) (because d̄t = δdt )

≥ E
x∼preal

[x(dt)]−
(

E
x∼pt

[x(dt)] + ε/2

)
= preal(dt)− (pt(dt) + ε/2)

≥ ε

2
,
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which is the first case in Eq. (5). Next consider the case when yt = 0. Since the algorithm never566

outputs “error”, Fig. 1 implies that:567 (
∀x ∈ X

)
: f̂t(d̄t)− E

d∼d̄t
[x(d)] >

ε

2
.

Therefore, by linearity of expectation, Ed∼d̄t
[
ft(d) − preal(d)

]
= f̂t(d̄t) − Ed∼d̄t [preal(d)] ≥ ε

2 ,568

which amounts to the second case in Eq. (5).569

We are now ready to conclude the proof by showing that T ′ < T . Assume towards contradiction that570

T ′ = T . Therefore, by Eq. (5):571

T
ε

2
≤

T∑
t=1

∣∣ E
d∼d̄t

[
preal(d)− ft(d)

]∣∣
=

T∑
t=1

∣∣yt − E
d∼d̄t

[ft(d)]
∣∣− ∣∣yt − E

d∼d̄t
[preal(dt)]

∣∣
(yt = 1 ⇐⇒ Ed∼d̄t [preal(dt)] ≥ Ed∼d̄t [ft(d)])

=

T∑
t=1

∣∣yt − f̂t(d̄t)∣∣− E
x∼preal

[∣∣yt − E
d∼dt

x(dt)
∣∣]

≤
T∑
t=1

|yt − ft(d̄t)| −min
x∈X
|yt − E

d∼dt
[x(d)]|

≤ REGRETT (A).

≤
√

1

2
`∗T log T

Thus, we obtain that T
log T ≤

2`∗

ε2 , however our choice of T =
⌈

4`∗

ε2 log 4`∗

ε2

⌉
ensures that this is572

impossible. Indeed:573

T

log T
≥

4`∗

ε2 log 4`∗

ε2

log 4`∗

ε2 + log log 4`∗

ε2

=
4`∗

ε2

1 +
log log 4`∗

ε2

log 4`∗
ε2

>
4`∗

ε2

2

=
2`∗

ε2
.

This finishes the proof of Item 1.574

We end this section by proving Lemma 5.575

Proof of Lemma 5. The proof hinges on Von Neuman’s Minimax Theorem. Let D, f as in the576

formulation of the theorem, and consider the following zero-sum game: the pure strategies of the577

maximizer are indexed by d ∈ D, the pure strategies of the minimizer are indexed by x ∈ X , and the578

payoff (for pure strategies) is defined by m(d, x) = f(d)− x(d). Note that the payoff function for579

mixed strategies d̄ ∈ ∆(D), p ∈ ∆(X ) satisfies580

m(d̄, p) = E
x∼p

[f̂(d̄)− E
d∼d̄

x(d)] = E
d∼d̄

[
f(d)− E

x∼p
[x(d)]

]
.

We next apply Von Neuman’s Minimax Theorem on this game (Here we use the assumption that X581

and, in turn, D are finite). The premise of the lemma amounts to582

min
p∈∆(X )

max
d∈D

m(d, p) > ε/2.
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Therefore, by the Minimax Theorem also583

max
d̄∈∆(D)

min
x∈X

m(d̄, x) > ε/2,

which amounts to the conclusion of the lemma.584

A remark. A natural variant of the Sequential setting follows by letting the discriminator D to585

adaptively change the target distribution preal as the game proceeds (D would still be required586

to maintain the existence of a distribution preal which is consistent with all of its answers). This587

modification allows for stronger discriminators and therefore, potentially, for a more restrictive notion588

of Sequential–Foolability. However, the above proof extends to this setting verbatim.589

B.1.2 Lower Bound: Proof of Item 2590

Let D be a class as in the theorem statement, let G be a generator for D, and let ε < 1
2 . We will591

construct a discriminator D and a target distribution preal such that G requires at least `
∗

2 rounds in592

order to find p such that IPMD(p, preal) ≤ ε.593

To this end, pick a shattered mistake-tree T of depth `∗ whose internal nodes are labelled by elements594

of D and whose leaves are labelled by elements of X .595

The discriminator. The target distribution will be a Dirac distribution δx where x is one of the596

labels of T ’s leaves. We will use the following discriminator D which is defined whenever preal is597

one of these distributions: assume that preal = δx, and consider all functions in D that label the path598

from the root towards the leaf whose label is x,599

d1, d2, . . . , d`∗ .

Let p1 be the distribution the generator submitted in the first round. Then the discriminator picks the600

first i such that |pt(d1)− preal(d1)| > ε, and sends the generator either di or 1− di according to the601

convention in Eq. (3). If no such di exists, the discriminator outputs WIN. Similarly, at round t let602

it−1 denote the index of the distinguisher sent in the previous round; then, the discriminator acts the603

same with the modification that it picks the first it−1 + 1 ≤ i ≤ `∗ such that |pt(di)− preal(di)| > ε.604

Analysis. The following claim implies that for every generator G, there exists a distribution δx605

such that if preal = δx then the above discriminator D forces G to play at least `∗/2 rounds.606

Claim 1. Let G be a generator for D. Pick preal uniformly at random from the set {δx :607

x labels a leaf in T }. Then the expected number of rounds in the Sequential game when G is the608

generator and D = D(T ) is the discriminator is at least `
∗

2 .609

Proof. For every i ≤ `∗, let Xi denote the indicator of the event that the i’th function on the path610

towards the leaf corresponding to preal was used by D as a distinguisher. Note that the number of611

rounds X satisfies X =
∑`∗

i=1Xi. Thus, by linearity of expectation it suffices to argue that612

E[Xi] = Pr[Xi = 1] ≥ 1

2
.

Consider X1: let p1 denote the first distribution submitted by G. Note that X1 = 1 if613

(i) p1(d1) ≥ 1
2 and the leaf labelled x belongs to the left subtree from the root, or614

(ii) p1(d1) < 1
2 and the leaf labelled x belongs to the right subtree from the root.615

In either way Pr[X1 = 1] ≥ 1
2 , since this leaf is drawn uniformly. Similarly, for every conditioning on616

the values of X1, . . . , Xi−1 we have Pr[Xi = 1|X1 . . . Xi−1] ≥ 1
2 (follows from the same argument617

applied on subtrees corresponding to the conditioning). This yields that E[Xi] = Pr[Xi = 1] ≥ 1
2618

for every i as required.619

620
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B.2 Proof of Theorem 1621

Proof Roadmap. We will show the following entailments: 1⇒2⇒3⇒1. Then, given the equiva-622

lence between Items 1 to 3 we will show that 1⇔4. This will conclude the proof.623

Overview of 1⇒2. We next overview the derivation of 1⇒2 which is the most involved derivation.624

Let preal denote the target distribution we wish to fool. The argument relies on the following simple625

observation: let S be a sufficiently large independent sample from preal. Then, it suffices to privately626

output a distribution psyn such that IPMD(psyn, pS) ≤ ε
2 , where pS is the empirical distribution.627

Indeed, if S is sufficiently large then by standard uniform convergence bounds: IPMD(pS , preal) ≤ ε
2 ,628

which implies that IPMD(psyn, preal) ≤ ε as required.629

The output distribution psyn is constructed using a carefully tailored Sequential-SDG with a private630

discriminator D. That is, D’s input distribution is the empirical distribution pS , and for every631

submitted distribution pt, it either replies with a discriminating function dt or with “WIN” if no632

discriminating function exists. The crucial point is that it does so in a differentially private manner633

with respect to the input sample S. The existence of such a discriminator D follows via the assumed634

PAP-PAC learner.635

Once the private discriminator D is constructed, we turn to find a generator G with a bounded round636

complexity. This follows from Theorem 2 and a result by [1, 10]: by [1, 10] PAP-PAC learnability637

implies a finite Littlestone dimension, and therefore by Theorem 2 there is a generator G with a638

bounded round complexity. The desired DP fooling algorithm then follows by letting G and D play639

against each other and outputting the final distribution that G obtains. The privacy guarantee follows640

by the composition lemma (Lemma 2) which bounds the privacy leakage in terms of the number of641

rounds (which is bounded by the choice of G) and the privacy leakage per round (which is bounded642

by the choice of D).643

One difficulty that is handled in the proof arises because the discriminator is differentially private644

and because the PAP-PAC algorithm may err with some probability. Indeed, these prevent D from645

satisfying the requirements of a discriminator as defined in the Sequential setting. In particular, D646

cannot reply deterministically whether IPMD(pS , pt) < ε as this could compromise privacy. Also,647

whenever the assumed PAP-PAC algorithm errs, D may reply with an illegal distinguisher that does648

not satisfy Eq. (3).649

To overcome this difficulty we ensure that D satisfies the following with high probability: if650

IPMD(pS , pt) > ε then D outputs a legal dt, and if IPMD(pS , pt) < ε
2 then it outputs WIN651

as required. When ε
2 ≤ IPMD(pS , pt) ≤ ε it may either output WIN or a legal discriminator dt. As652

we show in the proof, this behaviour of D will not affect the correctness of the overall argument.653

Proof of Theorem 1. As discussed, the equivalence is proven by showing: 1⇒2⇒3⇒1 and 1⇔4.654

1⇒2. Let preal denote the unknown target distribution and let ε0, δ0 be the error and confidence655

parameters. Draw independently from preal a sufficiently large input sample S of size |S| to be656

specified later. At this point we require |S| to be large enough so that IPMD(preal, pS) ≤ ε0
2 with657

probability at least 1− δ0
2 . By standard uniform convergence bounds ([42]) it suffices to require658

|S| ≥ Ω
(d+ log(1/δ0)

ε20

)
, (6)

where d is the VC-dimension of D (observe that D must have a finite VC dimension as it is PAC659

learnable). By the triangle inequality, this reduces our goal to privately output a distribution psyn660

so that IPMD(pS , psyn) ≤ ε0
2 with probability 1− δ0

2 (this will imply that IPMD(preal, psyn) ≤ ε0661

with probability 1− δ0).662

As explained in the proof outline, the latter task is achieved by a Sequential-SDG which we will663

next describe. Inorder to construct the desired Sequential-SDG, we first observe that D is Sequential–664

Foolable. Indeed, by Corollary 2 it suffices to argue that D has a finite Littlestone dimension, which665

follows by [1] since D is privately learnable.666

Now, pick a generator G that fools D with round complexity T (ε) as in Theorem 2, and pick a667

discriminator D as in Fig. 2. Note that D uses a PAP-PAC learner for the class D ∪ (1−D) whose668
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existence follows from the PAP-PAC learnability of D via standard arguments (which we omit). The669

next lemma summarizes the properties of D that are needed for the proof.670

Lemma 6. Let D be the discriminator defined in Fig. 2 with input parameters (ε, δ, τ) and input671

sample S, and let M be the assumed PAP-PAC learner for D ∪ (1 − D) with sample complexity672

m(ε, δ) and privacy parameters (α, β). Then, D is
(
6τα(τ |S|) + τ, 4e6τα(τ |S|)τβ(τ |S|)

)
-private,673

and if S satisfies674

|S| ≥ max

(
m(ε/8, τδ/2)

τ
,

64 log(τδ/2)

ετ

)
(7)

then following holds with probability at least (1− τδ)675

(i) If D outputs dt then pS(dt)− pt(dt) ≥ ε
2 .676

(ii) If D outputs “WIN” then IPMD(pS , pt) ≤ ε.677

We first use Lemma 6 to conclude the proof of 1⇒2 and then prove Lemma 6.678

The fooling algorithm we consider proceeds as follows.679

• Set G to be a generator with round complexity T (ε) and set its error parameter to be ε0
2 .680

• Set the number of rounds T0 = min{|S|0.99, T (ε0/4)}, and let τ0 = 1/T0.681

• Set D be the discriminator depicted in Fig. 2 and set its parameters to be (ε, δ, τ) =682

( ε02 ,
δ0
2 , τ0) and its input sample to be S.683

• Let G and D to play against each other for (at most) T0 rounds.684

• Output the final distribution which is held by G.685

We next prove the privacy and fooling properties as required by a DP algorithm:686

Privacy. We argue that the algorithm is (α′, β′)–private, with α′(|S|) = O(1) and β′(|S|) negligi-687

ble. Note that since G is deterministic then the output distribution pout is completely determined by688

the sequence of discriminating functions d1, . . . , dT ′ outputted by the discriminator.689

For simplicity and without loss of generality we assume that T ′ = T0: indeed, if T ′ < T0 then extend690

it by repeating the last discriminating function; this does not change the fact that pout is determined691

by the sequence d1, . . . , dT ′ , . . . dT0
.692

Recall that by Lemma 6 D is ((6τ0α(τ0|S|) + τ0) ,
(
4e6τ0α(τ0|S|)τ0β(τ0|S|)

)
)-private. Therefore,693

since the number of rounds in which D is applied is T0, by composition (Lemma 2) and post-694

processing (Lemma 1) it follows that the entire algorithm is695 (
T0 (6τ0α(τ0|S|) + τ0) , T0

(
4e6τ0α(τ0|S|)τ0β(τ0|S|)

))
-private.

Our choices of τ0 = 1
T0

and T0 guarantee that 1/τ0 < m0.99, and plugging it in yields privacy guar-696

antee of (6α(|S|0.001) + 1, 4eO(1)β(|S|0.001). As α(|S|0.001) = O(1) and β(|S|0.001) is negligible,697

the desired privacy guarantee follows.698

Fooling. First note that if S satisfies Eq. (7) with (ε, δ, τ) := (ε0,
δ0
2 , τ0) then with probability at699

least 1 − δ0
2 the following holds: in every iteration t ≤ T0, either pS(dt) − pt(dt) ≥ ε0

4 , or the700

discriminator yields WIN and IPMD(pS , pt) ≤ ε0
2 . This follows by a union bound via the utility701

guarantee in Lemma 6. Assuming this event holds, we claim that if |S| is set to satisfy |S|0.99 ≥ T ( ε04 )702

then the output distribution psyn satisfies IPMD(pS , psyn) ≤ ε0
2 . This follows since as long as the703

sequential game proceeds the generator suffers a loss of at least ε04 in every round, and the number of704

rounds is set as, in this case, to be T
(
ε0
4

)
. Therefore we require705

|S|0.99 ≥ T
(ε0

4

)
= Ω

(`∗
ε20

log
`∗

ε0

)
. (8)
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To conclude, if |S| is set to satisfy Eqs. (6) to (8) then with probability at least 1 − δ0706

both IPMD(preal, pS) ≤ ε0
2 and IPMD(pS , psyn) ≤ ε0

2 , which implies that IPMD(preal, psyn) ≤707

ε0 as required. This concludes the proof of 1⇒2.708

Proof of Lemma 6. Let S be the input sample, let pS denote the uniform distribution over S, and709

let pt denote the distribution submitted by the generator. The discriminator operates as follows (see710

Fig. 2): it feeds the assumed PAP-PAC learner a labeled sample S` = {(xi, yi)} that is drawn from711

the following distribution qt: first the label yi is drawn uniformly from {0, 1}; if yi = 0 then draw712

xi ∼ pS and if yi = 1 then draw xi ∼ pt. Let dt denote the output of the PAP-PAC learner on the713

input sample S. Observe that the loss Lqt(·) satisfies714

Lqt(d) =
pS(d) + (1− pt(d))

2
=

1 + pS(d)− pt(d)

2
. (9)

Next, the discriminator checks whether pS(dt) − pt(dt) > ε
2 (equivalently, if Lqt(dt) <

1−ε/2
2 ),715

and sends dt the generator if so, and reply with “WIN” otherwise. The issue is that checking this716

"If" condition naivly may violate privacy, and in order to avoid it we add noise to this check by a717

mechanism from [14] (see Fig. 3): roughly, this mechanism receives a data set of scalars Σ = {σi}mi=1,718

a threshold parameter c and a margin parameters N , and outputs > if
∑m
i=1 σi > c + O(1/N) or719

⊥ if
∑m
i=1 σi < c − O(1/N). The distinguisher applies this mechanism over the sequence of720

scalars {dt(x1), . . . , dt(xm)}.721

We next formally establish the privacy and utility guarantees of D. In what follows, assume that the722

input sample S satisfies Eq. (7),723

Privacy. The discriminator D is a composition of two procedures, M1 and M2, where M1 applies724

the PAP-PAC learner M on the random subsample S`, and M2 runs the procedure THRESH. Thus,725

the privacy guarantee will follow from the composition lemma (Lemma 2) if we show that M1726

is (6τα(τm), 4e6τα(τm)τβ(τm))-private and M2 is (τ, 0)-private. The privacy guarantee of M1727

follows by applying6 Lemma 3 with v := |S| and n := |S`| = τ |S|, and the privacy guarantee of M2728

follows from the statement in Fig. 3 since N
|Σ| = |S`|

|S| = τ .729

Utility. Let qt denote the distribution from which the subsample S` is drawn. Note that by Eq. (7),730

S` = τ · |S| ≥ m(ε/8, τδ/2). Therefore, since M PAC learns D, its output dt satisfies:731

Lqt(dt) ≤ min
d∈D∪(1−D)

Lqt(d) +
ε

8
,

with probability at least 1− τδ/2. By Eq. (9) this is equivalent to732

pS(dt)− pt(dt) ≥ max
d∈D∪(1−D)

(
pS(d)− pt(d)

)
− ε/4. (10)

Now, by plugging in the statement in Fig. 3: (Σ, c,N) := ({dt(x)}x∈S , pt(dt) + 5ε
8 , |S`|),733

and γ := τδ/2 and conditioning on the event that both M and THRESH succeed (which occurs734

with probability at least 1− τδ) it follows that735

(i) If D outputs dt then736

pS(dt) ≥ c−
8 log(1/γ)

N
= pt(dt) +

5ε

8
− 8 log(τδ/2)

τ |S|
≥ pt(dt) +

ε

2
,

where in the last inequality we used that |S| ≥ 64 log(τδ/2)
ετ (by Eq. (7)).737

(ii) If D outputs WIN then by a similar calculation pS(dt) ≤ pt(dt) + 3ε
4 and therefore738

IPMD(pS , pt) = max
d∈D∪(1−D)

(
pS(d)− pt(d)

)
≤ pS(dt)− pt(dt) +

ε

4
≤ ε,

where in the first inequality we used Eq. (10).739

This concludes the proof of Lemma 6.740

741

6Note that in order to apply Lemma 3 on M1, we need to assume that M satisfies (α, β) privacy with α ≤ 1.
This assumption does not lose generality – see the paragraph following the definition of Private PAC Learning.
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• Let M be a PAP-PAC learner for the class D ∪ (1−D) with sample complexity m(ε, δ).

• Let ε, δ, τ be the input parameters.

• Let S be the input sample, let pS be the uniform distribution over S, and let pt be the
distribution submitted by the generator.

• Draw a labelled sample S` = {(xi, yi)} of size τ · |S| independently as follows: draw the
label yi uniformly from {0, 1}

(i) if yi = 0 then draw xi ∼ pS ,
(ii) if yi = 1 then draw xi ∼ pt.

• Apply the learner M on the sample S` and set dt ∈ D as its output.

• Compute Z := THRESH
(
{dt(x)}x∈S , pt(dt) + 5ε

8 , |S`|
)
.

(i) If Z = > then send the generator with dt,
(ii) else, Z =⊥ and reply the generator with “Win”.

Figure 2: Depiction of the private discriminator used in Theorem 1. The discriminator holds the target
distribution pS , where S is a sufficiently large sample from preal. In each round the discriminator
decides whether pS is indistinguishable from the distribution submitted by the generator and replies
accordingly.

THRESH. The procedure THRESH receives as input a dataset of scalars Σ = {σi}, a threshold
parameter c > 0 and a margin parameter N and has the following properties (see Theorem 3.23 in
[14] for proof of existence):

• THRESH(Σ, c,N) is (N/|Σ|, 0)-private.

• For every γ > 0:

– If 1
|Σ|
∑
σ∈Σ σ > c+ 8 log 1/γ

N then THRESH outputs> with probability at least 1−γ

– If 1
|Σ|
∑
σ∈Σ σ < c− 8 log 1/γ

N then THRESH outputs⊥ with probability at least 1−γ

Figure 3: The procedure: THRESH

2⇒3. This follows directly from the definition of a DP–Fooling algorithm. Indeed, given a DP–742

Fooling algorithm with sample complexity m(ε, δ) and a sample S outputs a distribution psyn743

such that IPMD(psyn, pS) ≤ ε, with probability at least (1 − δ) and satisfies (α, β)-privacy, with744

α = O(1) and β negligible. To obtain a sanitizer, output the estimate EST : D → [0, 1], where745

Est(d) = Ex∼psyn [d(x)].746

3⇒1. This follows from Theorem 5.5 in [5].747

4⇒1. This is an immediate corollary of post-processing for differential privacy (Lemma 1). Indeed,748

by the private uniform convergence property we can privately estimate the losses of all hypotheses in749

D, and then output any hypothesis in D that minimizes the estimated loss.750

1⇒4. Suppose D is PAP-PAC learnable by an algorithm A. For every function d ∈ D, let d′ denote751

the (X × {0, 1})→ {0, 1} function defined by d′((x, y)) = 1[d(x)6=y], and let D′ = {d′ : d ∈ D}.752

Observe that for every sample S ⊆ (X × {0, 1})m:753

LS(d) = pS(d′), (11)

where LS(d) denotes the empirical loss of d and pS denotes the empirical measure of d′.754

We claim that D′ is also PAP-PAC learnable: for a D′-example z′ = ((x, y), y′) let z denote the755

D-example (x, |y′ − y|), and note that d′ errs on z′ if and only if d errs on z. Therefore, a PAP-PAC756
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learner for D′ follows by using this transformation to convert the D′-input sample S′ = {z′i}mi=1 to a757

D input sample S = {zi}mi=1, applying A on S and outputting d′, where d = A(S).758

Therefore, by 1 =⇒ 3 it follows that D′ is sanitizable by a sanitizer M with sample complex-759

ity m1(ε, δ). We next use M to show that D satisfies private uniform convergence: let P be a760

distribution over X × {0, 1} and ε, δ be the error and confidence parameters. Consider the following761

algorithm:762

• Draw a sample S from P of size m(ε, δ) = max{m1( ε2 ,
δ
2 ),m2( ε2 ,

δ
2 )}, where763

m2 = O
(VC(D) + log(1/δ)

ε2

)
is the uniform convergence rate of D (note that by PAC learnability, VC(D) <∞).764

• Apply M on S to obtain an estimator EST′ : D′ → [0, 1] and output the estimator765

EST : D → [0, 1] defined by EST(d) = EST′(d′).766

We want to show that767

(∀d ∈ D) : |EST(d)− LP(d)| ≤ ε,

with probability 1− δ. Indeed, since m ≥ m2( ε2 ,
δ
2 ) it follows that768

(∀d ∈ D) : |LS(d)− LP(d)| ≤ ε

2
,

with probability at least 1− δ
2 , and since m ≥ m1( ε2 ,

δ
2 ),769

(∀d ∈ D) : |EST(d)− LS(d)| = |EST′(d′)− pS(d′)| (by Eq. (11))
≤ ε/2,

with probability 1− δ
2 . The desired bound thus follows by a union bound and the triangle inequality.770

771

C Proof of Corollary 4772

We begin by defining the predictors f̂t’s that L uses: let L0 be the learner implied by Theorem 3.773

We first turn L0 into a deterministic learner whose input is (p1, y1), . . . , (pT , yT ) ∈ ∆(W)× {0, 1}774

and that outputs at each iteration ft :W → [0, 1]. Then, we extend ft linearly to f̂t as discussed in775

Appendix A.1.1. Let (p1, y1), . . . , (pT , yT ) ∈ ∆(W)× {0, 1}, given w ∈ W , the value ft(w) is the776

expected output of the following random process:777

• sample wi ∼ pi for i ≤ t− 1,778

• apply L0 on the sequence (w1, y1), . . . , (wt−1, yt−1) to obtain the predictor f̃t, and779

• output f̃t(x).780

That is,781

ft(x) = E
w1:t−1

[
E

f̃t∼L0

[f̃t(w)
∣∣∣ x1 . . . xt−1

]
],

where Ep1:t [·] denotes the expectation over sampling each wi from pi independently, and Ef̃t∼L0
[·]782

denotes the expectation over the internal randomness of the algorithm L0 at iteration t. Fi-783

nally, f̂t(p) = Ew∼p[ft(w)] is the predictor that L uses at the t’th round. Note that indeed f̂t784

is determined (deterministically) from (p1, y1), . . . (pt−1, yt−1).785
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We next bound the regret: for every h ∈ H:786

T∑
t=1

|f̂t(pt)− yt| − |ĥ(pt)− yt| =
∑
t:yt=0

f̂t(pt)− ĥ(pt) +
∑
t:yt=1

ĥ(pt)− f̂t(pt)

=
∑

{t:yt=0}
E

p1:t−1

[
E
L0

[E
pt

[ft(wt)]
∣∣∣ {wi}t−1

i=1]
]
− E
p1:T

[h(xt)]

+
∑

{t:yt=1}
E
p1:T

[h(wt)]− E
p1:t−1

[
E
L0

[E
pt

[ft(wt)]
∣∣∣ {xi}t−1

i=1]
]

=
∑

{t:yt=0}
E
p1:T

[
E
L0

[ft(xt)
∣∣∣ {wi}Ti=1]

]
− E
p1:T

[h(wt)]

+
∑

{t:yt=1}
E
p1:T

[h(wt)]− E
p1:T

[
E
L0

[ft(wt)
∣∣∣ {wi}Ti=1]

]

= E
p1:T

[
E
L0

[∑
yt=0

ft(wt)− h(xt) +
∑
yt=1

h(wt)− ft(wt)
∣∣∣ {wi}Ti=1

]]

= E
p1:T

[
E
L0

[ T∑
t=1

|ft(wt)− yt| − |h(wt)− yt|
∣∣∣ {wi}Ti=1

] ]
≤ E
p1:T

[
REGRETT (L0, {wt, yt}Tt=1

]
≤
√

1

2
`T log T .

D Extending Theorem 2, Item 1 to infinite classes787

Here we extend the proof of the upper bound in Theorem 2 to the general case where either X or D788

may be infinite. The proof follows roughly the same lines like the finite case. The first technical789

milestone we need to consider is to properly define a σ-algebra over the domain D and specify the790

space ∆(D) of probability measures. For this, we consider {0, 1}X as a topological space with an791

appropriately defined topology and ∆(D) as the space of Borel-probability measures. We refer the792

reader to Appendix D.1 for the exact details.793

We will also make some technical modifications in the protocol depicted in Fig. 1. The modification794

is depicted in Fig. 4. The first modification we make is that in the Else step, the generator chooses d̄t

Consider Fig. 1 with the following modification, at the Else Step:
• Find d̄t ∈ ∆(D), with finite support such that(

∀x ∈ X
)

: E
d∼d̄t

[ft(d)− x(d)] >
ε

4

(if no such d̄t exists then output “error”).

Figure 4: Modifying Fig. 1

795
with finite support. For the finite case, the requirement that d̄t has finite support is met automatically.796

The second modification we make allows further slack in the distinguisher. Instead of requiring > ε
2797

we allow > ε
4 . Clearly this change in constant does not change the asymptotic regret bound.798

Proof outline. To extend the proof to the infinite case it suffices to ensure that the generator in799

Fig. 1 (with the modification in Fig. 4) never outputs “error” in the 2nd item of the “For” loop.800

To be precise, let us add the following notation that is consistent with the algorithm in Fig. 1. Let801

f : D → [0, 1] be measurable.802
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1. If there exists p ∈ ∆(X ) such that803

(∀d ∈ D) : E
x∼p

[f(d)− x(d)] ≤ ε

2
,

we say that f satisfies Item 1.804

2. If there exists d̄ ∈ ∆(D) such that805 (
∀x ∈ X

)
: E
d∼d̄

[f(d)− x(d)] >
ε

2

we say that f satisfies Item 2.806

3. f is amenable if it satisfies either Item 1 or Item 2.807

When X and D are finite, every f satisfies one of Items 1 or 2 (and hence amenable). This is the808

content of Lemma 5 which is proved using strong duality (in the form of the Minmax Theorem).809

However, the case when X and D are infinite is more subtle. Specifically, the Minmax Theorem does810

not necessarily hold in this generality.811

The next lemma guarantees the existence of a learner A which only outputs amenable functions.812

Recall that f̂ : ∆(D)→ [0, 1] denotes the linear extension of f and is defined by f̂(d̄) = Ed∼d̄[f(d)].813

Lemma 7. Let D be a discriminating class with dual Littlestone dimension `∗, and let T be the814

horizon. Then, there exists a deterministic online learning algorithm A for the dual class X815

that receives labelled examples from the domain ∆(D) and uses predictors of the form f̂t for816

some ft : D → [0, 1], such that:817

1. A’s regret is O(
√
`∗T log T ), and818

2. For all t ≤ T , if the sequence of observed examples (d̄1, y1), . . . , (d̄t−1, yt−1) up to iteration819

t, all have finite support then A chooses ft that is amenable (in particular f1 is also820

amenable).821

Our next Lemma shows that Fig. 1 with the modification depicted in Fig. 4 will indeed never output822

error:823

Lemma 8. Consider Fig. 1 with the modification depicted in Fig. 4. AssumeA satisfies the properties824

in Lemma 7. The for all t ≤ T the generator never outputs error.825

Proof. The proof follows by induction, for t = 1 the amenability of f1 ensures that if f1 doesn’t826

satisfy Item 1 then there exists d̄ ∈ ∆(D) that satisfy Item 2. Now recall that X has finite Littlestone827

dimension and in particular finite VC dimension, by uniform convergence it follow that there is a828

finite sample d1, . . . , dm such that829

sup
x∈X

∣∣∣∣∣ Ed∼d̄ [f1(d)− x(d)]− 1

m

m∑
i=1

f1(di)− x(di)

∣∣∣∣∣ ≤ ε

4

We then choose d̄1 to be a uniform distribution over d1, . . . , dm. By the condition in Item 2 and the830

above equation we obtain that831

E
d∼d̄1

[f(d)− x(d)] >
ε

4

We continue with the induction step, and consider t = t0. Note that by construction at each iteration832

up to iteration t0 the algorithm A observed only distributions with finite support. In particular, we833

have that ft0 will be amenable. Hence, if it doesn’t satisfy Item 1 then we again obtain d̄ that satisfies834

Item 2. We next discretize d̄ as before. Using the finite VC dimension of X we obtain d̄t0 that has835

finite support and satisfies:836

E
d∼d̄t0

[f(d)− x(d)] >
ε

4

837
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Lemma 7, together with Lemma 8, implies the upper bound in Theorem 2, Item 1 via the same838

argument as in the finite case. This follows by picking the online learner used by the generator in839

Fig. 1 as in Lemma 7; the amenability of the ft’s (and Lemma 8) implies that the protocol never840

outputs “error”, and the rest of the argument is exactly the same like in the finite case (with slight841

deterioration in the constants).842

Corollary 5. Let A be an algorithm like in the above Lemma. Then, if one uses A as the online843

learner in the algorithm in Fig. 1, together with the modification in Fig. 4, then the round complexity844

of it is at most O( `
∗

ε2 log `∗

ε ), as in Theorem 2, Item 1.845

In the remainder of this section we prove Lemma 7.846

D.1 Preliminaries847

We first present standard notions and facts from topology and functional analysis that will be used.848

We refer the reader to [35, 34] for further reading.849

Weak* topology. Given a compact Haussdorf space K, let ∆(K) denote the space of Borel850

measures over K, and let C(K) denote the space of continuous real functions over K. The weak*851

topology over ∆(K) is defined as the weakest7 topology so that for any continuous function f ∈852

C(K) the following “∆(K)→ R” mapping is continuous853

Tf (µ) =

∫
f(k)dµ(k).

We will rely on the following fact, which is a corollary of Banach–Alaglou Theorem (see e.g. Theorem854

3.15 in [34]) and the duality between C(K) and B(K), the class of Borel measures over K:855

Claim 2. Let K be a compact Haussdorf space. Then ∆(K) is compact in the weak* topology.856

Upper and lower semicontinuity. Recall that a real function f is called upper semicontinuous857

(u.s.c) if for every α ∈ R the set {x : f(x) ≥ α} is closed. Note that lim supx→x0
f(x) ≤ f(x0) for858

any x0 in the domain of f . Similarly, f is called lower semicontinuous (l.s.c) if −f is u.s.c. We will859

use the following fact:860

Claim 3. Let K be a compact Haussdorf space and assume E ⊆ K is a closed set. Consider the861

“∆(K)→ [0, 1]” mapping TE(µ) = µ(E). Then TE is u.s.c with respect to the weak* topology on862

∆(X).863

Proof. This fact can be seen as a corollary of Urysohn’s Lemma (Lemma 2.12 in [35]). Indeed, Borel864

measures are regular (see definition 2.15 in [35]. Thus, for every closed set E we have865

µ(E) = inf
{U :E⊆U, U is open}

µ(U).

Fix a closed setE. Urysohn’s Lemma implies that for every open set U ⊇ E, there exists a continuous866

function fU ∈ C(K) such that χE ≤ fU ≤ χU , where χA is the indicator function over the set A867

(i.e. χA(x) = 1 if and only if x ∈ A).868

Thus, we can write µ(E) = inf{U :E⊆U, U is open} µ(fU ), where µ(fU ) = Ex∼µ[fU ]. Now, by869

continuity of fU , it follows that the mapping µ 7→ µ(fU ) is continuous with respect to the weak*870

topology on ∆(X). Finally, the claim follows since the infimum of continuous functions is u.s.c.871

Sion’s Theorem. We next state the following generalization of Von-Neumann’s Theorem for872

u.s.c/l.s.c payoff functions.873

Theorem 4 (Sion’s Theorem). Let W be a compact convex subset of a linear topological space874

and U a convex subset of a linear topological space. If F is a real valued function on W × U with875

• F (w, ·) is l.s.c and convex on U and876

• F (·, u) is u.s.c and concave on W877

then,878

max
w∈W

inf
u∈U

F (w, u) = inf
u∈U

max
w∈W

F (w, u)

7In the sense that every other topology with this property contains all open sets in the weak* topology.
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Tychonof’s space. The last notion we introduce is the topology we will use on {0, 1}X . Given an879

arbitrary set X , the space F = {0, 1}X is the space of all functions f : X → {0, 1}. The product880

topology on F is the weakest topology such that for every x ∈ X the mapping Πx : F → {0, 1},881

defined by Πx(f) = f(x) is continuous.882

A basis of open sets in the product topology is provided by the sets Ux1,...,xm(g) of the form:883

Ux1,...,xm(g) = {f : g(xi) = f(xi) i = 1, . . . ,m},
where x1, . . . , xm are arbitrary elements in X and g ∈ F .884

A remarkable fact about the product topology is that the space F is compact for any domain X (see885

for example [27]). We summarize the above discussion in the following claim886

Claim 4. Let X be an arbitrary set and consider F = {0, 1}X equipped with the product topology.887

Then F is compact and Πx ∈ C(F) for every x ∈ X , where Πx is defined as Πx(f) = f(x).888

D.2 Two Technical Lemmas889

The proof of Lemma 7 follows from the following two Lemmas. Throughout the proofs we will treat890

D as a topological subpace in {0, 1}X with the product topology. We will also naturally treat ∆(D)891

as a topological space equipped with the weak∗ topology.892

Lemma 9 (Analog of Lemma 5). Assume D ⊆ {0, 1}X is closed and let f : D → [0, 1]. Assume893

that f̂ is u.s.c (with respect to the weak* topology on ∆(D)) then f is amenable.894

Lemma 10 (Analog of Corollary 4). LetD ⊆ {0, 1}X be closed and let `∗ denote its dual Littlestone895

dimension. Then, there exists a deterministic online learner that receives labelled examples from the896

domain ∆(D) such that for every sequence (pt, yt)
T
t=1 we have that:897

REGRETT (L) ≤
√

1

2
`T log T

Moreover, at each iteration t the predictor, f̂t, used by L is of the form f̂t
[
d̄
]

= Ed∼d̄(ft(d))898

for some ft : D → [0, 1]. Finally, for every t ≤ T , if the sequence of observed examples899

(d̄1, y1), . . . , (d̄t−1, yt−1) all have finite support then f̂t is u.s.c.900

We first show how to conclude the proof of Lemma 7 using these lemmas and later prove the two901

lemmas.902

Concluding the proof of Lemma 7. The proof follows directly from the two preceding Lemmas.903

Given a discriminating class D ⊆ {0, 1}X there is no loss of generality in assuming D is closed,904

since closing the class with respect to the product topology does not increase its dual LIttlestone905

dimension.906

Now, take the learner A whose existence follows from Lemma 10. Since each f̂t is u.s.c we obtain907

via Lemma 9 that each ft is also amenable.908

Proof of Lemma 9. Lemma 9 extends Lemma 5 to the infinite case. Similar to the proof of909

Lemma 5 which hinges on Von-Neumann’s Minmax Theorem, the proof here hinges on Sion’s910

Theorem which is valid in this setting.911

Before proceeding with the proof we add the following notation: let RXfin denote the space of real-912

valued functions v : X → R with finite support, i.e. v(x) = 0 except for maybe a finite many x ∈ X .913

We equip RXfin with the topology induced by the `1 norm, namely a basis of open sets is given by the914

open balls Uv,ε = {u :
∑
x∈X |v(x)− u(x)| < ε}. Rfin(X ) is indeed a linear topological space (i.e.915

the vector addition and scalar multiplication mappings are continuous). Finally, define916

∆fin(X ) := {p ∈ RXfin : p(x) ≥ 0
∑
x∈X

p(x) = 1}.

Next, let f : D → [0, 1] be such that f̂ is u.s.c. Our goal is to show that f is amenable. Set F to be917

the following real-valued function over ∆(D)×∆fin(X ):918

F (d̄, p) = Ē
d∼d

[
f(d)−

∑
x∈X

p(x)x(d)

]
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It suffices to show that919

max
d̄∈∆(D)

inf
p∈∆fin(X )

F (d̄, x) = inf
p∈∆fin(X )

max
d̄∈∆(D)

F (d̄, p) (12)

Indeed, the assumption that Item 1 does not hold implies in particular that920

inf
p∈∆fin(X )

max
d∈∆(D)

F (d̄, p) ≥ ε

2
.

Eq. (12) then states that921

max
d̄∈∆(D)

inf
x∈X

E
d∼d̄

[f(d)− x(d)] ≥ ε

2
.

which proves that Item 2 holds.922

Eq. (12) follows by an application of Theorem 4 on the function F . Thus, we next show the923

premise of Theorem 4 is satisfied by F . Indeed, W = ∆(D) is compact and convex, and U =924

∆fin(X ) is convex. We show that F (·, p) is concave and u.s.c for every fixed p ∈ ∆fin(X ): indeed,925

F (·, p) is in fact linear and therefore concave. We show that F (·, p) is u.s.c by showing that it926

is the sum of (i) a u.s.c function (i.e. Ed∼d̄[f(d)]) and (ii) finitely many continuous functions (i.e.927 ∑
x∈X p(x)Ed∼d̄[x(d)]). Indeed, (i) by assumption f̂(d̄) = Ed∼d̄[f(d)] is u.s.c, and (ii) by Claim 4,928

the mapping Πx(d) is continuous for every x ∈ X which, by the definition of the weak* topology,929

implies that d̄→ Ed∼d̄ Πx(d) = Ed∼d̄ [x(d)] is continuous.930

Finally, because Ed∼d̄[x(d)] ≤ 1 is bounded, it follows that F (d̄, ·) is linear and continuous in p for931

every fixed d̄: indeed treating f̂(d̄) and {Ed̄∼d [x(d)]}x∈X as bounded constants, we have that:932

F (d̄, p) = f̂(d̄)−
∑
x∈X

p(x) Ē
d∼d

[x(d)]

Proof of Lemma 10. Lemma 10 follows from a close examination of the proof provided in [6] for933

Theorem 3 and the extension to Corollary 4.934

The fact that the learner outputs a predictor of the form f̂t = Ed̄∼d [ft(d)] follows by construction935

in Corollary 4. So, it suffices to show that the ft’s can be chosen to be u.s.c. Call a function936

s : D → {0, 1} an SOA-type function if there exists a hypothesis classH ⊆ X such that937

s(d) =

{
0 Ldim(H|(d,0)) = Ldim(H)

1 else

where H|(d,0) = {h ∈ H} : h(d) = 0}.938

In the proof by [6] of Theorem 3 the authors construct an online learner which at each iteration939

uses a randomized predictor (i.e. a distribution over predictors). One can observe and see that this940

randomized predictor only uses SOA-type function: namely, the algorithm holds, at each iteration, a941

distribution qt over a finite set of SOA type functions {sk}, and at each iteration picks the prediction942

made by sk with probability qt(sk).943

The extension in Corollary 4 of this predictor to the domain ∆(D) is done by choosing:944

ft(d) = Ē
d1:T

[
E

s∼L0

[s(d)|d1, . . . , dt−1]

]
= Ē
d1:T

[∑
qt(sk)sk(d)|d1, . . . , dt−1

]
Namely, the choice of ft is the expectation over the algorithm’s prediction, taking expectation945

both over the choice of the algorithm and over the sequence of observations. d1, . . . , dt−1, drawn946

according to d̄1, . . . , d̄t−1. Now because d̄1, . . . d̄t−1 all have finite support we can summarize these947

expectations and write:948

ft =
∑

λksk,

for some choice of SOA-type functions and weights λk ≥ 0.949

Since the sum of u.s.c functions is u.s.c and since the multiplication of a u.s.c function with positive950

scalar is u.s.c, it is enough to prove that every SOA-type function s induces an u.s.c function over951

∆(D) via the identification µ 7→ µ ({d : s(d) = 1}). By Claim 3 it is enough to show that the set952
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s−1(0) is open. To this end we show that for every d ∈ s−1(0) there is an open neighborhood of d953

which is contained in s−1(0). Indeed, if d ∈ s−1(0), then there exist x1, . . . , x2` that d(xi) = 0 for954

all i, and they shatter a tree. Consider the open neighborhood of d defined by U = ∩i{d : d(xi) = 0}.955

U ⊆ s−1(0) since if there were d′ ∈ U such that s(d′) = 1 then Ldim(H|(d′,0)) < Ldim(H) = `.956

However, since d′ ∈ U then x1, . . . , x2` ∈ H|(d′,0) and they shatter a tree of depth ` which is a957

contradiction.958
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